Принцип работы
Схема КЭС на угле
- 1 — градирня
- 2 — циркуляционный насос
- 3 — линия электропередачи
- 4 — повышающий трансформатор
- 5 — турбогенератор
- 6 — цилиндр низкого давления паровой турбины
- 7 — конденсатный насос
- 8 — поверхностный конденсатор
- 9 — цилиндр среднего давления паровой турбины
- 10 — стопорный клапан
- 11 — цилиндр высокого давления паровой турбины
- 12 — деаэратор
- 13 — регенеративный подогреватель
- 14 — транспортёр топливоподачи
- 15 — бункер угля
- 16 — мельница угля
- 17 — барабан котла
- 18 — система шлакоудаления
- 19 — пароперегреватель
- 20 — дутьевой вентилятор
- 21 — промежуточный пароперегреватель
- 22 — воздухозаборник
- 23 — экономайзер
- 24 — регенеративный воздухоподогреватель
- 25 — фильтр
- 26 — дымосос
- 27 — дымовая труба
В котёл с помощью питательного насоса подводится питательная вода под большим давлением, топливо и атмосферный воздух для горения. В топке котла идёт процесс горения — химическая энергия топлива превращается в тепловую и лучистую энергию. Питательная вода протекает по трубной системе, расположенной внутри котла. Сгорающее топливо является мощным источником теплоты, передающейся питательной воде, которая нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения, примерно до 540 °C с давлением 13-24 МПа и по одному или нескольким трубопроводам подаётся в паровую турбину.
Паровая турбина, электрогенератор и возбудитель составляют в целом турбоагрегат. В паровой турбине пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), и потенциальная энергия сжатого и нагретого до высокой температуры пара превращается в кинетическую энергию вращения ротора турбины. Турбина приводит в движение электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой вращающийся электромагнит, питание которого осуществляется от возбудителя.
Конденсатор служит для конденсации пара, поступающего из турбины, и создания глубокого разрежения, благодаря которому и происходит расширение пара в турбине. Он создаёт вакуум на выходе из турбины, поэтому пар, поступив в турбину с высоким давлением, движется к конденсатору и расширяется, что обеспечивает превращение его потенциальной энергии в механическую работу.
Благодаря этой особенности технологического процесса конденсационные электростанции и получили своё название.
Братская ГЭС, 4500 МВт
Братская ГЭС находится на реке Ангара, в иркутской области, вблизи города Братск. Она вырабатывает 4500 МВт электричества и является первой по среднегодовой выработке гидроэлектростанцией в России и третьей по мощности.
Высота дамбы равняется 125 метрам, а длина равна практически полутора километрам. Строительство, начавшееся в 1954 году было окончено с запуском в строй последнего агрегата в 1966 году.
Братская ГЭС выполняет важнейшую роль в снабжении электричеством крупнейших заводов и комбинатов, обеспечении энергией жителей региона. Знаменитый завод, производящий в Братске алюминий работает исключительно благодаря мощности, получаемой этой электростанцией.
Саяно-Шушенская ГЭС, 6400 МВт
Саяно-Шушенская гидроэлектростанция является крупнейшей по количеству вырабатываемой электроэнергии станцией в России. Электрическая мощность равна 6400 МВт. ГЭС находится на Енисее, по границе Красноярского края и Республики Хакасия, близ Саяногорска.
Саяно-Шушенская ГЭС занимает почётное место среди самых высоких плотин в мире и является самой высокой в России. Высота этого сооружения равна 242 метрам, а длина более километра. На строительство этого гиганта было затрачено более 9 миллионов кубических метров бетона.
Официально стартом строительства является 1963 год, а финальные доработки и сдача объекта состоялась в 2000 году.
1 0
Крупнейшие тепловые электростанции
Самыми крупными являются гидроэлектростанции, но тепловые также обладают внушительной мощностью.
Крупнейшими в мире считаются:
- Теплоэлектростанция в Шоаибе (Саудовская Аравия). В качестве топлива используют мазут или сырую нефть. Ее мощность – 5600 мВт. Расположена на побережье Красного моря. Пресная вода, необходимая для работы электростанции, поставляется установками по опреснению морской, которые в свою очередь снабжаются электроэнергией от станции.
- Сургутская ГРЭС-2. Самая мощная газовая электростанция в мире.
- Тайчжунская ТЭС (Тайвань). Может претендовать на 2 рекорда: с установленной мощностью 5500 мВт – это крупнейшая угольная электростанция в мире, в то же время ни одна другая ТЭС не производит больше углекислого газа – ежегодные его выбросы соответствуют годовым выбросам СО2 Швейцарии.
Атомная энергетика сегодня
По разным данным, ядерная энергетика сегодня дает от 10 до 15% электроэнергии во всем мире. Атомную энергию использует 31 страна. Наибольшее количество исследований в области электроэнергетики ведутся именно по использованию ядерной энергии. Логично предположить, что преимущества АЭС явно велики, если из всех видов добычи электроэнергии развивают именно этот.
В то же время, есть страны, которые отказываются от использования ядерной энергетики, закрывают все имеющиеся атомные станции, к примеру, Италия. На территории Австралии и Океании АЭС не существовало и не существует в принципе. Австрия, Куба, Ливия, КНДР и Польша остановили разработки АЭС и временно отказались от планов по созданию атомных станций. Эти страны не обращают внимания на достоинства АЭС и отказываются от их установки в первую очередь по соображениям безопасности и больших затрат на строительство и эксплуатацию атомных станций.
Лидерами в атомной энергетике сегодня являются США, Франция, Япония и Россия. Именно они по достоинству оценили преимущества АЭС и стали внедрять атомную энергетику в свои страны. Наибольшее количество строящихся проектов АЭС сегодня принадлежат Китайской Народной Республике. Еще около 50ти стран активно работают над внедрением ядерной энергетики.
Как и все способы добычи электроэнергии имеет АЭС преимущества и недостатки. Говоря про преимущества АЭС нужно отметить экологичность производства, отказ от использования органического топлива и удобство в транспортировке необходимого горючего. Рассмотрим все подробнее.
Принцип работы
Схема КЭС на угле
- 1 — градирня
- 2 — циркуляционный насос
- 3 — линия электропередачи
- 4 — повышающий трансформатор
- 5 — турбогенератор
- 6 — цилиндр низкого давления паровой турбины
- 7 — конденсатный насос
- 8 — поверхностный конденсатор
- 9 — цилиндр среднего давления паровой турбины
- 10 — стопорный клапан
- 11 — цилиндр высокого давления паровой турбины
- 12 — деаэратор
- 13 — регенеративный подогреватель
- 14 — транспортёр топливоподачи
- 15 — бункер угля
- 16 — мельница угля
- 17 — барабан котла
- 18 — система шлакоудаления
- 19 — пароперегреватель
- 20 — дутьевой вентилятор
- 21 — промежуточный пароперегреватель
- 22 — воздухозаборник
- 23 — экономайзер
- 24 — регенеративный воздухоподогреватель
- 25 — фильтр
- 26 — дымосос
- 27 — дымовая труба
В котёл с помощью питательного насоса подводится питательная вода под большим давлением, топливо и атмосферный воздух для горения. В топке котла идёт процесс горения — химическая энергия топлива превращается в тепловую и лучистую энергию. Питательная вода протекает по трубной системе, расположенной внутри котла. Сгорающее топливо является мощным источником теплоты, передающейся питательной воде, которая нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения, примерно до 540 °C с давлением 13-24 МПа и по одному или нескольким трубопроводам подаётся в паровую турбину.
Паровая турбина, электрогенератор и возбудитель составляют в целом турбоагрегат. В паровой турбине пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), и потенциальная энергия сжатого и нагретого до высокой температуры пара превращается в кинетическую энергию вращения ротора турбины. Турбина приводит в движение электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой вращающийся электромагнит, питание которого осуществляется от возбудителя.
Конденсатор служит для конденсации пара, поступающего из турбины, и создания глубокого разрежения, благодаря которому и происходит расширение пара в турбине. Он создаёт вакуум на выходе из турбины, поэтому пар, поступив в турбину с высоким давлением, движется к конденсатору и расширяется, что обеспечивает превращение его потенциальной энергии в механическую работу.
Благодаря этой особенности технологического процесса конденсационные электростанции и получили своё название.
Как работает тепловая электростанция
В основе работы тепловой электростанции лежат свойства пара, которыми он обладает. Вода, превращенная в пар, несет в себе большое количество энергии. Именно эту энергию направляют на вращение турбин, которые должны вырабатывать электричество.
Как правило, на тепловых электростанциях в качестве топлива используется уголь. Выбор этого топлива очень логичен, ведь именно угля на нашей планете еще очень и очень много. В отличии от нефти и газа, которых пока хватает, но уже маячит перспектива истощения их запасов.
Калининградская ТЭЦ.
Выше я сказал, что 60 процентов получаемой в мире энергии вырабатывается ТЭС. Если говорить о станциях, которые работают на угле, их доля достигает примерно 25 процентов. Это лишний раз подтверждает, что угля у нас много.
Для работы станции его заранее измельчают. Это может делаться в рамках станционного комплекса, но проще это сделать где-то в другом месте.
Измельченный уголь попадает на станцию на начальном этапе производства энергии. При его сжигании разогревается котел, в который и попадает вода. Температура котла может меняться, но его главной задачей является максимальный нагрев пара. Сам пар получается из воды, которая так же поступает на станцию.
Когда вода нагревается в котле, она в виде пара попадает на отдельный блок генератора, где под большим давлением раскручивает турбины. Именно эти турбины и вырабатывают энергию.
Примерно так выглядят принцип работы тепловых электростанций.
Казалось бы, что на этом надо заканчивать, ”заправлять” в котлы новый уголь и подливать воду, но не все так просто. На этапе турбины у потерявшего свою силу и остывшего пара есть два пути. Первый — в циклическую систему повторного использования, второй — в магистраль теплоснабжения. Нагревать воду для отопления отдельно нет смысла. Куда проще отобрать ее после того, как она приняла участие в выработке электричества. Так получается намного эффективнее.
Остывшая вода попадает в градирни, где охлаждается и очищается от примесей серы и других веществ, которыми она насытилась. Охлаждение может показаться нелогичным, ведь это оборотная вода и ее все равно надо будет снова нагревать, но технологически охлаждение очень оправдано, ведь какое-то оборудование просто не может работать с горячей водой.
Принцип работы градирни.
После этого вода или проходит через системы предварительного подогрева, или сразу поступает в котлы. Примерно так и выглядит схема работы тепловой электростанции. Есть, конечно, тонкости вроде резервуаров, отстойников, каналов, змеевиков и прочего оборудования, но оно разнится от станции к станции и останавливаться на нем подробно не стоит. Такое оборудование не влияет на принцип работы электростанции, который я описал.
Так выглядит турбина, когда она открыта и находится на обслуживании.
Есть и другие электростанции, которые работают на мазуте, газе и других видах горючих материалов, извлекаемых из недр планеты, но принцип их работы примерно один и тот же — горячий водяной пар крутит турбину, а топливо используется для получения этого пара.
Что такое ТЭЦ?
Само название данного объекта напоминает предыдущее, и на самом деле, ТЭЦ, как и тепловые электростанции преобразуют тепловую энергию сжигаемого топлива. Но помимо электроэнергии теплоэлектроцентрали (так расшифровывается ТЭЦ) поставляют потребителям тепло. ТЭЦ особенно актуальны в холодных климатических зонах, где нужно обеспечить жилые дома и производственные здания теплом. Именно поэтому ТЭЦ так много в России, где традиционно используется центральное отопление и водоснабжение городов.
По принципу работы ТЭЦ относятся к конденсационным электростанциям, но в отличие от них, на теплоэлектроцентралях часть выработанной тепловой энергии идет на производство электричества, а другая часть – на нагрев теплоносителя, который и поступает к потребителю.
ТЭЦ более эффективна по сравнению с обычными ТЭС, поскольку позволяет использовать полученную энергию по максимуму. Ведь после вращения электрогенератора пар остается горячим, и эту энергию можно использовать для отопления.
Помимо тепловых, существуют атомные ТЭЦ, которые в перспективе должны сыграть ведущую роль в электро- и теплоснабжении северных городов.
Красноярская ГЭС, 6000 МВт
Красноярская гидроэлектростанция достигает мощности вырабатываемого тока в 6000 МВт. ГЭС располагается вблизи города Дивногорск, Красноярского края. Станция занимает второе место среди самых мощных электростанций России. Она одна покрывает около 30% потребностей жителей Красноярского края в электричестве.
Самым энергозатратным и одним из самых важных потребителей считается алюминиевый завод в Красноярске. Кроме основной задачи ГЭС также служит щитом, оберегающим местность в её низовьях от наводнений.
Началом строительства можно считать решение о необходимости данного объекта, которое было принято 14 июля 1955 года. Конец же реализации столь необходимого проекта и запуск в эксплуатацию состоялся в 1982 году.
КПД тепловой электростанции
Основным показателем любой тепловой электростанции является ее коэффициент полезного действия. Например, для угольных ТЭС существует термический КПД, определяемый количеством угля, необходимого для выработки 1 кВт*ч электроэнергии. Если в начале 20-х годов прошлого века этот показатель составлял 15,4 кг, то в 60-е годы он снизился до 3,95 кг. В дальнейшем расход угля вновь незначительно поднялся до 4,6 кг.
Причиной такого подъема стали газоочистители, уловители пыли и золы, из-за которых угольная электростанция снизила выходную мощность на 10%. Многие станции пользуются более чистым в экологическом плане углем, что также привело к увеличению потребления топлива.
Процентное выражение термического КПД тепловой электростанции составляет не более 36%, что связано с высокими тепловыми потерями, вызываемыми отходящими газами при горении. У атомных электростанций, отличающимися низкими температурами и давлением термический КПД еще ниже – 32%. Самый высокий показатель у газотурбинных установок, оборудованных котлами-утилизаторами и дополнительными паровыми турбинами. КПД электростанций с таким оборудованием превышает 40%. Этот показатель полностью зависит от величины рабочих температур и давления пара.
Современные паротурбинные электростанции используют промежуточный перегрев пара. После того как он частично отработает в турбине, происходит его отбор в промежуточной точке для последующего повторного нагрева до первоначальной температуры. Система промежуточного перегрева может состоять из двух ступеней и более, что способствует значительному увеличению термического КПД.
Первая электростанция в мире
Самая первая центральная электростанция, the Pearl Street, была сдана в эксплуатацию 4 сентября 1882 года в Нью-Йорке.
Станция была построена при поддержке Edison Illuminating Company, которую возглавлял Томас Эдисон.
На ней были установлены несколько генераторов Эдисона общей мощностью свыше 500 кВт.
Станция снабжала электроэнергией целый район Нью-Йорка площадью около 2,5 квадратных километров.
Станция сгорела дотла в 1890году, сохранилась только одна динамо-машина, которая сейчас находится в музее the Greenfield Village, Мичиган.
30 сентября 1882 года заработала первая гидроэлектростанция the Vulcan Street в штате Висконсин. Автором проекта был Г.Д. Роджерс, глава компании the Appleton Paper & Pulp.
На станции был установлен генератор с мощностью приблизительно 12.5 кВт. Электричества хватало на дом Роджерса и на две его бумажные фабрики.
Электростанция Gloucester Road. Брайтон был одним из первых городов в Великобритании с непрерывным электроснабжением.
В 1882 году Роберт Хаммонд основал компанию Hammond Electric Light , а 27 февраля 1882 года он открыл электростанцию Gloucester Road.
Станция состояла из динамо щетки, которая использовалась, чтобы привести в действие шестнадцать дуговых ламп.
В 1885 году электростанция Gloucester была куплена компанией Brighton Electric Light. Позже на этой территории была построена новая станция, состоящая из трех динамо щеток с 40 лампами.
Электростанция Зимнего дворца
В 1886 году в одном из внутренних дворов Нового Эрмитажа была построена электростанция.
Автором проекта выступил техник дворцового управления Василий Леонтьевич Пашков.
Электростанция была крупнейшей во всей Европе, не только на момент постройки, но и на протяжении последующих 15 лет.
Ранее для освещения Зимнего дворца использовались свечи, с 1861 года начали использовать газовые светильники. Так как электролампы имели большее преимущество, были начаты разработки по внедрению электроосвещения.
Прежде чем здание было полностью переведено на электричество, освещении при помощи ламп использовали для освещения дворцовых зал во время рождественских и новогодних праздников 1885 года.
9 ноября 1885 года, проект строительства «фабрики электричества» был одобрен императором Александром III. Проект включал электрификацию Зимнего дворца, зданий Эрмитажа, дворовой и прилегающей территории в течение трех лет до 1888 года.
Была необходимость исключить возможность вибрации здания от работы паровых машин, размещение электростанции предусмотрели в отдельном павильоне из стекла и металла. Его разместили во втором дворе Эрмитажа, с тех пор называемом «Электрическим».
Как выглядела станция
Здание станции занимало площадь 630 м², состояло из машинного отделения с 6 котлами, 4 паровыми машинами и 2 локомобилями и помещения с 36 электрическими динамо-машинами. Общая мощность достигала 445 л.с.
Было предложено три режима освещения:
- полное (праздничное) включать пять раз в году (4888 ламп накаливания и 10 свечей Яблочкова);
- рабочее – 230 ламп накаливания;
- дежурное (ночное) – 304 лампы накаливания. Станция потребляла около 30 тыс. пудов (520 т) угля в год.
Работа ГРЭС
В середине 1980 года Государственная комиссия разрешила эксплуатировать Ириклинскую ГРЭС на полную мощность. К тому времени к постройке подвели высоковольтные линии, рассчитанные на напряжение в 500, 220 и 110 кВ. ВЛ 500 кВ подключили к Оренбургскому перерабатывающему заводу и Магнитогорскому металлургическому комбинату.
Зимой 2011 года произведен масштабный ремонт, который затронул систему охлаждения одного из восьми энергоблоков. Во входной и выходной части трубопровода диаметром 2 метра была проложена труба из стеклопластика марки HOBAS DN 1500. Монтировали ее методом релайнинга. Такой ремонт был необходим для восстановления несущей способности огромной станции.
Благодаря своевременному обслуживанию и опытному персоналу за все время существования Ириклинской ГРЭС аварий на ней не было.
Главное – электричество
Обозначение «ГРЭС» – пережиток советского индустриального мегапроекта, на начальном этапе которого, в рамках плана ГОЭЛРО, решалась задача ликвидации дефицита, прежде всего, электрической энергии. Расшифровывается оно просто – «государственная районная электрическая станция». Районами в СССР называли территориальные объединения (промышленности с населением), в которых можно было организовать единое энергоснабжение. И в узловых географических точках, обычно вблизи крупных месторождений сырья, которое можно было использовать в качестве топлива, и ставили ГРЭС. Впрочем, газ на такие станции можно подавать и по трубопроводам, а уголь, мазут и другие виды топлива завозить по железной дороге. А на Березовскую ГРЭС компании «Юнипро» в красноярском Шарыпово уголь вообще приходит по 14-километровому конвейеру.
В современном понимании ГРЭС – это конденсационная электростанция (КЭС), по сравнению с ТЭЦ, очень мощная. Ведь главная задача такой станции – выработка электроэнергии, причем в базовом режиме (то есть равномерно в течение дня, месяца или года).
Поэтому ГРЭС, как правило, расположены вдали от крупных городов – благодаря линиям электропередач такие объекты генерации работают на всю энергосистему. И даже на экспорт – как, например, Гусиноозерская ГРЭС в Бурятии, с момента своего запуска в 1976 году обеспечивающая львиную долю поставок в Монголию. И выполняющая для этой страны роль «горячего резерва».
Интересно, что далеко не все станции, имеющие в своем названии аббревиатуру «ГРЭС», являются конденсационными; некоторые из них давно работают как теплоэлектроцентрали. Например, Кемеровская ГРЭС «Сибирской генерирующей компании» (СГК). «Изначально, в 1930-е годы, она вырабатывала только электроэнергию. Тем более что энергодефицит тогда был большой. Но когда вокруг станции вырос город Кемерово, на первый план вышел другой вопрос – как отапливать жилые кварталы? Тогда станцию перепрофилировали в классическую теплоэлектроцентраль, оставив лишь историческое название – ГРЭС. Для того, чтобы работник с гордостью мог сказать: «Я работаю на ГРЭС!». Потребление угля на электричество и тепло на станции идет сегодня в пропорции 50 на 50», — объясняет «Кислород.ЛАЙФ» начальник управления эксплуатации ТЭС Кузбасского филиала СГК Алексей Кутырев.
В то же время на других ГРЭС, входящих в СГК – например, на Томь-Усинской (1345,4 МВт) и Беловской (1260 МВт) в Кузбассе, а также на Назаровской (1308 МВт) в Красноярском крае – 97% сжигаемого угля идет на генерацию электричества. И всего 3% – на выработку тепла. И такая же картина, за редким исключением – практически на любой другой ГРЭС.
Крупнейшей в России ГРЭС и третьей в мире тепловой станцией является Сургутская ГРЭС-2(входит в «Юнипро») – ее мощность 5657,1 МВт (мощнее в нашей стране – только две ГЭС, Саяно-Шушенская и Красноярская). При довольно приличном КИУМ более 64,5% эта станция выработала в 2017 году почти 32 млрд кВт*часов электрической энергии. Эта ГРЭС работает на попутном нефтяном и природном газе. Крупнейшей же по мощности ГРЭС в стране, работающей на твердом топливе (угле), является Рефтинская — она расположена в 100 км от Екатеринбурга. 3,8 ГВт электрической мощности позволяют вырабатывать объемы, покрывающие 40% потребности всей Свердловской области. В качестве основного топлива на станции используется экибастузский каменный уголь.
Литература
- Конденсационная электростанция // : / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978..
- Рыжкин В. Я. Тепловые электрические станции: Учебник для вузов / Под редакцией В. Я. Гиршфельда. — 3-е изд., перераб. и доп.. — М.: Энергоатомиздат, 1987. — 328 с.
- Буров В. Д., Дорохов Е. В., Елизаров Д. П. и др. Тепловые электрические станции: Учебник для вузов / Под ред. В. М. Лавыгина, А. С. Седлова, С. В. Цанева. — 2-е изд., перераб. и доп. — М.: Издательский дом МЭИ, 2007. — 466 с.
- Тепловые и атомные электрические станции: Справочник / Под общей редакцией В. А. Григорьева и В. М. Зорина. — 2-е изд., перераб. — М.: Энергоатомиздат, 1989. — 608 с.
- Быстрицкий Г. Ф. Основы энергетики. — М.: Инфра-М, 2007. — ISBN 978-5-16-002223-9.
Принцип работы тепловой электростанции
Основной принцип работы тепловой электростанции заключается в производстве тепловой энергии из органического топлива, которая в дальнейшем используется для выработки электрического тока.
Понятия ТЭС и ТЭЦ существенно различаются между собой. Первые установки относятся к так называемым чистым электростанциям, вырабатывающим только электрический ток. Каждая из них известна еще и как конденсационная электростанция – КЭС. ТЭЦ расшифровывается как теплоэлектроцентраль и является разновидностью ТЭС. Данные установки не только генерируют электричество, но и являются тепловыми, то есть дают тепло в системы отопления и горячего водоснабжения. Такое комбинированное использование требует специальных паровых турбин с противодавлением или системой промежуточного отбора пара.
Несмотря на разнообразие конструкций, работа всех ТЭС осуществляется по общей схеме. В котел постоянно подается топливо в виде угля, газа, торфа, мазута или горючих сланцев. На многих электростанциях используется заранее приготовленная угольная пыль. Вместе с топливом поступает воздух в подогретом виде, выполняющий функцию окислителя.
В процессе горения топлива создается тепло, нагревающее воду в паровом котле. Происходит образование насыщенного пара, подаваемого в паровую турбину через паропровод. Далее тепловая энергия становится механической.
Вал и остальные движущиеся части турбины связаны между собой и представляют единое целое. Струя пара под высоким давлением и при высокой температуре выходит из сопел и воздействует на лопатки турбины. Закрепленные на диске, они начинают вращаться и приводят в движение вал, соединенный с генератором. В результате вращения происходит преобразование механической энергии в электрический ток.
Пройдя через паровую турбину, пар снижает свою температуру и давление. Далее он попадает в конденсатор и прокачивается по трубкам, охлаждаемым водой. Здесь пар окончательно превращается в воду и поступает в деаэратор для очистки от растворенных газов. Очищенная вода с помощью насоса подается в котельную установку через подогреватель.
Социальные условия
На предприятии трудятся 274 работника. Основные специальности связаны с профилем организации. Главные профессии на предприятии — это элекромонтеры по ремонту и обслуживанию электростанции, электромонтеры по ремонту аппаратуры релейной защиты и автоматики, электромонтеры диспетчерского оборудования и телеавтоматики, машинисты блочной системы управления агрегатами, машинисты-обходчики по котельному оборудованию. ГРЭС — предприятие полностью автоматизированное, поэтому на нем трудятся люди с высшим и средне-специальным образованием. Профессии вспомогательного звена очень разнообразны. На предприятии действует коллективный договор, который предусматривает различные социальные льготы. Например:
1. частично возмещает затраты работников за пользование электроэнергией и теплом;
2. затраты на содержание ребенка в детском саду;
3. затраты на профосмотр;
4. производит негосударственное пенсионное обеспечение;
5. оказывает материальную помощь в различных случаях.
У предприятия есть ведомственные дома, ведомственная связь. Работникам предоставляется также ведомственное жилье, услуги связи. На предприятии работают столовая и кафе.
Руководство организации заботится не только о рабочем месте работника, много делает для его отдыха и восстановления здоровья.
Работникам предприятия Культурно-досуговый центр предоставляет, по договоренности, спортивный зал в определенные дни, где работник может заняться своим здоровьем, в каждом цехе работает сауна. Также предоставляются путевки в санаторий «Машук», а дети работников могут отдыхать в летних лагерях. Организуются предприятия выходного дня в теплый период года с выездом в лес, на Пур.
Планировалось создание спортивной площадки, зала отдыха, но пока этого нет.
Энергосистемы
Энергосистемы — совокупность энергетических ресурсов всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.
Что входит в энергосистему
В энергосистемы входят:
- электроэнергетическая система;
- система нефте- и газоснабжения;
- система угольной промышленности;
- ядерная энергетика;
- нетрадиционная энергетика.
Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов
Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой.
В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные.
Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико-экономические преимущества:
- существенное снижение стоимости электро- и теплоэнергии;
- значительное повышение надёжности электро- и теплоснабжения потребителей;
- повышение экономичности работы различных типов электростанций;
- снижение необходимой резервной мощности электростанций.