Операционные усилители с однополярным питанием: примеры применения

Содержание

Всего один биполярный транзистор

Самая простая схема для буферизации выходного тока операционного усилителя выглядит так:

Рисунок 1 – Схема для буферизации выходного тока операционного усилителя на биполярном транзисторе

А вот соответствующая схема LTspice:

Рисунок 2 – Схема для буферизации выходного тока операционного усилителя на биполярном транзисторе в LTspice

Давайте получим четкое понимание идеи этой схемы, прежде чем двигаться дальше. Входной сигнал подается на неинвертирующий вход операционного усилителя, а выход ОУ подключается непосредственно к базе биполярного транзистора. Операционный усилитель и биполярный транзистор могут использовать один и тот же положительный источник питания, но в этом случае мы предполагаем, что доступны два напряжения – источник питания 5 В для маломощных, малошумящих схем и 12 В для мощной части проекта. Значение резистора нагрузки очень низкое, поэтому выходные напряжения более 200 мВ, приложенные непосредственно к нагрузке, потребуют большего выходного тока, чем может обеспечить LT6203. Транзистор, выбранный в схеме LTspice, может работать с токами около 1000 мА, что означает, что он подходит для напряжений на нагрузке до 5 В.

Ключевым моментом этой схемы является соединение обратной связи. Помните «виртуальное короткое замыкание»: при анализе операционного усилителя в схеме с отрицательной обратной связью мы можем предположить, что напряжение на неинвертирующем входе равно напряжению на инвертирующем входе. Уже одно это говорит нам о том, что выходное напряжение (то есть напряжение на нагрузке) будет равно входному напряжению. Но давайте пойдем немного глубже, чтобы убедиться, что мы действительно понимаем, что происходит; виртуальное короткое замыкание – это своего рода суеверие, которое может отвлечь нас от реальной работы операционного усилителя. Операционный усилитель умножает дифференциальное входное напряжение на очень большой коэффициент усиления. Таким образом, с отрицательной обратной связью операционный усилитель быстро достигает равновесия, потому что большие изменения выходного напряжения уменьшают дифференциальное напряжение, которое вызывает эти самые выходные изменения. В этом состоянии равновесия выход стабилизируется при любом напряжении, что устраняет разницу между напряжениями на инвертирующем и неинвертирующем входах – иными словами, операционный усилитель автоматически регулирует свой выходной сигнал любым способом, необходимым для того, чтобы Vвх– было равно Vвх+.

В контексте этой схемы буферизации выходного сигнала операционный усилитель автоматически генерирует любое выходное напряжение, необходимое для того, чтобы сделать напряжение эмиттера биполярного транзистора равным входному напряжению. Подумайте, насколько сложно это было бы в ситуации разомкнутой петли – каким-то образом необходимо было бы рассчитать соотношение между входным и выходным сигналами усилителя, чтобы компенсировать падение напряжения база-эмиттер биполярного транзистора, которое не является ни линейным, ни предсказуемым. Но с операционным усилителем и некоторой отрицательной связью проблема становится тривиальной.

Давайте подкрепим это понимание идеи парой симуляций. Первая не очень захватывающая; она просто подтверждает, что выходное напряжение следует за входным напряжением (график входного напряжения Vin скрыт под графиком выходного напряжения Vout):

Рисунок 3 – График входного и выходного напряжений схемы

На следующем графике показано, что должно быть на выходном выводе операционного усилителя, чтобы обеспечить нужное напряжение на нагрузке.

Рисунок 4 – График входного напряжения схемы, выходного напряжения операционного усилителя и выходного напряжения схемы

Классическая схема дифференциального усилителя на ОУ

Коэффициент усиления такой схемы равен К=R2/R1. Для обеспечения высокого значения КОСС необходимо обеспечить точное согласование резисторов. Для этого желательно применение резисторов точностью 0.01%.

Резисторы такой точности достаточно дороги, и не всегда их можно найти в продаже. Поэтому при первой возможности лучше закупить 100 кОм резисторы указанной точности для применения в подобных схемах.

Если все резисторы будут одного номинала, что вполне допустимо, то коэффициент усиления дифференциального усилителя будет равен 1. Дальнейшее усиление при необходимости можно произвести дополнительными каскадами, зато наличие синфазной помехи было уже устранено.

Повторитель напряжения на ОУ. Принцип работы

Повторитель напряжения — это самый простой из возможных усилителей, обладающих отрицательной обратной связью (ООС). Выходное напряжение точно равно входному напряжению. Если оно ничем не отличаются, то вы можете спросить — зачем это нужно, если от этого ничего не изменяется?

Суть в том, что речь идет о напряжении, а не о токе. Так вот, повторитель напряжения почти не потребляет тока от источника сигнала, и позволяет получить довольно высокий ток со своего выхода.

Нам часто приходится иметь дело с активными радиокомпонентами, которые имеют очень малый выходной ток. Примером такого компонента является микрофон или фототранзистор. Подключение к ним элементов с низким сопротивлением приведет к уменьшению напряжения выходного сигнала, генерируемого этими источники.

В такой ситуации имеет смысл использовать повторитель напряжения. Он имеет высокое входное сопротивление, поэтому он не снижает и не искажает входной сигнал, а так же обладает низким выходным сопротивлением, что позволяет подключить энергоемкие компоненты, например, светодиод.

Паяльная станция 2 в 1 с ЖК-дисплеем

Мощность: 800 Вт, температура: 100…480 градусов, поток возду…

Подробнее

Чтобы понять, как работает повторитель напряжения, мы должны знать три элементарных правила, определяющие работу операционного усилителя:

Предположим, что входное напряжение стало 3В, а в настоящее время на выходе у нас 1В. Что произойдет? Усилитель определяет, что между инвертирующим входом (-) и неинвертирующим (+) разница составляет 2В.

Поэтому, в соответствии с правилом №1, выходное напряжение увеличивается до тех пор, пока напряжения на входах не сравняют. Ситуацию дополнительно упрощает тот факт, что выход соединен непосредственно с инвертирующим входом (-), и это неизбежно приводит к тому, что напряжение на этих двух выводах становиться одинаковым.

Часто, в схеме повторителя напряжения, можно встретить дополнительный резистор в цепи обратной связи. Он необходим там, где требуется повышенная точность. Правила №1 и №2 относятся к идеальному операционному усилителю, которого в реальности нет.

Напряжения на входах не могут быть идеально одинаковыми, через них протекает небольшой ток, поэтому напряжение на выходе может отличаться от входного напряжения на несколько милливольт. Резистор R предназначен для уменьшения влияния этих недостатков. Он должен иметь сопротивление равное сопротивлению источника сигнала.

Что такое дифференциальный усилитель

Дифференциальный усилитель — это электронное снаряжение, имеющее 2 входящих компонента, сигнальный толчок на выходном конце, учитывающий разницу указателя напряжения на входной детали, умноженного на константную величину. Используется в вариантах, если требуется показать маленькую разницу показателя в зоне существенного диамагнитного компонента.

Сигнал на выходном конце такого агрегата бывает с 1 фазой и различительной. Это устанавливается схемой каскадного начала на выходе.

Транзисторные детали машины бывают:

  • биполярными;
  • полевыми;
  • баллистическими.

Самые высокочастотные усилители идут на интегральной паре с баллистическими транзисторными элементами.

Повторители для повышения входного сопротивления дифференциального усилителя

Для обоих схем дифференциальных усилителей сопротивление источника должно быть меньше 25 Ом для обеспечения КОСС 100дБ. Однако это неприемлемые требования для большинства источников, в частности стандартная головка микрофона обладает сопротивлением в 600Ом, а тензодатчик имеет внутреннее сопротивление около 350 Ом.

Для решения этой проблемы прибегают к использованию повторителей, устанавливаемых по входам, как это изображено на следующей схеме.

При таком включении и использовании современных ОУ можно получить колоссальное значение входного полного сопротивления, такое, что вопросы полного сопротивления источника уже не должны нас волновать. Однако это справедливо лишь для низких частот, т.к. для высоких частот входная емкость в комбинации с сопротивлением источника образуют делитель напряжения.

Для решения этой проблемы применяется схема инструментального (измерительного) усилителя, которому посвящена отдельная статья. Сам по себе инструментальный усилитель — это готовый микрофонный предусилитель.

Активные фильтры

В электронике широко применяются устройство для выделения полезного сигнала из ряда входных сигналов с одного одновремённым ослаблением мешающих сигналов за счёт использования фильтров.

Фильтры подразделяются не пассивные, выполненные на основе конденсаторов, индуктивностей и резисторов, и активные на базе транзисторов и операционных усилителей.

В информационной электронике обычно используются активные фильтры. Термин «активный» объясняется включением в схему RLC — фильтра активного элемента (с транзистора или ОУ) для компенсации потерь на пассивных элементах.

Фильтром называют устройство, которое пропускает сигналы в полосе пропускания и задерживает их в остальном диапазоне частот.

По виду АЧХ фильтры подразделяются на фильтры нижних частот (ФНЧ), и на фильтры верхних частот (ФВЧ), полосовые фильтры и режекторные фильтры.

Схема простейшего ФНЧ и его АЧХ приведены на рисунке:

В полосе пропускания 0 — fc полезный сигнал проходит через ФНЧ без искажений.

fс – fз – переходная полоса, fз — ∞ – полоса задерживания, fс – частота среза, fз – частота задерживания.

ФВЧ пропускает сигналы верхних частот и задерживает сигналы нижних частот.

Полосовой фильтр пропускает сигналы одной полосы частот, расположенной в некоторой внутренней части оси частот.

Схема фильтра получила название моста Вина. На частоте f =

Мост Вина имеет коэффициент передачи β = 1/3. При R1 = R2 = R и C1 = C2 = C

Режекторный фильтр не пропускает сигналы, лежащие в некоторой полосе частот, и пропускает сигналы с другими частотами.

Схема фильтра называется несимметричным двойным Т-образным мостом.

, где R1 = R2 = R3 = R, C1 = C2 = C3 = C.

В качестве примера рассмотрим двухполюсный (по числу конденсаторов) активный ФНЧ.

ОУ работает в линейном режиме. При расчёте задаются fс. Коэффициент усиления в полосе пропускания должен удовлетворять условию: К ≤ 3.

Если принять С1 = С2 = С, R1 = R2 = R, то C = 10/fc, где fс – в Гц, С – в мкФ,

Для получения более быстрого изменения коэффициента усиления на удаление от полосы пропускания последовательно включают подобные схемы.

Поменяв местами резисторы R1, R2 и конденсаторы С1, С2, получим ФВЧ.

Неинвертирующий сумматор

В продолжение темы неинвертрующих усилителей расскажу о неинвертирующем сумматоре, который выполняет функцию сложения входных сигналов и находит своё применение в качестве линейных смесителей сигналов (микшеров), например, когда сигналы из нескольких источников необходимо скомбинировать и подать на вход усилителя мощности. Схема неинвертирующего сумматора представлена ниже



Схема двухвходового неинвертирующего сумматора.

Данная схема представляет собой неинвертирующий усилитель с двумя входами и состоит из ОУ DA1, токоограничительных входных резисторов R1 и R2, резистора смещения R3 и резистора обратной связи R4.

Для данной схемы основные соотношения соответствуют схеме простого неинвертирующего усилителя, с учётом того что входное напряжение в схеме соответствует среднему напряжению входных выводов

А сопротивление резисторов должны соответствовать следующему условию

Коэффициенты усиления по разным каналам определяются следующим выражением

RN – сопротивление входного резистора,

KN – коэффициент усиления соответствующего канала усиления.

Основным недостатком схемы неинвертирующего сумматора является отсутствие точки нулевого потенциала, поэтому коэффициент усиления по различным входам не являются независимыми. Данный недостаток проявляет себя в тех случаях, когда внутреннее сопротивление источников входных напряжений или только одного из них известно приблизительно или изменяется в процессе работы.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Каскады усиления мощности.

Каскад
усиления мощности класса
А.

Для
усилителя мощности класса А
применяют трансформаторную связь с
нагрузкой. В режиме покоя за счет
напряжения смещения UCM
,подаваемого на базу, протекают токиIБ,
П

и IК,
П

(ток базы покоя и ток коллектора покоя).IК,
П
=IБ,
П
+(+1)IКБО.

+Максимальный
КПД достигается при больших значениях
,
т.е. при усилении больших сигналов.

+Мощность
потребляемая от источника Р,не
зависит от передаваемого сигнала.

+Максимальная
мощность потерь РК
имеет место в режиме покоя, т.к. UВХ=0.


низкий КПД, особенно при малых значениях
вх напряжения, мощность Р
не зависит от вх. сигнала и при малых
сигналах затрачивается впустую. Каскад
должен иметь трансформаторную связь
с нагрузкой, → невозможность передачи
однополярных сигналов.

Однотактный
каскад класса В
.

В
режиме покоя смещение на базу транзистора
не подается и ток коллектора покоя
равен IКЭО0.
Мощность РК=0,
т.е. нагрева транзистора в режиме покоя
практически не происходит. При подаче
на базу транзистора положительного вх
сигнала вых напряжение равно: UВЫХ=iКRН.
При отрицательном напряжении на входе
транзистор заперт: UВЫХ
=0. Такой усилитель класса Б
может усиливать только однополярные
сигналы. Определим КПД каскада: UВЫХ=UВЫХm.(UВЫХm
амплитуда выхода, является действующим
значением). PН=UВЫХm/RН=(EК)2/R.P=EКIК=EКUВЫХm/RН=EК2/RН.
=.

+КПД
каскада класса В выше, чем класса А
особенно для малых и средних сигналовUВХ.

+Мощность
потребляемая от источника ЕК
минимальна в режиме покоя и увеличивается
при росте UВХ.

+Мощность
потерь максимальна при средних значениях
,
но меньше чем максимальная мощность
потерь в усилителях класса А.

Двухтактный
каскад усиления мощности класса В

– усиливает двухполярные сигналы.

1)Двухтактный
каскад усиления с транзисторами разной
проводимости. В режиме покоя оба
транзистора заперты. При подаче
положительного UВХ
схема работает как однотактный каскад
класса В, транзистор V2
заперт. При UВХ<0,V1
заперт. Т.о. транзисторы вступают в
работу поочередно в зависимости от
полярности усиливаемого сигнала. Для
двухтактного каскада усиления мощности
класса В справедливы соотношения
однотактного усилителя класса В.

2)
На транзисторах одной проводимости.
При UВХ>0,V­1
открыт, V­2
заперт обратным напряжением на входе
(–кUВХ).
При UВХ<0,V­1
заперт, кUВХотпирает
транзистор V­2и
транзистор работает как эмиттерный
повторитель.

В
схеме один источник питания, но наличие
транф-ра в ней обязательно. Оба транзистора
работают по схеме с общим эмиттером.
На их базы подаются сигналы +UВХ
и –UВХ
, что обеспечивает при UВХ
>0, отпирание V1,
при UВХ<0
– отпирание V2.

Операционный усилитель

Операционный усилитель — это усилитель постоянного тока с высоким коэффициентом усиления, который может быть очень большим, вплоть до миллионов. Часто встречается коэффициент усиления в 200 000. Операционные усилители способны усиливать сигналы переменного тока, также как сигналы постоянного тока, они чаще используются в измерительном оборудовании для усиления сигналов постоянного тока.

Название «операционный» усилитель происходит от того, что выполняемые операционным усилителем функции представляют собой математические операции. Например, устройство для извлечение квадратного корня является контрольно-измерительным устройством, в котором используется операционный усилитель для определения квадратного корня сигналов для обеспечения контроля изменения величины потока жидкой или газообразной среды.

Операционные усилители не обладают бесконечными входными сопротивлениями и нулевыми выходными сопротивлениями. Хотя возможно входное сопротивление в несколько триллионов Ом, и выходные сопротивления близкие к нулю. В результате выходные сигналы от таких операционных усилителей могут очень точно регулироваться. По этой причине операционные усилители считаются точными усилителями.

Высокая степень точности, обеспечиваемая операционными усилителями, возможна благодаря применению технологии интегральных схем. Хотя в принципе возможно изготовить операционный усилитель из дискретных компонентов, соединенных вместе на монтажной плате, однако практически все операционные усилители в настоящее время выполнены в виде интегральных схем.

Кристалл интегральной схемы операционного усилителя содержит все транзисторы и другие элементы, необходимые для усиления сигнала. Стандартный кристалл выполнен из, на нем может располагаться порядка 30 транзисторов и других элементов.

При использовании операционных усилителей в различных типах схем они могут выполнять различные операции, необходимые в контрольно-измерительном оборудовании. Например, они могут суммировать сигналы, вычитать сигналы, находить среднюю величину сигнала и выполнять даже более сложные функции.

Принцип работы операционного усилителя

Давайте рассмотрим, как работает ОУ

Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).

Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы

Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению

Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.

Но, как говорится, в семье не без уродов, и поэтому на рынке уже давно появились ОУ, которые могут выдавать на выходе допустимое напряжение питания, то есть в  нашем случае это значения, близкие к +15 и -15 Вольтам. Такая фишка называется Rail-to-Rail, что в дословном переводе с англ. “от рельса до рельса”, а на языке электроники “от одной шины питания и до другой”.

Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:

Как вы видите, в данный момент выход “лег” на -Uпит, так как на инвертирующем входе потенциал был больше, чем на НЕинвертирующем.

Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:

На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.

История

Операционный усилитель изначально был спроектирован для выполнения математических операций (отсюда его название), путём использования напряжения как аналоговой величины. Такой подход лежит в основе аналоговых компьютеров, в которых ОУ использовались для моделирования базовых математических операций (сложение, вычитание, интегрирование, дифференцирование и т. д.). Однако идеальный ОУ является многофункциональным схемотехническим решением, он имеет множество применений помимо математических операций. Реальные ОУ, основанные на транзисторах, электронных лампах или других компонентах, выполненные в виде дискретных или интегральных схем, являются приближением к идеальным.

Ламповый операционный усилитель K2-W

Первые промышленные ламповые ОУ (1940-е годы) выполнялись на паре двойных триодов, в том числе в виде отдельных конструктивных сборок в корпусах с октальным цоколем. В 1963 году Роберт Видлар, инженер фирмы «Fairchild Semiconductor», спроектировал первый интегральный ОУ — μA702. При цене в 300 долларов, прибор, содержавший 9 транзисторов, использовался только в военных применениях. Первый доступный интегральный ОУ, μA709, также спроектированный Видларом, был выпущен в 1965 году; вскоре после выпуска его цена упала ниже 10 долларов, что было всё ещё слишком дорого для бытового применения, но вполне доступно для массовой промышленной автоматики и т. п. гражданских задач.

В 1967 году фирма «National Semiconductor», куда перешёл работать Видлар, выпустила LM101, а в 1968 году фирма Fairchild выпустила ОУ, практически идентичный μA741 — первый ОУ со встроенной частотной коррекцией. ОУ LM101/μA741 был более стабилен и прост в использовании, чем предшественники. Многие производители до сих пор выпускают версии этого классического чипа (их можно узнать по числу «741» в наименовании). Позднее были разработаны ОУ и на другой элементной базе: на полевых транзисторах с p-n переходом (конец 1970-х годов) и с изолированным затвором (начало 1980-х годов), что позволило существенно улучшить ряд характеристик. Многие из более современных ОУ могут быть установлены в схемы, спроектированные для 741 без каких-либо доработок, при этом характеристики схемы только улучшатся.

Применение ОУ в электронике чрезвычайно широко. Операционный усилитель, вероятно, наиболее часто встречающийся элемент в аналоговой схемотехнике. Добавление лишь нескольких внешних компонентов делает из ОУ конкретную схему аналоговой обработки сигналов. Многие стандартные ОУ сто́ят всего несколько центов в крупных партиях (1000 шт), но усилители с нестандартными характеристиками (в интегральном или дискретном исполнении) могут стоить $100 и выше.

Что такое четырехполюсник

В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник – это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего “электрического черного ящика”.

Пассивный четырехполюсник

Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).

В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.

Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.

Активный четырехполюсник

А вот этот четырехполюсник мы будем уже называть активным, так как он имеет в своем составе источник питания +Uпит , которое требуется для того, чтобы усиливать сигнал.

То есть мы здесь видим две клеммы на вход, на которые загоняется сигнал Uвх , а также видим две клеммы на выход, где снимается напряжение Uвых . Питается наш четырехполюсник через +Uпит , в результате чего, в данном случае, сигнал на выходе будет больше, чем сигнал на входе.

Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.

Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.

В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке – это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.

В электронике мы будем рассматривать усилитель, как активный четырехполюсник, на вход которого подается маломощный сигнал Uвх, а к выходу цепляется нагрузка Rн .

Схема цепей смещения в усилителях типа UBbIX = kUBX + b

Схема, реализующая передаточную характеристику вида UBbIX = kUBX + b, представлена на рисунке ниже


Схема усилителя с передаточной характеристикой типа UBbIX = kUBX + b.

Данная схема представляет собой неинвертирующий сумматор и состоит из развязывающих конденсаторов С1 и С2 имеющих ёмкость порядка 0,001 – 0,1 мкФ, резисторов R1, R2, R3 и R4 и самого ОУ DA1 в неинвертирующей схеме. Передаточная характеристика данной схемы описывается следующим выражением

тогда коэффициенты k и b будут определяться следующими выражениями

Расчёт усилителя с характеристикой типа UBbIX = kUBX + b

Для примера рассчитаем элементы усилителя со следующими параметрами: входное напряжение UBX = 0,1…1 В, выходное напряжение UBЫX = 1…5 В, напряжение питания UПИТ = 6 В, в качестве источника смещения используется напряжение питания UCM = UПИТ = 6 В.

  1. Определим тип передаточной характеристики. Определяем коэффициенты k и b

    Решив данную систему, получим k = 4,44 и b = 0,556, тогда передаточная характеристика будет иметь следующий вид

  2. Рассчитаем номиналы резисторов R1 и R2, решив следующую систему уравнений относительно (R3 + R4) / R3

    Подставив значения коэффициентов k, b и UCM получим следующее уравнение

    Величина резистора R1 обычно выбирается в пределах от 1 до 10 кОм, так как резистор R1 определяет входное сопротивление усилителя и его следует увеличивать, чтобы исключить перегрузку источника сигнала.

    Выберем R1 = 10 кОм, тогда R2 = 47,91 * 10 = 479,1 кОм. Примем R2 = 470 кОм.

  3. Рассчитаем величины сопротивлений R3 и R4

    Величина резистора, также как и R1 выбирается в пределах 1 … 10 кОм, поэтому примем R3 = 10 кОм, R4 = 10 * 3,53 = 35,3 кОм. Примем R4 = 36 кОм.