Действия электрического тока

Содержание

«Постоянный электрический ток. Действие электрического тока»

Электрический ток — это упорядоченное движение заряженных частиц.  Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.

Постоянный электрический ток

Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.

На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.

Источник тока

Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

Действие электрического тока

Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).

Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».

Следующая тема: «Сила тока. Напряжение»

Закон Джоуля – Ленца

Эмилий Христианович Ленц (1804 – 1865) – русский знаменитый физик. Он является одним из основоположников электромеханики. С его именем связано открытие закона, определяющего направление индукционного тока, и закона, определяющего электрическое поле в проводнике с током.

Кроме того, Эмилий Ленц и английский учёный-физик Джоуль, изучая на опыте тепловые действия тока, независимо один от другого открыли закон, согласно которому количество теплоты, которое выделяется в проводнике, будет прямо пропорционально квадрату электрического тока, который проходит по проводнику, его сопротивлению и времени, в течение которого электрический ток поддерживается неизменным в проводнике.

Данный закон получил название закон Джоуля – Ленца, формула его выражает следующим образом:

Q = kl²Rt, (1)

где Q – количество выделившейся теплоты, l – ток, R – сопротивление проводника, t – время; величина k называется тепловым эквивалентом работы. Численное значение этой величины зависит от выбора единиц, в которых производятся измерения остальных величин, входящих в формулу.

Если количество теплоты измерять в калориях, ток в амперах, сопротивление в Омах, а время в секундах, то k численно равно 0,24. Это значит, что ток в 1а выделяет в проводнике, который обладает сопротивлением в 1 Ом, за одну секунду число теплоты, которое равно 0,24 ккал. Исходя из этого, количество теплоты в калориях, выделяющееся в проводнике, может быть рассчитано по формуле:

Q = 0,24l²Rt.

В системе единиц СИ энергия, количество теплоты и работа измеряются единицами – джоулями. Поэтому коэффициент пропорциональности в законе Джоуля – Ленца равен единице. В этой системе формула Джоуля – Ленца имеет вид:

Q = l²Rt. (2)

Закон Джоуля – Ленца можно проверить на опыте. По проволочной спиральке, погружённой в жидкость, налитую в калориметр, пропускается некоторое время ток. Затем подсчитывается количество теплоты, выделившейся в калориметре. Сопротивление спиральки известно заранее, ток измеряется амперметром и время секундомером. Меняя ток в цепи и используя различные спиральки, можно проверить закон Джоуля – Ленца.

На основании закона Ома

I = U/R,

Подставляя значение тока в формулу (2), получим новое выражение формулы для закона Джоуля – Ленца:

Q = (U²/R)t.

Формулой Q = l²Rt удобно пользоваться при расчёте количества теплоты, выделяемого при последовательном соединении, потому что в этом случае электрический ток во всех проводниках одинаков. Поэтому, когда происходит последовательное соединение нескольких проводников, в каждом из них будет выделено такое количество теплоты, которое пропорционально сопротивлению проводника. Если соединить, например, последовательно три проволочки одинаковых размеров – медную, железную и никелиновую, то наибольшее количество теплоты будет выделяться из никелиновой, так как удельное сопротивление её наибольшее, она сильнее и нагревается.

Если проводники соединить параллельно, то электрический ток в них будет различен, а напряжение на концах таких проводников одно и то же. Расчёт количества теплоты, которое будет выделяться при таком соединении, лучше вести, используя формулу Q = (U²/R)t.

Эта формула показывает, что при параллельном соединении каждый проводник выделит такое количество теплоты, которое будет обратно пропорционально его проводимости.

Если соединить три одинаковой толщины проволоки – медную, железную и никелиновую – параллельно между собой и пропустить через них ток, то наибольшее количество теплоты выделится в медной проволоке, она и нагреется сильнее остальных.

Беря за основу закон Джоуля – Ленца, производят расчёт различных электроосветительных установок, отопительных и нагревательных электроприборов. Также широко используется преобразование энергии электричества в тепловую.

fb.ru

Электрическая дуга

Электрическая дуга является довольно эффективным преобразователем электрической энергии. Она используется при сварке металлических конструкций, а также служит мощным световым источником.

В основу устройства входит следующее. Берут два угольных стержня, подсоединяют провода и прикрепляют их в изолирующих держателях. После этого стержни подключают к источнику тока, который дает малое напряжение, но рассчитан на большую силу тока. Подключают реостат. Угли в городскую сеть включать запрещается, так как это может стать причиной пожара. Если коснуться одним углем о другой, то можно заметить, как сильно они раскалятся. Лучше не смотреть на это пламя, потому что оно вредно для зрения. Электрическую дугу используют в печах для плавки металла, а также в таких мощных осветительных приборах, как прожекторы, кинопроекторы и прочее.

Источник

Тепловое действие тока

Электрический ток, проходя через любой проводник, сообщает ему некоторое количество энергии. В результате этого проводник нагревается. Передача энергии происходит на молекулярном уровне, т. е., электроны взаимодействуют с атомами или ионами проводника и отдают часть своей энергии.В результате этого, ионы и атомы проводника начинают двигаться быстрей, соответственно можно сказать, что внутренняя энергия увеличивается и переходит в тепловую энергию.Данное явление подтверждается различными опытами, которые говорят о том, что вся работа, которую совершает ток, переходит во внутреннюю энергию проводника, она в свою очередь увеличивается. После этого уже проводник начинает отдавать её окружающим телам в виде тепла. Здесь уже в дело вступает процесс теплопередачи, но сам проводник нагревается. Этот процесс рассчитывается по формуле: А=U·I·tА – это работа тока, которую он совершает, протекая через проводник. Можно также высчитать количество теплоты, выделяемое при этом, ведь это значение равно работе тока. Правда, это касается, лишь неподвижных металлических проводников, однако, такие проводники встречаются чаще всего. Таким образом, количество теплоты, также будет высчитываться по той же форме: Q=U·I·t.История открытия явленияВ своё время свойства проводника, через который протекает электрический тока, изучали многие учёные. Особенно среди них были заметны англичанин Джеймс Джоуль и русский учёный Эмилий Христианович Ленц. Каждый из них проводил свои собственные опыты, а вывод они смогли сделать независимо друг от друга. На основе своих исследований, они смогли вывести закон, который позволяет дать количественную оценку выделяемого тепла в результате воздействия электрического тока на проводник. Данный закон получил название «Закон Джоуля-Ленца». Джеймс Джоуль установил его в 1842 году, а примерно через год Эмиль Ленц пришёл к тому же выводу, при этом их исследования и проводимые опыты никак не были связаны друг с другом.Применение свойств теплового действия токаИсследования теплового воздействия тока и открытия закона Джоуля-Ленца позволили сделать вывод, подтолкнувший развитие электротехники и расширить возможности применения электричества. Простейшим примером применения данных свойства является простая лампочка накаливания. Устройство её заключается в том, что в ней применяется обычная нить накаливания, сделанная из вольфрамовой проволоки. Этот металл был выбран не случайно: тугоплавкий, он имеет довольно высокое удельное сопротивление. Электрический ток проходит через эту проволоку и нагревает её, т. е. передаёт ей свою энергию. Энергия проводника начинает переходить в тепловую энергию, а спираль разогревается до такой температуры, что начинает светиться. Главным недостатком такой конструкции, конечно, является то, что происходят большие потери энергии, ведь только небольшая часть энергии преобразуется в свет, а остальная уходит в тепло.Для этого вводится такое понятие в техники, как КПД, показывающее эффективность работы и преобразования электрической энергии. Такие понятия как КПД и тепловое воздействие тока применяются повсеместно, так как существует огромное количество приборов основанных подобном принципе. Это в первую очередь касается нагревательных приборов: кипятильников, обогревателей, электроплит и т. д.Как правило, в конструкциях перечисленных приборах присутствует некая металлическая спираль, которая и производит нагревание. В приборах для нагревания воды она изолирована, в них устанавливается баланс между потребляемой из сети энергией (в виде электрического тока) и тепловым обменом с окружающей средой.В связи с этим, перед учёными стоит нелёгкая задача по снижению потерь энергии, главной целью является поиск наиболее оптимальной и эффективной схемы. В данном случае тепловое воздействие тока является даже нежелательным, так как именно оно и ведёт к потерям энергии. Самым простым вариантом является повышение напряжения при передаче энергии. В результате снижается сила тока, но это приводит к снижению безопасности линий электропередач.Другое направление исследований – это выбор проводов, ведь от свойств проводника зависят и тепловые потери и прочие показатели. С другой стороны, различные нагревательные приборы требуют большого выделения энергии на определённом участке. Для этих целей изготавливают спирали из специальных сплавов. Для повышения защиты и безопасности электрических цепей применяются специальные предохранители. В случае чрезмерного повышения тока сечение проводника в предохранителе не выдерживает, и он плавится, размыкая цепь, защищая, таким образом, её от токовых перегрузок.

Один Ампер – много это, или мало

1 Ампер это 1 Кулон деленный на 1 секунду. Для большинства бытовых электроприборов это достаточно большая сила тока.

Например, через энергосберегающие лампы протекают токи 0,04 — 0,08 Ампера.

Большой плоский телевизор от электроосветительной сети потребляет ток 0,2 Ампера.

Лампа накаливания –примерно 0,5 Ампера.

Как видно, большинство электроприборов токи менее одного Ампера.

Поэтому, для тока часто применяют дольные единицы измерения:

миллиамперы, микроамперы, и наноамперы:

1мА (миллиампер)= 10⁻³ А

1мкА (микроампер) = 10⁻⁶ А

1нА (наноампер) = 10⁻9 А

Ток зарядки аккумулятора мобильного телефона может достигать 2 Ампер.

А через электрический обогреватель, или электрочайник, протекает ток силой до 10 Ампер.

Примечание: Ток силой всего 0,05 А может привести к летальному исходу. Будьте осторожны с электричеством!

В то же время, используют и токи, превышающие сотни Ампер. Например, на промышленных электростанциях.

Для таких токов применяют кратные единицы: килоампер, мегаампер.

1КА (килоампер)= 10³ А

1МА (мегаампер) = 10⁶ А

Презентация по физике «Действия электрического тока» (8 класс)

Описание презентации по отдельным слайдам:

Сегодня вспомним все о токах — Заряженных частиц потоках. И про источники, про схемы, И нагревания проблемы, Приборы и цепей законы, Кулоны, Вольты, Омы, Решим, расскажем, соберем, Мы с пользой время проведем!

Он замкнет любую цепь, Невелик он, но могуч! Остановит в миг конвейер. Даже открывает двери! Что это такое? ….

В калькуляторе, в часах Ей всегда найдется дело Плохо, если вдруг она Почему-то сразу села. Ты ответа не жалей-ка, Что же это? ….

Он энергию хранит. С ним пересечет экватор Ваш мобильный телефон. Что это.

Весел ,голосист и звонок, Начинает он урок. Вас зовет на перемену Электрический ….

1. Что такое электрический ток? 2. Какие частицы могут двигаться в металлических проводниках? 3. На какие виды делятся все вещества по проводимости? 4. Приведите примеры проводников и диэлектриков. 5. Как же можно судить о наличии электрического тока?

Действия электрического тока

«Без сомнения, всё наше знание начинается с опыта». (Кант Иммануил немецкий философ, 1724 — 1804 г.г.)

Действие электр. тока Проявление действия Вещество, в котором проявляется данное действие Применение действия электр. тока

— при прохождении электрического тока через электролит возможно выделение веществ, содержащихся в растворе, на электродах. — наблюдается в жидких проводниках.

Проводник с током может двигаться в магнитном поле (проявляется в твердых телах)

Дефибрилляторы — электрические медицинские приборы, используемые при восстановлении нарушений ритма сердечной деятельности посредством воздействия на организм кратковременными высоковольтными электрическими разрядами.

Гальванизация — пропускание через организм слабого постоянного тока, оказывающего болеутоляющий эффект и улучшающий кровообращение.

Сила тока Действие тока на организм человека 0 – 0,5 мА Отсутствует 0,5 – 2 мА Потеря чувствительности 2 -10 мА Боль, мышечные сокращения 10 -20 мА Растущее воздействие на мышцы, некоторые повреждения 16 мА Ток, выше которого человек уже не может освободиться от электродов 20 -100 мА Дыхательный паралич 100 мА – 3 А Смертельные желудочковые фибрилляции (необходима немедленная реанимация) Более 3 А Остановка сердца. ( Если шок был кратким, сердце можно реанимировать.) Тяжёлые ожоги.

Вариант 1 1. Электрический ток – это… а) упорядоченное движение частиц; б) упорядоченное движение свободных электронов, в) упорядоченное движение заряженных частиц, г) движение заряженных частиц. Вариант 2 1. Электрический ток в металлах – это… а) упорядоченное движение частиц; б) упорядоченное движение свободных электронов, в) упорядоченное движение заряженных частиц, г) движение заряженных частиц.

Вариант 1 2. Какое действие тока всегда наблюдается в твердых, жидких и газообразных проводниках? а) тепловое, б) химическое, в) магнитное, г) физиологическое. Вариант 2 2. Как называется действие тока может вызвать сильные конвульсии и кровотечения из носа? а) тепловое, б) химическое, в) магнитное, г) физиологическое.

Вариант 1 3. Укажите, в каком из перечисленных случаев используется физиологическое действие тока. а) нагревание воды электрическим током, б) хромирование деталей, в) рефлекторное сокращение мышц, г) свечение электрической лампы. Вариант 2 3. Укажите, в каком из перечисленных ниже случаев используется химическое действие тока. а) нагревание воды электрическим током, б) хромирование деталей, в) рефлекторное сокращение мышц, г) свечение электрической лампы.

Вариант 1 4. Какое действие тока использую в устройстве пылесоса? а) химическое, б) магнитное, в) физиологическое, г) тепловое. Вариант 2 4. Какое действие тока используют в устройстве гальванометра? а) химическое, б) магнитное, в) физиологическое, г) тепловое.

Вариант 1 5. В устройстве какого бытового прибора используется тепловое действие тока? а) телевизор, б) фен, в) пылесос, г) электрическая лампа. Вариант 2 5. В устройстве какого бытового прибора используется одно-временно тепловое и магнитное действие тока? а) телевизор, б) фен, в) пылесос, г) электрическая лампа.

Вариант 1 Вариант 2 1 2 3 4 5 в в в б г 1 2 3 4 5 б г б б б

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

Номер материала: ДБ-1107014

  • Свидетельство каждому участнику
  • Скидка на курсы для всех участников

Не нашли то что искали?

Вам будут интересны эти курсы:

Воздействие тока разных величин на организм

Минимальное значение силы тока, которое становиться ощутимым человеком – 1 мА. Но опять же это значение зависит от восприимчивости.

При повышении этого параметра появляются неприятные болевые ощущения, мышцы начинают непроизвольно сокращаться.

До 12-15 мА силу тока называют отрываемой. Человек в состоянии самостоятельно разорвать контакт с источником, хотя при приближении параметра к указанным значениям разорвать контакт все сложнее.

Свыше 15 мА ток считается не отрываемым, человек не в состоянии сам разорвать контакт, требуется сторонняя помощь.

При повышении параметра до 25 мА, мышцы в точке контакта полностью парализуются, причем сопровождается это очень сильными болями, а также усложняется дыхание человека.

Ток силой до 50 мА помимо очень сильной боли и паралича мышц, сопровождается параличом дыхания и снижением деятельности сердца, человек теряет сознание.

Значение тока до 80 мА приводит к параличу дыхания за несколько секунд воздействия, при более длительном контакте возможна фибрилляция сердца.

100 мА очень быстро приводят к фибрилляции, а затем и к параличу сердца.

Ток силой 5А мгновенно приводит к параличу дыхания, сердце останавливается на время контакта человека с источником, в месте контакта образуются ожоги.

Как определить силу тока в розетке 220в?

instrument.guru > Электричество > Как определить силу тока в розетке 220в?

Практически любые помещения, будь то жилые или производственные, оснащены розетками для подключения электрических приборов.

Для стабильной и безопасной работы электроприборов необходимо знать не только напряжение в сети (стандартное 220 вольт), но и силу тока, на которую рассчитана розетка.

Необходимо отметить, что это электротехническое оснащение само по себе не имеет никакой силы тока, оно только выдерживает определённую величину при подключении какой-либо бытовой или промышленной техники.

Методы определения силы тока

Прибором амперметром. Амперметр – измерительное устройство, которое определяет силу тока и показывает её на имеющейся шкале. Для этого необходимо последовательно соединить замкнутую цепь: розетку, единицу бытовой техники, амперметр и опять розетку. Вместо амперметра, можно использовать мультиметр – комбинированный прибор, включающий вольтметр, амперметр и омметр. Погрешность измерений силы тока на конкретном участке цепи будет зависеть от класса точности измерительного устройства.

Расчётным методом

Для применения расчётного метода необходимо знать значение мощности подключаемого прибора.Принимая во внимание, что в нашей стране в основной части помещений подаётся стандартное напряжение в сети 220 вольт, рассчитать силу тока в розетке 220в можно по следующей формуле:

I = P / U, где I – сила тока (ампер); P – мощность электроприбора (ватт); U – напряжение в сети (вольт).

Таким методом определяется, сколько ампер в розетке 220в. Например, по формуле можно рассчитать, какой ток в розетке 220в при подключении обычного электрического чайника мощностью 2,5 киловатт или 2500 ватт. Получится величина 11,36 ампер.

Характеристики тока

Подсчитывая величину силы тока, которую поддерживает розетка, необходимо уточнить характеристику тока. Их существует две: постоянный ток и переменный.

Переменный получил наибольшее распространение в сфере потребления электроэнергии, так как его потери при передаче на большие расстояния существенно меньше.

В случае необходимости производится преобразование с помощью схем приборов-потребителей. Таким образом, розетка поддерживает переменный ток в 220 вольт.

Виды электророзеток

Техника, используемая в быту, имеет различные характеристики по своей мощности, следовательно, и электрофурнитура в помещениях должна быть соответствующая. Сегодняшние бытовые устройства более мощные, чем старые образцы техники.

Ещё 20 лет назад для всех устройств могла подойти розетка с ограничением в 6 ампер. Такой разъём был предназначен для техники, имеющей мощность до 1,5 киловатт или 1500 ватт. Для современного быта это недостаточно.

Сейчас ограничение нагрузки составляет:

  • 16 ампер для обычных помещений, что гарантирует безопасное функционирование потребителей мощностью до 3,5 киловатт;
  • 25 ампер для квартир или домов, где устанавливаются электрические плиты мощностью до 6 киловатт. Такие розетки называются силовыми;
  • 32 ампера при повышенных нагрузках на сеть, например, при подключении в производстве несколько мощных духовых шкафов или плит. В этом случае применяется трёхфазный кабель, который рассчитан на 380 вольт. Соответственно розетки также должны быть трёхфазными. Такое оснащение отличается по своей конструкции. При наличии повышенной нагрузки на сеть в частном доме, кроме установки специального оснащения, требуется ещё и усиленная электрическая проводка.

Необходимость автоматического выключения питания

Автоматический выключатель – важный элемент в системе электроснабжения помещения. На распределительных щитках имеются специальные устройства, на которых отмечено сколько ампер максимально допустимого тока. Обычно для бытовых целей устанавливаются автоматы на 16, 25 или 32 ампера.

Рекомендуется на каждый мощный прибор устанавливать свой автоматический выключатель. Например, электрическая плита имеет мощность 6 киловатт или 6000 ватт, следовательно, сила тока будет 27 ампер при напряжении в 220 вольт.

В этом случае необходим автомат на большую величину, а именно на 32 ампера.

Действия электрического тока

Есть ли в цепи электрический ток, можно определить по различным его проявлениям, которые называют действиями электрического тока. Электрический ток может вызывать тепловые, световые, и химические явления. Также электрический ток всегда вызывает магнитное явление.

Тепловое действие электрического тока заключается в нагревании проводника при наличии в нем тока. При этом если проводник нагревается до достаточно высокой температуры, он может начать светиться. То есть проявится световое действие тока как следствие теплового.

Например, если через железную проволоку пропустить электрический ток, то она нагреется. Подобное тепловое действие тока в металлах используется в электрических чайниках и некоторых других бытовых приборах.

Вольфрамовая нить в лампах накаливания при сильном нагревании начинает светится. В данном случае находит применение световое действие электрического тока. В энергосберегающих лампах светятся газ при прохождении через него электрического тока.

Химическое действие электрического тока проявляется в следующем. Берут раствор определенной соли, щелочи или кислоты. В него погружают два электрода, при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом — отрицательный. Ионы содержащиеся в растворе (обычно положительно заряженные ионы металлов) начинают откладываться на электроде с противоположным зарядом. Этот явление называется электролизом.

Например, в растворе медного купороса (CuSO4) к отрицательно заряженному электроду двигаются ионы меди, имеющие положительный заряд (Cu2+). Получив от электрода недостающие ионы, они превращаются в нейтральные атомы меди и оседают на электроде. При этом группы гидроксильные группы воды (-OH) отдают свои электроны положительно заряженному электроду. В результате из раствора выделяется кислород. В растворе же остаются положительно заряженные ионы водорода (H+) и отрицательно заряженные сульфатные группы (SO42-).

Таким образом, в результате электролиза происходит химическая реакция.

Химическое действие электрического тока используется в промышленности. Электролиз позволяет получать некоторые металлы в чистом виде. Также с помощью него покрывают тонким слоем определенного металла (никеля, хрома) поверхности.

Магнитное действие электрического тока заключается в том, что проводник, по которому течет ток, действует на магнит или намагничивает железо. Например, если расположить проводник параллельно магнитной стрелке компаса, то стрелка повернется на 90°. Если обмотать небольшой железный предмет проводником, то предмет становится магнитом при прохождении электрического тока через проводник.

Магнитное действие тока используется в измерительных приборах электричества.