Сохранение коэффициента ослабления отклонений напряжения источника питания (КОНИП) при формировании опорного напряжения для усилителей делителями из напряжения источника питания
Часто при анализе не учитывается тот факт, что любой шум, импульсные помехи и дрейф напряжения источника питания VS, подаваемого на вход опорного напряжения напрямую, добавляются к выходному напряжению, ослабленные только коэффициентом деления делителя. Практические решения включают в себя развязывание конденсаторами, фильтрацию и, возможно, даже генерацию опорного напряжения прецизионными интегральными схемами, например ADR121, вместо ответвления напряжения VS.
Этот анализ особенно важен, когда разрабатываемые схемы содержат и операционные, и инструментальные усилители. Методика ослабления отклонений питающего напряжения применяется для того, чтобы изолировать усилитель от помех, шумов и других кратковременных изменений напряжения, присутствующих на шине питания
Это важно, потому что многие практические схемы содержат, подключаются или существуют в окружении далеко не идеальных источников напряжений питания. Кроме того, существующие на шинах питания переменные составляющие могут проникнуть в схему, усилиться и при нормальных условиях возбуждать паразитные колебания
Современные операционные и инструментальные усилители обеспечивают значительное ослабление низкочастотных отклонений напряжения источника питания. У разработчиков это считается как бы само собой разумеющимся. Многие современные ОУ и ИУ имеют в спецификациях значение КОНИП 80 и даже более 100 дБ, что ослабляет действие флуктуаций напряжения питания от 10 000 до 100 000 раз. Даже весьма умеренный КОНИП в 40 дБ ослабляет влияние флуктуаций питания на усилитель в 100 раз. Тем не менее, высокочастотные блокировочные конденсаторы (которые изображены на рис. 1–7) всегда желательны, и часто без них не обойтись.
Когда разработчики применяют простой резистивный делитель сшины питания и буфер на ОУ для подачи на вход опорного напряжения ИУ, все флуктуации напряжения источника питания проходят через эту схему с небольшим ослаблением и непосредственно добавляются к выходному уровню ИУ. Таким образом, пока не обеспечена низкочастотная фильтрация, высокое значение КОНИП интегральной схемы не дает существенных преимуществ.
На рис. 10 к делителю напряжения добавлен конденсатор, отфильтровывающий флуктуации напряжения питания в выходном напряжении и позволяющий сохранить значение КОНИП.
Рис. 10. Развязывание цепи опорного сигнала для сохранения КОНИП
Полюс –3 дБ этого фильтра устанавливается сопротивлением параллельно включенных R1/R2 и емкости конденсатора C1. Частота этого полюса должна быть примерно в 10 раз ниже, чем самая низкая частота сигнала.
При параметрах компонентов, приведенных на рисунке, спад –3 дБ будет на частоте 0,03 Гц. Конденсатор с маленькой емкостью (0,01 мкФ), включенный параллельно R3, минимизирует шумы резистора.
Фильтру для заряда после включения требуется время. При приведенных номиналах время заряда составляет 10–15 с (несколько постоянных времени фильтра, T = R3Cƒ = 5 c).
В схеме на рис. 11 предложены дальнейшие улучшения. Здесь буфер на ОУ работает как активный фильтр, что позволяет применить конденсаторы с меньшими емкостями для тех же значений развязывания источника питания. Кроме того, активный фильтр можно сделать высокодобротным, что уменьшит время включения.
Рис. 11. Подача опорного напряжения на вход ИУ с выхода ОУ, включенного в качестве активного фильтра
Результаты испытаний
С указанными на схеме номиналами элементов и при источнике питания 12 В на входе ИУ было обеспечено 6 В опорного отфильтрованного напряжения. При коэффициенте усиления ИУ, равном единице, питающее напряжение 12 В было промодулировано синусоидальным сигналом с размахом 1 В с разными частотами. При этих условиях, при снижении частоты примерно до 8 Гц на экране осциллографа не наблюдалось переменного сигнала на опорном напряжении и на выходе ИУ. При небольших уровнях сигнала на входе ИУ измеренный диапазон напряжений питания для этой схемы составил от 4 до 25 В и более. Время включения схемы примерно 2 с.
Смеситель сигналов
В смесителе сигналов сумма входных напряжений равна выходному напряжению. Для реализации данного функционала необходимо, чтобы входные сопротивления и сопротивление обратной связи имели одинаковое значение. В этом случае коэффициент усиления по каждому каналу будет равен единице
В смесителе сигналов входные напряжения UBX1, UBX2 и UBX3, а следовательно входные токи не взаимодействуют друг с другом, так как на инверсном входе ОУ создана виртуальное заземление. Данное свойство является очень полезным для смешивания сигналов звуковой частоты. К примеру, источниками входных сигналов являются микрофоны, то сигналы поступающие с них будут суммироваться или смешиваться. Таким образом использую такой инвертирующий сумматор сигнал с одного микрофона не пойдёт на другие микрофоны, поэтому достаточно легко реализовать схему регулирования громкости. В этом случае достаточно поставить переменный резистор до одного из входных резисторов.
Устройство операционного усилителя
Итак, операционный усилитель – это усилитель электрических сигналов, чаще всего постоянного тока, с высоким коэффициентом усиления в широкой полосе частот, предназначенный для выполнения различных математических операций над аналоговыми величинами при работе в схеме с отрицательной обратной связью.
Операционные усилители в настоящее время выпускаются различного назначения и для выполнения различных функций и хотя электрическая схема усилителей даже одного класса может различаться, но структурная схема, которая лежит в основе всех операционных усилителей остается единой. Изображение структурной схемы выполнено ниже
.
Структурная схема операционного усилителя
Таким образом, операционный усилитель представляет собой схему из последовательно соединённых трёх частей: входной усилитель на основе дифференциального каскада (иногда может быть несколько дифференциальных каскадов), каскад согласования уровней и выходной каскад.
Дифференциальный входной каскад, имея большой коэффициент усиления и большое входное сопротивление, обеспечивает согласование операционного усилителя с источником сигнала. Довольно часто усиления одного входного каскада недостаточно, поэтому используется несколько дифференциальных усилителей на входе соединённых последовательно с симметричными входами и несимметричным выходом.
Каскад согласования уровней предназначен для согласования уровней напряжения между входным и выходным каскадами операционного усилителя. Кроме того данный каскад выполняет функцию усиления напряжения переменного тока и меет небольшое выходное сопротивление.
Выходной каскад операционного усилителя, обычно, не усиливает напряжение, но позволяет отдавать в нагрузку усилителя максимальное напряжение и ток, имеет небольшое выходное сопротивление, а мощность выделяемая на нём в случае отсутствия сигнала минимальна.
На изображении ниже показана принципиальная электрическая схема одного из первых операционных усилителей, выполненных по интегральной технологии, который разработал в 1963г. Роберт Видлар, инженер Fairchild Semiconductor
Электрическая принципиальная схема операционного усилителя μА702 (отечественный аналог К140УД1).
Данная схема содержит 9 транзисторов, 12 резисторов и 1 интегральный диод, в схеме отсутствуют конденсаторы, что даёт достаточно широкую полосу пропускания. В качестве входного усилителя используется дифференциальный каскад на транзисторах VT1VT2 с генератором стабильного тока на транзисторах VT3VT6. Дифференциальный каскад на транзисторах VT4VT5 совместно с транзисторами VT7VT8 выполняют роль каскада согласования уровней, а транзистор VT9 используется в качестве выходного каскада с небольшим выходным сопротивлением.
На принципиальных электрических схемах операционные усилители в интегральном исполнении обозначаются следующим образом
Обозначение операционных усилителей на принципиальных электрических схемах (слева иностранное, а справа отечественное изображение).
Классификация ОУ[править | править код]
По области примененияправить | править код
Выпускаемые промышленностью операционные усилители постоянно совершенствуются, параметры ОУ приближаются к идеальным. Однако улучшить все параметры одновременно технически невозможно или нецелесообразно из-за дороговизны полученного чипа. Для того, чтобы расширить область применения ОУ, выпускаются различные их типы, в каждом из которых один или несколько параметров являются выдающимися, а остальные на обычном уровне (или даже чуть хуже). Это оправдано, так как в зависимости от сферы применения от ОУ требуется высокое значение того или иного параметра, но не всех сразу. Отсюда вытекает классификация ОУ по областям применения.
- Индустриальный стандарт. Так называют широко применяемые, очень дешевые ОУ общего применения со средними характеристиками. Пример: LM324.
- Прецизионные ОУ имеют очень малые напряжения смещения, применяются в точных измерительных схемах. Обычно ОУ на биполярных транзисторах по этому показателю несколько лучше, чем на полевых. Также от прецизионных ОУ требуется долговременная стабильность параметров. Исключительно малыми смещениями обладают стабилизированные прерыванием ОУ. Пример: AD707 с напряжением смещения 15 мкВ.
- С малым входным током (электрометрические) ОУ. Все ОУ, имеющие полевые транзисторы на входе, обладают малым входным током. Но среди них существуют специальные ОУ с исключительно малым входным током. Чтобы полностью реализовать их преимущества, при проектировании устройств с их использованием необходимо даже учитывать утечку тока по печатной плате. Пример: AD549 с входным током 6·10-14 А.
- Микромощные и программируемые ОУ потребляют малый ток на собственное питание. Такие ОУ не могут быть быстродействующими, так как малый потребляемый ток и высокое быстродействие — взаимоисключающие требования. Программируемыми называются ОУ, для которых все внутренние токи покоя можно задать с помощью внешнего тока, подаваемого на специальный вывод ОУ.
- Мощные (сильноточные) ОУ могут отдавать большой ток в нагрузку.
- Высоковольтные ОУ. Все напряжения для них (питания, синфазное входное, максимальное выходное) значительно больше, чем для ОУ широкого применения.
- Быстродействующие ОУ имеют высокую скорость нарастания и частоту единичного усиления. Такие ОУ не могут быть микромощными.
Возможны также комбинации данных категорий, например, прецизионный быстродействующий ОУ.
LM358 цоколевка
Очень малое сопротивление Rвых позволяет подключить к выходу ОУ низкоомную нагрузку, при этом потери мощности на выходном сопротивлении ОУ будут незначительны.
Как такое может быть? Так как, благодаря обратной связи, в точке А сохраняется приблизительно нулевой потенциал, входное сопротивление схемы инвертирующего усилителя равно R Это приводит также что коэффициент усиления для каждого входа будет равен 1.
Чем глубже отрицательная обратная связь, тем меньше внешние характеристики усилителя зависят от характеристик усилителя с разомкнутой обратной связью без ОС , и в конечном счете оказывается, что они зависят только от свойств самой схемы ОС.
Очевидно, что если U2 на рис. Здесь напряжение смещения равно половине напряжения питания. А такое быть может! Причем напряжения могут быть как положительными так и отрицательными.
Как следует из схемы на рис. Диод не обеспечивает достаточной точности преобразования, так как зависимость между падением напряжения и током диода не совсем логарифмическая. Например, сдвоенный ОУ ОР как нельзя лучше подходит для этой схемы.
Однако в этой схеме могут применяться только ОУ с полным размахом входных и выходных напряжений Rail-to-Rail. Если источник входного сигнала не соединен с общей шиной рис. Что из этого получилось, показано на рисунке 7. Для этого нужно уменьшать напряжение на выходе. Направление стрелок на графике указывает направление перемещения гистерезиса.
Неспроста ОУ делятся на ОУ общего применения и высокоточные, прецизионные. Трансформатор понижает ток до 30 вольт. Мобильные электронные системы с питанием от батарей получают все большее распространение. Это может привести к нарушению работы оборудования.
В этой схеме инвертирующий повторитель на ОУ2 создает на нижнем полюсе нагрузки RL потенциал, противофазный по отношению к потенциалу верхнего ее полюса. С входным сопротивлением все, вроде, ясно: он получается равным сопротивлению резистора R1, а вот выходное сопротивление придется посчитать, по формуле, показанной на рисунке Недостаток этой схемы состоит в том, что она обладает малым входным импедансом, особенно для усилителей с большим коэффициентом усиления по напряжению при замкнутой цепи ОС , в которых резистор R1, как правило, бывает небольшим. Для вычисления усиления применяют формулу: Отсюда видно, что усиление операционника не зависит от сопротивления R3, поэтому можно обойтись без него. Причем коэффициент усиления мы можем задать любой.
Управление нагревом
Всего один биполярный транзистор
Самая простая схема для буферизации выходного тока операционного усилителя выглядит так:
Рисунок 1 – Схема для буферизации выходного тока операционного усилителя на биполярном транзисторе
А вот соответствующая схема LTspice:
Рисунок 2 – Схема для буферизации выходного тока операционного усилителя на биполярном транзисторе в LTspice
Давайте получим четкое понимание идеи этой схемы, прежде чем двигаться дальше. Входной сигнал подается на неинвертирующий вход операционного усилителя, а выход ОУ подключается непосредственно к базе биполярного транзистора. Операционный усилитель и биполярный транзистор могут использовать один и тот же положительный источник питания, но в этом случае мы предполагаем, что доступны два напряжения – источник питания 5 В для маломощных, малошумящих схем и 12 В для мощной части проекта. Значение резистора нагрузки очень низкое, поэтому выходные напряжения более 200 мВ, приложенные непосредственно к нагрузке, потребуют большего выходного тока, чем может обеспечить LT6203. Транзистор, выбранный в схеме LTspice, может работать с токами около 1000 мА, что означает, что он подходит для напряжений на нагрузке до 5 В.
Ключевым моментом этой схемы является соединение обратной связи. Помните «виртуальное короткое замыкание»: при анализе операционного усилителя в схеме с отрицательной обратной связью мы можем предположить, что напряжение на неинвертирующем входе равно напряжению на инвертирующем входе. Уже одно это говорит нам о том, что выходное напряжение (то есть напряжение на нагрузке) будет равно входному напряжению. Но давайте пойдем немного глубже, чтобы убедиться, что мы действительно понимаем, что происходит; виртуальное короткое замыкание – это своего рода суеверие, которое может отвлечь нас от реальной работы операционного усилителя. Операционный усилитель умножает дифференциальное входное напряжение на очень большой коэффициент усиления. Таким образом, с отрицательной обратной связью операционный усилитель быстро достигает равновесия, потому что большие изменения выходного напряжения уменьшают дифференциальное напряжение, которое вызывает эти самые выходные изменения. В этом состоянии равновесия выход стабилизируется при любом напряжении, что устраняет разницу между напряжениями на инвертирующем и неинвертирующем входах – иными словами, операционный усилитель автоматически регулирует свой выходной сигнал любым способом, необходимым для того, чтобы Vвх– было равно Vвх+.
В контексте этой схемы буферизации выходного сигнала операционный усилитель автоматически генерирует любое выходное напряжение, необходимое для того, чтобы сделать напряжение эмиттера биполярного транзистора равным входному напряжению. Подумайте, насколько сложно это было бы в ситуации разомкнутой петли – каким-то образом необходимо было бы рассчитать соотношение между входным и выходным сигналами усилителя, чтобы компенсировать падение напряжения база-эмиттер биполярного транзистора, которое не является ни линейным, ни предсказуемым. Но с операционным усилителем и некоторой отрицательной связью проблема становится тривиальной.
Давайте подкрепим это понимание идеи парой симуляций. Первая не очень захватывающая; она просто подтверждает, что выходное напряжение следует за входным напряжением (график входного напряжения Vin скрыт под графиком выходного напряжения Vout):
Рисунок 3 – График входного и выходного напряжений схемы
На следующем графике показано, что должно быть на выходном выводе операционного усилителя, чтобы обеспечить нужное напряжение на нагрузке.
Рисунок 4 – График входного напряжения схемы, выходного напряжения операционного усилителя и выходного напряжения схемы
Что такое четырехполюсник
В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник – это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего “электрического черного ящика”.
Пассивный четырехполюсник
Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).
В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.
Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.
Активный четырехполюсник
А вот этот четырехполюсник мы будем уже называть активным, так как он имеет в своем составе источник питания +Uпит , которое требуется для того, чтобы усиливать сигнал.
То есть мы здесь видим две клеммы на вход, на которые загоняется сигнал Uвх , а также видим две клеммы на выход, где снимается напряжение Uвых . Питается наш четырехполюсник через +Uпит , в результате чего, в данном случае, сигнал на выходе будет больше, чем сигнал на входе.
Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.
Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.
В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке – это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.
В электронике мы будем рассматривать усилитель, как активный четырехполюсник, на вход которого подается маломощный сигнал Uвх, а к выходу цепляется нагрузка Rн .
Как работает сумматор на ОУ на примере
Симуляция работы инвертирующего сумматора
Давайте рассмотрим работу нашего сумматора на ОУ в симуляторе Proteus.
На вход такого сумматора будет подавать синусоидальные сигналы с амплитудой в 1 В, но с разной частотой. На in1 у нас будет сигнал с частотой в 50 Гц, на in2 сигнал с частотой в 100 Гц и на in3 сигнал с частотой в 150 Гц. Как вы видите, все 3 резистора после сигналов имеют одинаковый номинал в 1 кОм для удобства расчета коэффициента усиления. То есть все сигналы будут усиливаться одинаково. Резистор R2 имеем номинал в 2 кОм. Это значит, что коэффициент усиления на выходе будет равен 2. То есть сумма сигналов будет помножена на коэффициент 2 и инвертирована.
Итак, для того, чтобы посмотреть сигналы как на экране осциллографа, можно также воспользоваться инструментом аналоговым анализатором
на рабочем поле появится окно Analogue Analysis
Для того, чтобы анализировать входы, просто переносим в наше окошко входы in1, in2, in3 и выход out, удерживая левую кнопку мыши
В результате увидим это
Разворачиваем окно
Потом нажимаем пробел и в большом окне уже видим все наши сигналы: и входные, и выходной. (нажмите на картинку, откроется в новом окне)
черная осциллограмма – это и есть сумма всех трех синусоид усиленная в 2 раза, но со знаком “минус”.
В чистом виде на выходе ОУ у нас будет только черная осциллограмма. Она является суммой всех входных сигналов, помноженная на 2, но со знаком “минус”.
Работа неинвертирующего сумматора
Итак, давайте соберем простой нормальный сумматор для, который бы просто складывал сигналы и на выходе выдавал нормальный неинвертированный сигнал. Для того, чтобы создать такой сумматор, наш коэффициент усиления должен быть равен единице, а на выходе мы должны инвертировать такой сигнал. Настало время использовать схему для неинвертирующего сумматора
Итак, все что мы хотим – это просто сложить три сигнала и посмотреть их сумму. И все! Не надо ничего усиливать и инвертировать. Поэтому, наша схема будет выглядеть вот так:
В этой схеме первый каскад на ОУ суммирует входные сигналы, а второй каскад просто инвертирует получившийся сигнал. В каждом усилителе коэффициент передачи равен 1, поэтому, никакого усиления сигнала в данной схеме не происходит.
Итак, осциллограмма со всеми сигналами
Если оставить на экране только осциллограмму выходного сигнала
Тот же самый эффект мы можем получить и с помощью схемы на одном ОУ, о которой я упоминал выше:
Давайте на его входы подадим два одинаковых синусоидальных сигнала, но в противофазе. То есть мы должны получить что-то типа этого
Проверяем симуляцию и видим, что сумма двух одинаковых сигналов в противофазе действительно равняется нулю
Интегратор
Интегратор позволяет реализовать схему, в которой изменение выходного напряжения пропорционально входному сигналу. Схема простейшего интегратора на ОУ показана ниже
Интегратор на операционном усилителе.
Данная схема реализует операцию интегрирования над входным сигналом. Я уже рассматривал схемы интегрирования различных сигналов при помощи интегрирующих RC и RL цепочек. Интегратор реализует аналогичное изменение входного сигнала, однако он имеет ряд преимуществ по сравнению с интегрирующими цепочками. Во-первых, RC и RL цепочки значительно ослабляют входной сигнал, а во-вторых, имеют высокое выходное сопротивление.
Таким образом, основные расчётные соотношения интегратора аналогичны интегрирующим RC и RL цепочкам, а выходное напряжение составит
Интеграторы нашли широкое применение во многих аналоговых устройствах, таких как активные фильтры и системы автоматического регулирования
Аналоги LM358
Инвертирующее включение рис 1. При более низком синфазном входном напряжении поведение входного каскада становится непредсказуемым.
Инвертирующие операционные усилители имеют простую схему: Такие операционные усилители стали популярными из-за своей простой конструкции.
Это означает сохранение фазы сигнала. Вследствие этого вместо диодов применяют транзисторы в диодном включении или с заземлённой базой.
Усилители, имеющие вход с полным размахом, схемотехнически заметно сложнее, чем обычные. Разность напряжений между входами идеального ОУ равна нулю, то есть если один из выводов соединён с землёй, то и второй вывод имеет такой же потенциал. Здесь используется инверсное включение резистивной матрицы R-2R. Это приводит также что коэффициент усиления для каждого входа будет равен 1.
Читайте дополнительно: Сп по прокладке кабельных линий
Аналоги LM358
Из схемы ясно, что оба дифференциальных усилителя входного каскада управляются одновременно. Таким образом, основные параметры данной схемы описываются следующим соотношением Отсюда выводится соотношение для коэффициента усиления неинвертирующего усилителя Таким образом, можно сделать вывод, что на коэффициент усиления влияют только номиналы пассивных компонентов. Для получения синусоидальной формы выходного сигнала используют несколько способов построения схем.
Других преимуществ, кроме возможности работы с широким диапазоном входного синфазного сигнала, они не имеют. Аналогичное ограничение накладывается на выходной диапазон устойчивости источника тока на основе операционного усилителя. Такого высокого результата вряд ли удастся достигнуть с обычным эмиттерным повторителем. На вторичной обмотке сделано ответвление, причем количество витков до этого ответвления равно числу витков после ответвления. Это позволяет усилителю выдерживать при однополярном питании входное синфазное напряжение до —15 В.
Но в этом есть смысл, ведь вспомним свойство операционника, он обладает высоким входным сопротивлением и низким выходным. Сигнал на выходе не изменится пока сигнал на входе не опустится менее -1,36В. Повторитель выдает на выходе то напряжение, которое было подано на его вход.
В реальных же ОУ изменение синфазного входного напряжения вызывает изменение правда, весьма незначительное выходного напряжения. Обычно Uсдв имеет значение 10 — мВ.
Лекция 54. Усилитель неинвертирующего типа на операционном усилителе.
Пример работы инвертирующего усилителя
Давайте посмотрим, как работает наш усилитель в программе-симуляторе электронных схем Proteus. Здесь мы собираем базовую схему с двухполярным питанием
В Proteus она будет выглядеть вот так:
Здесь мы взяли значение резисторов R2=10 кОм и R1=1 кОм, следовательно, коэффициент усиления такой схемы будет равен -10. Знак “минус” в данном случае просто инвертирует усиленный сигнал, что мы и видим на осциллограмме ниже. Входной сигнал – это розовая осциллограмма, а выходной – это желтая осциллограмма. Выходной сигнал находится в противофазе относительно входного, то есть инвертирует его. Отсюда и название “инвертирующий усилитель”.
Компенсация напряжения смещения
Одним из показателей качества операционных усилителей, является напряжение смещения, которое определяется, как напряжение, которое необходимо приложить к входным выводам ОУ, чтобы на выходе получить нулевое выходное напряжение. В идеальном ОУ для получения нулевого выходного напряжения необходимо нулевое входное напряжение.
При работе ОУ влияние напряжения смещения проявляется в том, что входной сигнал до того как появится на выходе, должен превысить напряжение смещения. Кроме того напряжение смещения также как и полезный сигнал усиливается ОУ.
Для устранения данного недостатка вводятся специальные цепи компенсирующие напряжение смещения, в простейшем случая такой цепью компенсации напряжения смещения является резистор, который включается между неинвертирующим входом ОУ и «землёй». Величина сопротивления данного резистора равна сопротивлению параллельно соединённых резисторов обратной связи и резистора на входе ОУ. Так для инвертирующего усилителя сопротивление компенсации напряжения смещения будет вычисляться по следующей формуле
А для инвертирующего сумматора с тремя входами
При конструировании схем на ОУ, после расчёта сопротивления смещения необходимо выполнить более точную регулировку таким образом, чтобы разность напряжений между входами была минимальной.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Пример работы инвертирующего усилителя
Давайте посмотрим, как работает наш усилитель в программе-симуляторе электронных схем Proteus. Здесь мы собираем базовую схему с двухполярным питанием
В Proteus она будет выглядеть вот так:
Здесь мы взяли значение резисторов R2=10 кОм и R1=1 кОм, следовательно, коэффициент усиления такой схемы будет равен -10. Знак “минус” в данном случае просто инвертирует усиленный сигнал, что мы и видим на осциллограмме ниже. Входной сигнал – это розовая осциллограмма, а выходной – это желтая осциллограмма. Выходной сигнал находится в противофазе относительно входного, то есть инвертирует его. Отсюда и название “инвертирующий усилитель”.