Кто и в каком году изобрел электричество: история открытия

Содержание

Когда и как было открыто

История открытия этого явления была очень длительной. Само слово придумал греческий ученый Фалес. Оно стало производным от понятия «электрон», которое переводится как «янтарь». Появился этот термин до нашей эры, благодаря Фалесу, заметившему свойство янтаря после того, как его потереть, притягивать легкие предметы.

Произошло это за семь столетий до н.э. Фалес проводил много опытов, изучая увиденное. Это были первые опыты с зарядами в мире. На этом его наблюдения и закончились. Далее он не смог продвинуться, но именно этот ученый считается основоположником теории электроэнергии, ее первооткрывателем, хотя как наука это явление не получило развития. Его наблюдения были надолго забыты, не вызвав интереса у ученых.

Никола Тесла и электрическая вселенная против предположений Эйнштейна

Эйнштейн предположил и в конце концов, в некоторой степени доказал, что гравитация — это искривление в измеримой реальности. Он назвал ее «пространство — время». Когда вы добавляете время к координатам длины, ширины, и высоты вы получаете пространство — время.

Рассмотрим пространство — время как матерчатую ткань. Когда масса или объект достаточно велики, это может привести к деформации ткани. Подумайте, что происходит, когда вы поднимаете колени под одеялом. Они скручивают одеяло. Вы можете видеть, что ваши колени (масса) создали изгиб или полость. Эта структура искривления (загиб, полость) и есть гравитация. Это всё конечно гораздо сложнее, но это даёт нам основу, чтобы понять красоту и проблемы, стоящие за теорией электрической Вселенной.

Чтобы лучше понять теорию электрической Вселенной, давайте начнем с нескольких определений:

Атомы.

  • Атомы являются основной единицей химического элемента. Они состоят из крошечных субатомных частиц, включая протоны, нейтроны и электроны.
  • Атомы окружены одним или несколькими отрицательными электронами. Электроны немного похожи на не связанных партнеров и их можно легко отделить от атомов — хозяев. Когда испускаются электроны, может произойти всё что угодно. Например, северное сияние рождается из этих типов «течений», формируя разноцветные волны, чтобы сиять на небе. Эти всплески и волны, являются формами плазменных нитей.


Изображение атомов.

Плазма.

  • Плазма является наиболее распространенной, одной из четырёх основных состояний материи. Другие крупные игроки, это твердые тела, жидкости и газы.
  • Плазма образуется, когда ионизированные газы становятся электропроводными. То есть через них может протекать электрический ток.
  • Огонь и молния — это формы плазмы. Именно так звёзды и галактики получают свою силу. Потоки втекают в звезды и питают их, как электричество лампочки. Они также могут вызывать рождение планет. Вы можете видеть остатки этих энергетических вливаний в виде кратеров по всей нашей галактике.

Плазменная нить.

  • Когда заряженные частицы движутся по всей плазме, вокруг электрического тока могут образовываться кольца магнитных полей. Это называется плазменной нитью.
  • Взаимосвязанные и идеально сплетенные плазменные нити тянутся на миллиарды и миллиарды световых лет. Они создают безмолвное равновесие, присущее физической вселенной.
  • Когда ток течёт через плазменные нити, он генерирует разноцветные усики света. Именно здесь появляется Никола Тесла (1856 — 1943). Он изобрёл плазменный шар.


Электрический плазменный шар. Малиновый цвет — плазма.

5 интересных фактов об электричестве

Факт 2

Ток, как известно, является движением заряженных частиц. Скорость электричества равна примерно 300 000 километров в секунду (скорость света). На самом деле, это скорость распространения электрического поля. Электроны в проводнике движутся гораздо медленнее. Их скорость составляет примерно 1 миллиметр в секунду.

Однажды в 1746 году ученый Жан-Антуан Нолле решил измерить скорость тока. Поставив 200 монахов в ряд, он соединил их проводами и дал разряд. В результате от удара током все монахи дернулись одновременно, из чего был сделан вывод, что скорость очень высокая. 

Факт 3

Первый автомобиль, работающий на электричестве, был построен еще в 19 веке. До того, как появился двигатель внутреннего сгорания. А в 1899 году именно на электромобиле был установлен рекорд скорости на суше – 100 км/ч (или 62 мили/ч).

Факт 4

Изобретение электрического стула связывают с именем Томаса Эдисона. На самом деле, это не совсем так, хотя Эдисон и приложил руку к этому делу. В конце 19 века шла так называемая война токов – конкуренция между Эдисоном (постоянный ток) и Теслой (переменный ток). В ход шли почти любые средства, и Эдисон показывал опасность переменного тока, демонстративно убивая им животных.

После того, как какой-то несчастный почти мгновенно погиб, прикоснувшись к проводам генератора на улице, люди задумались о новом гуманном способе казни. К слову, первая казнь на электрическом стуле не прошла гладко и быстро: его пришлось включать два раза.

Факт 5

Кроме убийства, электричество используется и для возвращения к жизни. При дефибрилляции (фибрилляция – судорожное сокращение мышц) через тело пропускают кратковременный разряд напряжением от 4000 до 7000 Вольт. Такая процедура помогает запустить человеческое сердце в нормальном ритме.

Хотите больше узнать об электричестве, электротехнике и научиться быстро решать задачи? Обращайтесь в профессиональный сервис помощи студентам за консультациями и оперативным решением учебных вопросов.

Великие открытия 18-19 веков

Исследования в области электричества были успешно продолжены другими учеными. Так в 1707 году французский физик Дю Фей обнаружил разницу между электричеством, получаемым от трения о разные материалы. Для экспериментов использовались круги из стекла и древесной смолы.

В 1729 году английскими учеными Греем и Уилером было установлено, что отдельные виды веществ способны пропускать сквозь себя электричество. Именно с их открытия все тела начали разделяться по типам и называться проводниками и непроводниками электричества. В этом же году голландский физик Мушенбрук из Лейдена сделал грандиозное открытие. В ходе опытов со стеклянной банкой, закрытой с двух сторон листами станиоля, было установлено, что такой сосуд способен накапливать электричество. По месту проведения эксперимента данный прибор был назван лейденской банкой.

Большой вклад в науку внес американский ученый и общественный деятель Бенджамин Франклин. Он доказал теорию совместного существования положительного и отрицательного электричества, объяснил процессы, происходящие во время зарядки и разрядки лейденской банки. Было установлено, что свободная электризация обкладок этого прибора может происходить под действием разных электрических зарядов. Бенджамин Франклин много времени уделял изучению атмосферного электричества и доказал с помощью громоотвода возникновение молнии от разности электрических потенциалов.

В 1785 году французским ученым Шарлем Кулоном был открыт закон, описывающий электрическое взаимодействие между точечными зарядами. Открытие точного физического закона произошло без сложного лабораторного оборудования, с помощью лишь стальных шариков. Для определения расстояния и силы взаимодействия использовались такие же крутильные весы, как и при исследованиях сил тяготения между двумя телами. Ученый не пользовался абсолютной величиной электрических зарядов, он просто брал два одинаковых заряда или неодинаковые, но с заранее известной разницей их величины.

Важное открытие в области электричества было сделано итальянским ученым Алессандро Вольта в 1800 году. Этим изобретением стала химическая батарея, состоящая из круглых серебряных пластинок, переложенных кусками бумаги, предварительно смоченных соленой водой

Химические реакции, возникающие в батарее, способствовали регулярному вырабатыванию электрического тока.

В 1831 году знаменитый английский физик Майкл Фарадей открыл явление электромагнитной индукции, и на ее основе первым в мире изобрел электрический генератор. С именем Майкл Фарадей связаны понятия электрического и магнитного поля, изобретение простейшего электродвигателя.

Вся история электричества была бы неполной без выдающегося изобретателя Николы Тесла, работавшего на рубеже 19-20 веков и значительно обогнавшего свое время. Свои исследования в области магнетизма и электричества он постоянно переводил в практическую плоскость. Приборы, созданные гениальным ученым, до сих пор считаются уникальными и неповторимыми.

В течение всей своей жизни, посвященной изучению возможностей электричества, Тесла зарегистрировал множество патентов, сделал открытия, ставшие прорывом в электротехнике. Большинство изобретений и открытий, так или иначе до сих пор используются в повседневной жизни. Из наиболее известных работ следует отметить вращающееся магнитное поле, позволяющее использовать переменный ток в электродвигателях без преобразования в постоянный ток. Также Тесла создал двигатель переменного тока, на основе которого в дальнейшем был создан генератор переменного тока. Эти и другие открытия успешно использовались во многих технических решениях.

Ученых, сделавших весомый вклад в развитие науки об электричестве, можно перечислять очень долго. В завершение хочется отметить Георга Ома, который в ходе экспериментов вывел основной закон электрической цепи. Благодаря Ому появились такие термины, как электродвижущая сила, проводимость, падение напряжения и другие. Не менее известен Ампер Андре-Мари, придумавший правило правой руки для определения направления тока на магнитную стрелку. Ему принадлежит и конструкция усилителя магнитного поля, представляющего собой катушку с большим количеством витков. Эти и другие ученые много сделали для того, чтобы человечество в полной мере пользовалось теми благами, которые дает электричество.

Электричество из воздуха своими руками

Электричество из земли

Электричество из магнита

Как получить электричество из картошки

Как снять статическое электричество

Электричество в доме

Когда появилось электричество в России

Даты, когда в России началась эра использования электроэнергии, называют разные. Все зависит от критерия, по которому ее устанавливают.

Многие соотносят это событие с 1879 годом. В Петербурге тогда были установлены электрические фонари на Литейном мосту. Но есть люди, которые считают датой появления в России электричества начало 1880 года – дату создания электрического отдела в Российском техническом обществе.

Через три года в Российской империи создали «Общество электроосвещения», которое занялось разработкой плана установки фонарей на улицах Москвы и Санкт-Петербурга. А еще через пару лет начинается всюду по империи строительство и оснащение электростанций.

Из чего состоит электроэнергия

Все, что окружает нас, в том числе и люди, состоит из атомов. Атом же состоит из положительно заряженного ядра. Вокруг этого ядра вращаются отрицательно заряженные частицы, которые называются электронами. Эти частицы нейтрализуют положительный заряд ядра. Потому атом имеет нейтральный заряд. Образуется электричество направленным перемещением электронов из одного атома на другой. Такое действие можно осуществить с помощью генератора, трения или химической реакции.

Внимание! Процесс основан на свойстве притяжения частиц, имеющих разные заряды, и отталкивания одинаковых зарядов. В результате возникает ток, который может передаваться через проводники (чаще всего металлы)

Материалы, которые не способны передавать ток, называются изоляторами. Хорошие изоляторы – это дерево, пластмассовые и эбонитовые предметы.

Как образуется разное электричество

переменный или постоянный ток

В быту человеку постоянно приходится сталкиваться с ним, поскольку одежда синтетической природы есть в каждом доме. А она во время трения накапливает заряд. Некоторые предметы одежды при раздевании или одевании дают такой эффект.

Об этом сигнализируют искры и треск. Источники статического электричества находятся в каждой квартире. Это бытовые электроприборы и компьютеры, электризующие мельчайшую пыль, которая оседает на полу, поверхностях мебели и одежде. Она оказывает отрицательное действие на здоровье людей.

Важно! Для получения электроэнергии создают магнитное поле. Оно притягивает электроны, заставляя их двигаться по проводнику

Этот процесс перемещения частиц называется электрическим током. При стационарном магнитном поле ток течет по проводнику постоянный.

Наука электродинамика

Это связано с тем, что все тела состоят из заряженных частиц. Взаимодействие между ними намного сильнее гравитационных. И в настоящее время эта наука является наиболее полезной для человечества.

Основателем науки признан ученый Гильберт. До 1600 г. наука эта была на уровне знаний Фалеса. Гильберт попытался построить теорию электричества.

До него замеченные греческим ученым свойства притяжения считались только забавным фактом. Гильберт свои наблюдения проводил, используя электроскоп. Его исследования и научные основания стали основополагающим этапом в науке. А само название стало применяться с 1650 г.

Современная наука об электрических явлениях и законах называется электродинамикой. Сейчас трудно себе представить жизнь без электроэнергии. С помощью электрического тока созданы многие приборы, помогающие передавать информацию на огромные расстояния, даже в космос. Технический прогресс позволил поставить его на службу всему человечеству, все больше открывая тайны этого природного явления. Но все же в этой области науки еще содержится много неизведанного.

Откуда появилось электричество

Кто изобрел электричество

Первые исследования и открытия

Знания в области электричества стали развиваться далее лишь в 15 веке. И если рассматривать электричество, кто создал его и ввел такое понятие, следует в первую очередь отметить английского физика Уильяма Гильберта (1544-1603). Этот ученый-естествоиспытатель и придворный врач по праву считается основоположником учения об электричестве и магнетизме. Благодаря Уильяму появились термины «электричество» и «электрический». В своем научном труде Уильям Гильберт аргументированно доказывает наличие у Земли магнитного поля.

Книга «О магните, магнитных телах и великом магните Земли» подробно описывает опыты, подтверждающие магнитные и электрические свойства тел. Все тела были разделены на электризующиеся с помощью трения и не электризующиеся. Было установлено, что каждый магнит обладает двумя неразделимыми полюсами. То есть, при распиливании магнита на две равные части, на каждой половинке вновь образуется собственная пара полюсов. Разноименные полюса притягиваются друг к другу, а одноименные, наоборот, отталкиваются в противоположные стороны.
Во время опытов с металлическим шаром, взаимодействующим с магнитной стрелкой, ученым впервые было выдвинуто предположение о том, что Земля есть не что иное, как огромный магнит, а ее магнитные полюсы могут совпадать с географическими полюсами.

Электрические явления были исследованы ученым с помощью версора, созданного собственноручно, который стал первым своеобразным электроскопом. Понятия магнетизма и электричества разделились, поскольку магнитными свойствами обладают в основном металлические предметы, а электрические присущи многим веществам, входящим в особую категорию. В книге Уильяма Гилберта впервые определены понятия электрического притяжения, электрической силы и магнитных полюсов.

Опыты ученого через много лет решил повторить немецкий физик, инженер и философ из Магдебурга Отто фон Герике (1602-1686). Он изобрел специальные физические приборы, которые помогли не только подтвердить выводы Гилберта, но и подтвердить научные изыскания самого фон Герике. Лучшими доказательствами считаются ряд экспериментальных исследований, затрагивающих статическое электричество, которым до тех пор практически никто не интересовался.

Для подтверждения собственных изысканий и предыдущих опытов Уильяма Гильберта, фон Герике изобрел специальный прибор, позволяющий создавать электрическое состояние. В нем отсутствовал конденсатор для накопления электричества, производимого трением, поэтому данный прибор не в полной мере соответствовал понятию электрической машины. Тем не менее, он сыграл свою роль и благодаря ему история развития электричества получила новый толчок в нужном направлении.

Фон Герике открыл еще и эффект электрического отталкивания, который был ранее неизвестен. Для подтверждения данного эффекта был изготовлен большой шар из серы, сквозь который продевалась ось, приводившая его в движение. В процессе вращения он натирался сухой рукой, что вызывало электризацию шара. В ходе эксперимента было замечено, что тела вначале притягиваются к нему, а затем отталкиваются. Кроме того, было видно, как оттолкнувшуюся пушинку притягивают другие тела. В процессе исследования наблюдались и другие эффекты, подтверждающие общие характеристики и свойства электричества, известные в то время.

В дальнейшем электрическая машина фон Герике была усовершенствована немецкими учеными Бозе, Винклером, английским физиком Хоксби. С ее помощью в 18 и 19 веках удалось сделать массу новых открытий в теории и практике электричества.

Этапы создания теории

Электричество — как вырабатывается и из чего состоит

Каждая ступень строительства электрической теории возводилась на основе личных открытий выдающихся учёных физиков. Их фамилии составляют список имён, кому принадлежит изобретение электричества. Теоретическая научная база электричества развивалась постепенно, по мере накопления экспериментального опыта.

Появление термина

Выше уже упоминалось то, что понятие «электричество» впервые было введено в употребление Уильямом Гилбертом в 1600 г. С этого момента отмечают дату, когда появилось электричество.

Первая электростатическая машина

Демонстрируемый прибор в 1663 г. бургомистром Магдебурга Отто фон Генрике считают первой электростатической машиной. Она представляла собой смоляной шар, насаженный на металлический стержень.

Лейденская банка

В 1745 году случилось знаменательное событие – голландский исследователь Питер ван Мушенброк создал электростатический конденсатор. Прибор был назван в честь города, где было сделано изобретение, – Лейденской банкой.

Два вида зарядов

Бенджамин Франклин ввёл понятие о полярности зарядов. С тех пор аксиомой является то, что любой электрический потенциал имеет отрицательный и положительный полюсы.

Бенджамин Франклин

В 1747 году американский научный исследователь Бенджамин Франклин создаёт собственную теорию об электричестве. Он представил природу электричества как нематериальную жидкость в виде неких флюидов.

Первые ГЭС

Отечественная история электричества в царский период ознаменовалась и первыми небольшими гидроэлектростанциями. Самая ранняя появилась на Зыряновском руднике в Алтайских горах. Большая известность обрушилась на станцию в Петербурге на реке Большой Охте. Одним из ее строителей был все тот же Роберт Классон. Кисловодская гидроэлектростанция «Белый уголь» служила источником энергии для 400 уличных фонарей, трамвайных линий и насосов на минеральных водах.

К 1913 году на разных российских речках были уже тысячи ГЭС небольшого размера. По подсчетам специалистов их общая мощность составляла 19 мегаватт. Самой крупной ГЭС была Гиндукушская станция в Туркестане (она работает и сегодня). При этом накануне Первой мировой войны сложилась заметная тенденция: в центральных губерниях упор делался на строительство тепловых станций, а в далекой провинции – на силу воды. История создания электричества для российских городов началась с больших вложений иностранцев. Даже оборудование для станций почти все было зарубежным. Например, турбины закупали отовсюду – от Австро-Венгрии до США.

В период 1900-1914 гг. темп российской электрификации являлся одним из самых высоких во всем мире. В то же время существовал заметный перекос. Электричество поставлялось в основном для промышленности, а вот спрос на бытовые приборы оставался достаточно низким. Ключевая же проблема продолжала заключаться в отсутствии централизованного плана модернизации страны. Движение вперед осуществлялось частными компаниями, при этом в массе своей – иностранными. Немцы и бельгийцы в основном финансировали проекты в двух столицах и старались не рисковать своими средствами в далекой российской провинции.

Зарождение первых понятий об электричестве

Свет и электроны.

Электричеством принято называть совокупность явлений, основанных на передвижении и взаимодействии крохотных заряженных частиц, именуемых электрическими зарядами.

Сам термин «электричество» происходит от греческого слова «электрон», что в переводе на русский язык означает «янтарь».

Такое название физическому явлению было дано неспроста, ведь первые опыты по получению электричества относятся к античным временам, когда в VII в. до н. э. древнегреческий философ и математик Фалес пришел к открытию, что потертый о шерсть кусочек янтаря способен притягивать к себе бумагу, перья и другие предметы с малым весом.

Тогда же были совершены попытки получить искру после поднесения натертого пальца к стеклу. Но знаний, доступных людям в те давние времена, было явно недостаточно, чтобы объяснить природу происхождения полученных физических явлений.

Заметный прогресс в изучении электричества был сделан спустя 2 тысячелетия. В 1600 г. придворный лекарь британской королевы Вильям Гилберт издал трактат «О магнитах, магнитных телах и большом магните — Земле», где впервые в истории употребил слово «электрика».

В своем труде английский ученый разъяснял принцип действия компаса, созданного на основе магнита, и описывал эксперименты с наэлектризованными предметами. Гилберту удалось прийти к умозаключению, что способность электризоваться свойственна различным телам.

Продолжателем исследований Вильяма Гилберта можно назвать немецкого бургомистра Отто фон Герике, которому в 1663 г. удалось придумать первую в истории человечества электростатическую машину.

Изобретение немца представляло собой прибор, состоящий из большого серного шара, насажденного на железную ось и прикрепленного к деревянному штативу.

Для получения электрического заряда шар во время вращения натирали куском ткани или руками. Это нехитрое приспособление позволило не только притягивать легкие предметы к себе, но и отталкивать их.

В 1729 г. эксперименты по изучению электричества продолжил ученый из Англии Стивен Грей. Ему удалось определить, что металлы и некоторые другие виды материалов способны передавать электрический ток на расстоянии. Их стали называть проводниками.

В ходе своих опытов Грей выяснил, что в природе существуют вещества, не способные передавать электричество. К ним относятся янтарь, стекло, сера и т.д. Такие материалы впоследствии были названы изоляторами.

Спустя 4 года после экспериментов Стивена Грея французский физик Шарль Дюфе открыл существование двух видов электрических зарядов (смоляного и стеклянного) и изучил их взаимодействие между собой. Позднее описанные Дюфе заряды стали именоваться отрицательными и положительными.

Производство и практическое использование

С момента появления первых генераторов произошло много открытий, изобретения внедрены в сферу генерирования и передачи энергии.

В результате научных поисков с последней четверти XIX в. возникли предпосылки для развития электроэнергетики, которые включают в себя:

  • создание турбин;
  • разработку генераторов;
  • передачу электроэнергии.

В 1801 г. в Германии под руководством русского инженера М.О. Доливо-Добровольского была построена ГЭС промышленной мощностью 220 кВт. В XX в. началась эра широкого применения потенциала энергии воды, в XXI в. постепенно внедрялось и увеличивалось использование природных ресурсов.

Производство (генерация) электроэнергии осуществляется на объектах индустриального назначения. Используя в качестве топлива водород, человечество получает высокий КПД сгорания, заботится об экологической чистоте.

Генерирование и передача

Создание мобильных и электростанций большой мощности повлияло на поиск практических решений передачи электричества на расстояние.

Это удалось сделать посредством сетей, в состав которых вошли:

  • линии;
  • повышающие и понижающие преобразователи;
  • распределительные устройства.

Первые опыты по транспортированию принадлежат Стивену Грею, который в 1720-е гг. передавал заряд по шелковому проводу.

В 1873 г. Фонтен продемонстрировал применение генератора и двигателя постоянного тока, связанные между собой проводом длиной 2000 м. Прорывом в передаче тока на большие расстояния стал проведенный в 1891 г. опыт М.О. Доливо-Добровольского, в ходе которого использовалась 3-фазная линия.

Для дальности передачи действует главный параметр пропускной способности, при расчете которой учитывается волновое влияние связывающих факторов сопротивления и создаваемого напряжения.

Применение

Электричество, будучи незаменимым, используется для таких целей:

    • создания системы освещения;
    • передачи информации;
    • функционирования транспорта (трамваев, троллейбусов, поездов);
    • работы бытовых и офисных приборов;

производства и обработки материалов.

Сфера применения электричества настолько широка, что часто пользователи не замечают существования источников энергии.