Скорость теплового движения свободных электронов
Нам известно, что общий заряд тела состоит из большого количества элементарных зарядов.
К примеру, в твердых телах положительные заряды – это ядра атомов, или ионы. А отрицательные – это электроны.
А в жидкостях или газах – положительные и отрицательные заряды – это ионы.
Примечание: Ион – атом, у которого присутствует избыток электронов, либо наоборот, электронов меньше, чем в нейтральном атоме.
Рассмотрим твердый проводник, в нем присутствуют свободные заряды. Это такие электроны, которые оторвались от своего атома и свободно путешествуют по всему объему проводника.
Рис. 2. Отличия свободных и связанных электронов в проводнике
Примечание: Проводник – это тело, в котором много свободных электронов.
Как известно из молекулярно-кинетической теории (МКТ), мельчайшие частицы вещества находятся в непрерывном движении. Это движение возникает под действием температуры, поэтому, его часто называют тепловым. Такое движение беспорядочное, то есть — хаотическое.
Рис. 3. Под действием температуры свободные заряды беспорядочно движутся
Рассчитаем, с какой скоростью электроны в проводнике беспорядочно перемещаются под действием температуры.
Для этого воспользуемся формулой среднеквадратичной скорости частиц из молекулярной физики:
Подставим в формулу такие числовые значения:
(large T = 300 left( Kright)) – комнатная температура +27 градусов Цельсия;
(large k = 1,38 cdot 10^{-23} left( frac{text{Дж}}{K}right) ) – постоянная Больцмана;
(large m = 9,1 cdot 10^{-31} left(text{кг}right) ) – масса электрона;
После расчетов получим скорость, примерно равную
Как видите, это очень большая скорость, более 100 километров в секунду.
Рис. 4. Скорость свободных электронов в меди
Примечание: Физики свободные электроны в проводнике рассматривают, как частицы идеального газа. Его так и называют – электронный газ.
Однако, еще раз подчеркну, что тепловое движение – хаотическое. С помощью такого движения электрический ток не создать. Потому, что ток – это направленное движение зарядов.
Направление электрического тока в металлах
По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».
Действия электрического тока (преобразования энергии)
Электрический ток способен вызывать различные действия:
- Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
- Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
- Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
- Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
- Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.
Параметры домашней электрической сети
После выяснения того, что ток в розетке наших домов переменный, необходимо знать его главные параметры, которым относятся величина напряжения, и частота. Напряжение домашних электрических сетей составляет 220в. Весь мир пользуется электричеством с частотой 50 Герц, за исключением США, где этот параметр имеет значение 60 Гц.
По проводу фактических значений напряжения и частоты необходимо знать:
- Частота 50 Гц задается генерирующим устройством электростанции и всегда соответствует заданному значению.
- Напряжение в отдельно взятом доме или квартире может отличаться от номинального значения 220 В. На это могут оказывать влияние техническое состояние, величина и распределение нагрузки сети, питающей многоквартирный дом или жилой район, степень загруженности ее трансформаторной подстанции. Эти отклонения, могут быть весьма значительными и достигать 20-25 Вольт. В этом случае целесообразно подключение домашней электросети производить через стабилизатор напряжения.
ФИЗИКА
§ 37. Сила тока. Единицы силы тока
Действия электрического тока, которые были описаны в § 35, могут проявляться в разной степени — сильнее или слабее. Опыты показывают, что интенсивность (степень действия) электрического тока зависит от заряда, проходящего по цепи в 1 с.
Когда свободная заряженная частица — электрон в металле или ион в растворе кислот, солей или щелочей — движется по электрической цепи, то вместе с ней происходит и перемещение заряда. Чем больше частиц переместится от одного полюса источника тока к другому или просто от одного конца участка цепи к другому, тем больше общий заряд q, перенесённый частицами.
Ампер Андре Мари (1775-1836)
Французский физик и математик, создал первую теорию, которая выражала связь электрических и магнитных явлений. Ввёл в физику понятие «электрический ток».
Электрический заряд, проходящий через поперечное сечение проводника в 1 с, определяет силу тока в цепи. Значит, сила тока равна отношению электрического заряда q, прошедшего через поперечное сечение проводника, ко времени его прохождения t, т. е.
I = q/t
где I — сила тока.
На Международной конференции по мерам и весам в 1948 г. было решено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током. Ознакомимся сначала с этим явлением на опыте.
На рисунке 60 изображены два гибких прямых проводника, расположенных параллельно друг другу. Оба проводника подсоединены к источнику тока. При замыкании цепи по проводникам протекает ток, вследствие чего они взаимодействуют — притягиваются или отталкиваются, в зависимости от направления токов в них.
Рис. 60. Взаимодействие проводников с током
Силу взаимодействия проводников с током можно измерить
Эта сила, как показывают расчёты и опыты, зависит от длины проводников, расстояния между ними, среды, в которой находятся проводники, и, что самое важное для нас, от силы тока в проводниках. Если одинаковы все условия, кроме силы токов, то, чем больше сила тока в каждом проводнике, тем с большей силой они взаимодействуют между собой
Представим теперь себе, что взяты очень тонкие и очень длинные параллельные проводники. Расстояние между ними 1 м, и находятся они в вакууме. Сила тока в них одинакова.
За единицу силы тока принимают силу тока, при которой отрезки таких параллельных проводников длиной 1 м взаимодействуют с силой 2 • 10-7 Н (0,0000002 Н).
Эту единицу силы тока называют ампером (А). Так она названа в честь французского учёного Андре Ампера.
Применяют также дольные и кратные единицы силы тока: миллиампер (мА), микроампер (мкА), килоампер (кА).
1мА = 0,001 А;
1 мкА = 0,000001 А;
1кА=1000А.
Чтобы представить себе, что такое ампер, приведём примеры: сила тока в спирали лампы карманного фонаря 0,25 А = 250 мА. В осветительных лампах, используемых в наших квартирах, сила тока составляет от 7 до 400 мА (в зависимости от мощности лампы).
Через единицу силы тока — 1 А определяется единица электрического заряда — 1 Кл, о которой было сказано в § 28.
Так как I = q/t, то q = It. Полагая I = 1 А, t = 1 с, получим единицу электрического заряда — 1 Кл.
1 кулон = 1 ампер • 1 секунду,
или
1Кл = 1А • 1с = 1А • с.
За единицу электрического заряда принимают электрический заряд, проходящий сквозь поперечное сечение проводника при силе тока 1 Аза время 1 с.
Из формулы q = It следует, что электрический заряд, проходящий через поперечное сечение проводника, зависит от силы тока и времени его прохождения. Например, в осветительной лампе, в которой сила тока равна 400 мА, сквозь поперечное сечение спирали за 1 мин проходит электрический заряд, равный 24 Кл.
Электрический заряд имеет также другое название — количество электричества.
Сила тока в различных потребителях электроэнергии
Вопросы
- От чего зависит интенсивность действий электрического тока?
- Какой величиной определяется сила тока в электрической цепи?
- Как выражается сила тока через электрический заряд и время?
- Что принимают за единицу силы тока? Как называется эта единица?
- Какие дольные и кратные амперу единицы силы тока вы знаете?
- Как выражается электрический заряд (количество электричества) через силу тока в проводнике и время его прохождения?
Упражнение 24
- Выразите в амперах силу тока, равную 2000 мА; 100 мА; 55 мА; 3 кА.
- Сила тока в цепи электрической плитки равна 1,4 А. Какой электрический заряд проходит через поперечное сечение её спирали за 10 мин?
- Сила тока в цепи электрической лампы равна 0,3 А. Сколько электронов проходит через поперечное сечение спирали за 5 мин?
Физическая сущность течения тока в цепи
Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц – электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).
Основными условиями возникновения и существования электрического тока являются:
- Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
- Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
- Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.
Как направлено электричество (движение)
Движение тока может осуществляться двумя путями. Направление перемещения заряженных частиц связывают с движением электронов, имеющих положительный заряд. Когда ток возникает благодаря отрицательным электронам, тогда направление принимают противоположным их движению. Это характерно для проводников из металла. Но ток может возникать и в жидкости, и газе, в которых частицы свободно передвигаются по любой траектории из-за отсутствия прочной связи между ними. В этом случае носителям тока будут положительные ионы и отрицательные электроны, а электрический ток идет от «плюса» к «минусу».
Вам это будет интересно Особенности DC тока
Движение электронов в металлах до появления электрического поля
То есть, в металлах мы имеем дело с упорядоченной структурой атомов: каждый атом находится на своём конкретном месте.
Как мы уже знаем, вокруг ядра атомов движутся электроны.
Что же даёт возможность появления свободных электрических зарядов?
Дело в том, что дальние электроны (те, которые находятся на самых удалённых от ядра орбитах) довольно слабо связаны с ядром. Поэтому они могут довольно легко переходить от одного атома к другому. Такое беспорядочное движение электронов чем-то напоминает электронный газ. Если внутри металла нет электрического поля, то движение этих свободных электронов чем-то напоминает движение поднятого в воздух роя мошкары в летний день (Рис. 3).
Рис. 3. Движение электронов внутри металлического проводника ()
Цвет проводов плюс (+) и минус (-) в сетях постоянного тока
Красный провод это плюс или минус? Такие вопросы возникают при работе с электрическими цепями постоянного тока.
Красный
Чтобы запомнить, какой плюс красный или черный, пользуются названием известной международной организации – «Красный крест». Это словосочетание подсказывает, что красным цветом обозначают плюс.
Черный
Черным цветом обозначают минусовой проводник. Такую маркировку можно увидеть в типичном бытовом оборудовании:
- источниках питания;
- аудио-, видео аппаратуре;
- иных устройствах с электронно-программными блоками управления.
Плюс
Полярность проводников необходимо соблюдать при ремонте штатного электрооборудования автомобилей. В некоторых ситуациях путаница с плюсом и минусом сопровождается нарушением функционального состояния.
Минус
Высокая мощность подключенных потребителей повышает ответственность выполнения ремонтных и наладочных работ. В таких ситуациях необходимо исключить ошибки при определении полярности. Сильный постоянный ток применяют для питания электричеством:
- складского и муниципального транспорта;
- подъемных механизмов;
- датчиков и средств автоматизации.
Физика для средней школы
Электрический ток. Сила и плотность тока
Электрическим током называется направленное (упорядоченное) движение заряженных частиц.
Электрический ток в проводниках различного рода представляет собой либо направленное движение электронов в металлах (проводники первого рода), имеющих отрицательный заряд, либо направленное движение более крупных частиц вещества — ионов, имеющих как положительный, так и отрицательный заряд — в электролитах (проводники второго рода), либо направленное движение электронов и ионов обоих знаков в ионизированных газах (проводники третьего рода).
За направление электрического тока условно принято направление движения положительно заряженных частиц.
Для существования электрического тока в веществе необходимо:
- наличие заряженных частиц, способных свободно перемещаться по проводнику под действием сил электрического поля;
- наличие источника тока, создающего и поддерживающего в проводнике в течение длительного времени электрическое поле.
Количественными характеристиками электрического тока являются сила тока I и плотность тока j.
Сила тока — скалярная физическая величина, определяемая отношением заряда q, проходящего через поперечное сечение проводника за некоторый промежуток времени t, к этому промежутку времени.
Единицей силы тока в СИ является ампер (А).
Если сила тока и его направление со временем не изменяются, то ток называется постоянным.
Единица силы тока — основная единица в СИ 1 А — есть сила такого неизменяющегося тока, который, проходя по двум бесконечно длинным параллельным прямолинейным проводникам очень маленького сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает силу взаимодействия между ними 2·10-7 Н на каждый метр длины проводников.
Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.
Выделим участок проводника площадью сечения S и длиной l (рис. 1). Заряд каждой частицы q. В объеме проводника, ограниченном сечениями 1 и 2, содержится nSl частиц, где n — концентрация частиц. Их общий заряд
.
Рис. 1
Если средняя скорость упорядоченного движения свободных зарядов , то за промежуток времени
все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:
Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.
Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.
Плотность тока j — это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.
В СИ единицей плотности тока является ампер на квадратный метр (А/м2).
Как следует из формулы (1),
.
направление вектора плотности тока совпадает с направлением вектора скорости упорядоченного движения положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.
Виды токов: постоянные и переменные
В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:
- Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
- Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.
Основные характеристики переменного тока
Ответы@Mail.Ru: в каком направлении протекает ток в цепи
направление тока — условность, принятая для рисования схем и не более того. Принято рисовать от + к -. Если проводник — метал (провод, например) — реальные носители — электроны — летят в обратную сторону — к плюсу. Если носитель жидкость с ионами или ионизированный газ — ионы летят в обе стороны…
Давненько принято считать движение тока от плюса к минусу, хотя реальное движение носителей заряда бывает обратным, в большинстве случаев.
от плюса к минусу
принято от + к -..но электрончики бегут наоборот… все схемы читаются от + к -..
Принято считать, что во ВНЕШНЕЙ ЦЕПИ направление тока от положителного полюса к отрицательному. А во внутренней, соответственно, наоборот.
В замкнутой электрической цепи ток идет от точки с большим потенциалом в точку с меньшим потенциалом и никакие + или — тут ни при чем.
Двести лет тому назад Фарадей поставил опыт, где демонстрируется получение тока в гальванометре при движении магнита в катушке индуктивности. Сегодня, осмысляя этот опыт, приходится делать вывод: современная теория тока проводимости в металлических проводниках ошибочна потому, что основой этой теории является движение свободных электронов при неподвижных ионах. Опыт же Фарадея демонстрирует движение, как отрицательных, так и положительных зарядов. А так как в проводнике, кроме подвижных электронов и неподвижных ионов, других зарядов нет, то следует сделать вывод: Фарадей двести лет тому назад получил, в качестве тока проводимости, электронно-позитронный ток, распространяющийся в эфире вокруг проводников.
Короткое замыкание
Для начала определимся, что следует называть коротким замыканием. Я не буду приводить научные термины — их можно найти в любой учебной литературе. Я же расскажу вам так, чтобы все сразу стало понятно.
Первым делом обратимся к закону Ома (нажав на ссылку вы сможете ознакомиться с ним подробнее): I=U/R и проведем небольшой анализ. Пока в цепи есть какое-то сопротивление R, цепь нельзя считать короткозамкнутой, она просто замкнута
Отсюда и вытекает основной момент на который надо обращать внимание в первую очередь. Если говорить простыми словами, короткое замыкание происходит тогда, когда сопротивление цепи стремится к нулю, то есть провода замыкаются накоротко! Но мало соединить плюс с минусом, фазу с нулем и т.д., нужно, чтобы эти провода шли от одного источника
Простой пример: две батарейки. Соединяем их вместе хоть плюс к минусу, хоть одноименными полюсами — ничего не произойдет, но если мы соединим плюс и минус одной батарейки, мы ее закоротим. А если подключим к ней какую-нибудь лампочку, то просто замкнем контур. Все остальные объяснения — это лишь научные термины, которые вряд ли вам пригодятся для домашнего использования. В интернете пишут что короткое замыкание сопровождается выделением тепла и т.д. Частично, все их утверждения верны, но давайте вернемся к моему «определению»: температура, дуга и прочие прелести это лишь следствие частных случаев. Если вы замкнете накоротко разряженную батарею, это будет коротким замыканием, но никакого тепла, дуги и других процессов не произойдет, но, повторюсь, это технически будет коротким замыканием. С этим разобрались, идем дальше.
Направление электрического тока
Свободные электроны.. Электрический ток.. Измерение тока.. Амперметр.. Единица силы тока — Ампер.. Направление электрического тока.. Направление движения электронов..
- Когда электрическое поле прикладывается к проводнику, свободные электроны (носители отрицательного заряда) начинают дрейфовать в соответствии с направлением электрического поля – возникает электрический ток.
- Движение электронов означает движение отрицательных зарядов, следовательно, – электрический ток является мерой количества электрического заряда, переносимого через поперечное сечение проводника за единицу времени.
- Измерение тока
- Единица силы тока Кулон в секунду в системе СИ имеет конкретное название Ампер (А) – в честь знаменитого французского ученого Андре-Мари Ампера (на фото в заголовке статьи).
В международной системе СИ единица измерения заряда – Кулон, а единица времени – секунда. Поэтому единица силы тока – Кулон в секунду (Кл/сек).
Как мы знаем, величина отрицательного электрического заряда электрона -1,602 • 10-19 Кулона. Поэтому один Кулон электрического заряда состоит из 1 / 1,602 • 10-19 = 6,24 • 1018 электронов. Следовательно, если 6,24 • 1018 электронов пересекает поперечное сечение проводника за одну секунду, то величина такого тока равна одному амперу.
Для измерения силы тока существует измерительный прибор — амперметр.
Рис. 1
Амперметр включается в электрическую цепь (рис. 1) последовательно с тем элементом цепи, силу тока в котором необходимо измерить. При подключении амперметра нужно соблюдать полярность: «плюс» амперметра подключается к «плюсу» источника тока, а «минус» амперметра — к «минусу» источника тока.
Направление электрического тока
Если в электрической цепи, показанной на рис. 1 замкнуть контакты выключателя, то по этой цепи потечет электрический ток. Возникает вопрос: «А в каком направлении?»
Мы знаем, что электрическим током в металлических проводниках называется упорядоченное движение отрицательно заряженных частиц – электронов (в других средах это могут быть ионы или ионы и электроны).
Отрицательно заряженные электроны во внешней цепи двигаются от минуса источника к плюсу (одноименные заряды отталкиваются, противоположные — притягиваются), что хорошо иллюстрирует рис.
2.
Рис. 2 Учебник физики за 8 класс дает нам другой ответ: «За направление электрического тока в цепи принято направление движения положительных зарядов», — то есть от плюса источника энергии к минусу источника.
Выбор направления тока, противоположного истинному, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники.
Дело в том, что электрические заряды стали изучать задолго до того, как были открыты электроны, поэтому природа носителей заряда в металлах была еще неизвестна.
Понятие о положительном и отрицательном заряде ввёл американский ученый и политический деятель Бенджамин Франклин.
В своей работе «Опыты и наблюдения над электричеством» (1747 г.) Франклин предпринял попытку теоретически объяснить электрические явления. Именно он первым высказал важнейшее предположение об атомарной, «зернистой» природе электричества: «Электрическая материя состоит из частичек, которые должны быть чрезвычайно мелкими».
Франклин полагал, что тело, которое накапливает электричество, заряжается положительно, а тело, теряющее электричество, заряжается отрицательно. При их соединении избыточный положительный заряд перетекает туда, где его недостает, то есть к отрицательно заряженному телу (по аналогии с сообщающими сосудами).
Эти представления о движении положительных зарядов широко распространились в научных кругах и вошли в учебники физики. Так и получилось, что действительное направление движения электронов в проводнике противоположно принятому направлению электрического тока.
После открытия электрона ученые решили оставить все как есть, поскольку пришлось бы очень многое изменять (и не только в учебниках), если указывать истинное направление тока. Также это связано и с тем, что знак заряда практически ни на что не влияет, пока все используют одно и то же соглашение.
«Постоянный электрический ток. Действие электрического тока»
Электрический ток — это упорядоченное движение заряженных частиц. Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).
При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.
Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.
Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.
Постоянный электрический ток
Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.
На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).
При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.
Источник тока
Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.
В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.
Действие электрического тока
Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.
Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.
Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.
Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).
Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».
Следующая тема: «Сила тока. Напряжение»