Как работают волновые электростанции и насколько это выгодно?

Содержание

Экологические аспекты использования

Энергетика является одним из тех секторов мировой экономики, изменения в которых необходимы, чтобы избежать неприемлемых последствий глобального потепления. Оценки энергоинфраструктуры на основе глобального 2эмиссионного бюджета CO показывают, что после 2017 года в мире не должны вводиться в строй новые электростанции, работающие на ископаемом топливе.

Тепловые электростанции зачастую становятся «мишенями» для радикально настроенных климатических активистов.

Источники

  • http://www.vseznaika.org/proizvodstvo/chto-takoe-aes-tec-i-tes/
  • https://www.techcult.ru/technology/5057-princip-raboty-i-ustrojstvo-tec-tes
  • https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%86%D0%B5%D0%BD%D1%82%D1%80%D0%B0%D0%BB%D1%8C
  • https://www.syl.ru/article/315522/tes—eto-chto-takoe-tes-i-tets-razlichiya
  • https://sibgenco.online/news/element/what-distinguishes-tpp-from-tpp/
  • https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D0%B2%D0%B0%D1%8F_%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%81%D1%82%D0%B0%D0%BD%D1%86%D0%B8%D1%8F

Плюсы и минусы дизельных электростанций

У дизельных электростанций, безусловно, имеются свои весомые плюсы, делающие данное направление автономного энергоснабжения популярным долгие годы. Среди основных преимуществ можно назвать следующие:

  • высокую степень мобильности и портативности;
  • простоту в монтаже и строительстве.

Однако имеются и существенные минусы дизельных электростанций, которые с каждым годом постепенно «вытесняют» ДЭС с лидирующих позиций, в том числе и в отдаленных и арктических территориях страны. Среди основных недостатков назовем следующие:

  • низкая степень надежности (дизельные электростанции нередко выходят из строя, процент аварийности достаточно высокий);
  • низкая степень экологичности (дизельные электростанции считаются одними из самых экологически «грязных» источников энергоснабжения, именно поэтому все ДЭС тщательно проверяют на соответствие международным стандартам и нормам, в противном случае больших штрафов не избежать);
  • необходимость в постоянном сервисном обслуживании (дизельные электростанции нуждаются в постоянном осмотре опытными инженерами, чтобы минимизировать количество аварий);
  • ограниченный выбор отечественных дизельных генераторов (наиболее надежны зарубежные дизельные генераторы таких брендов, как Cummins, NeuHaus, Wilson, Aksa – но их стоимость существенно выше российских аналогов).

Преобразование тепловой энергии в электрическую.

Итак, пар после котла поступает в . Паровая турбина — это такая штуковина, которая преобразует тепло в механическую энергию вращения.

Основные детали паровой турбины — это сопла и рабочие лопатки. Они установлены друг за другом. Сначала ряд сопел, затем ряд рабочих лопаток и так далее. Сопла установлены на неподвижной части турбины — статоре, а рабочие лопатки на подвижной — роторе, который вращается. Совокупность одного ряда сопел и рабочих лопаток принято называть ступень. Ступеней в турбине может быть разное количество: может быть 5 ступеней, а может и 40, в зависимости от параметров пара.

В соплах и на рабочих лопатках наше тепло в виде нагретого пара и преобразуется в энергию вращения вала турбины. Первым делом пар на входе в турбину попадает на первый ряд сопел. В соплах, происходит расширение пара, при этом он теряет некоторую теплоту. Расширяясь пар увеличивает свою скорость, а скорость — это кинетическая энергия. И вот расширившись и приобретя некоторую кинетическую энергию пар толкает ряд рабочих лопаток, закрепленных на роторе турбины, в результате ротор вращается. Затем пар снова поступает на следующий ряд сопел, затем на следующий ряд рабочих лопаток и так далее.

Когда пар пройдет все сопла и лопатки он либо направится в следующую часть турбины с соплами и лопатками, либо, если он уже практически полностью расширился и остыв покидает турбину в специальное приемное устройство — конденсатор.

Вал нашей турбины сцеплен с валом электрического генератора. Генератор работает по принципу как и любой электрический генератор, например как генератор в машине. Только в машине генератор вращается приводным ремнем от двигателя, а генератор на тепловой электростанции вращается от паровой турбины.

Принцип работы АЭС

Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.

Существуют различные виды ядерных реакторов:

  1. PHWR (также имеет название «pressurised heavy water reactor» – «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой – D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
  2. ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
  3. GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов – графит, отсюда и название. КПД составляет около 40%.

По принципу устройства реакторы также делят на:

  • PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
  • BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
  • РБМК (канальный реактор, имеющий особенно большую мощность);
  • БН (система работает за счет быстрого обмена нейтронами).

Устройство и структура атомной электростанции. Как работает АЭС?

Устройство АЭС

Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:

  • реактора;
  • бассейна (именно в нем хранят ядерное топливо);
  • машины, перегружающие топливо;
  • БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).

Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.

https://youtube.com/watch?v=_tcQpawPN_g

Принцип работы АЭС

На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:

  • ядерная с переходом в тепловую;
  • тепловая, переходящая в механическую;
  • механическая, преобразовывающаяся в электрическую.

Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).

И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности. Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

Первый барьер – прочность урановых таблеток

Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления

Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
Третий барьер – прочный стальной корпус реактора, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.

Безопасность

Список радиационных аварий в мире, начатый 12 декабря 1952 года (Чок-Риверская лаборатория) по 8 августа 2021 (полигон ВМФ России «Нёнокса»), включает в себя 22 инцидента. Кроме того, зафиксировано 7 случаев радиоактивного загрязнения местности.

Вопросы безаварийной эксплуатации на предприятиях ядерной энергетики, правильного обращения с отходами, отработавшим установленный срок топливом, проблемы консервации, ликвидации объектов атомной военной и промышленной отрасли стали в настоящее время очень актуальными.

Контроль деятельности опасных производственных объектов (к числу которых относится АЭС) осуществляет Ростехнадзор. В его распоряжении имеется целый ряд регламентирующих состояние безопасности документов.

2018-2019 годы вывели «Росатом» в число лидеров экологической безопасности. В этом нет ничего удивительного, так как ядерная энергетика всегда являлась самой экологически чистой сферой производства энергоресурсов. Ведётся работа по созданию более безопасных реакторов, размещения АЭС в сейсмоустойчивых зонах. На госкорпорацию возложена обязанность организовать ликвидацию химического оружия, построить комплексы по утилизации чрезвычайных отходов.

Из чего состоит генератор

Движущей силой любого генератора является двигатель, который приводит в действие сам генератор. Для работы двигателя необходима топливная система, а для стабильности напряжения, вырабатываемого генератором, регулятор напряжения. Не менее необходимой является и система охлаждения, как двигателя внутреннего сгорания, так и самого генератора. Еще одним важным компонентом является система смазки. На станине, которая содержит все узлы и агрегаты находится так же зарядное устройство для аккумулятора и панель управления. Также в обязательном порядке присутствует глушитель шума.

Атомные электростанции

На третьем месте по количеству производимой электроэнергии находятся атомные электростанции. В России их доля в энергетике составляет чуть выше 10%. В США этот показатель равен 20%, в Германии – более 30%, во Франции – свыше 75%. Сокращение программ в области атомной энергетики произошло вследствие аварии на Чернобыльской АЭС.

Рассматривая виды электростанций в России, следует отметить, что наиболее известными АЭС считаются Ленинградская, Курская, Смоленская, Нововоронежская, Белоярская и другие. Новым направлением является создание АТЭЦ – атомных теплоэлектроцентралей, вырабатывающих электрическую и тепловую энергию. Подобный объект построен на Чукотке в поселке Билибино. Еще одно направление – строительство АСТ – атомных станций теплоснабжения, предназначенных для производства тепла. Такие установки успешно функционируют в Нижнем Новгороде и Воронеже.

Основные плюсы АЭС заключаются в следующем:

  • Возможность строительства в любых районах, без привязки к энергетическим ресурсам. Транспортировка атомного топлива не отнимает много средств, поскольку 1 кг урана эквивалентен 2500 т угля.
  • При отсутствии нарушений эксплуатации, АЭС являются самыми экологичными установками. Выбросы в атмосферу минимальны, кислород не поглощается, отсутствует парниковый эффект.

Рассматривая вопрос как работает АЭС, нужно в первую очередь остановиться на тяжелых последствиях в случае аварий. Кроме того, серьезные проблемы возникают с радиоактивными отходами в процессе их захоронения. Водоемы, используемые для технических целей АЭС, подвержены тепловому загрязнению.

Реактор ВВЭР-1200

Флагманский продукт энергетического решения в составе интегрированного предложения Росатома – эволюционный реакторный дизайн ВВЭР-1200. Он был разработан на основе вариантов реактора ВВЭР-1000, которые строились для зарубежных заказчиков в 1990-е и 2000-е годы: АЭС «Бушер» (Иран), АЭС «Кунданкулам» (Индия), АЭС «Тяньвань» (Китай). Каждый параметр реактора постарались улучшить, а так же внедрить ряд дополнительных систем безопасности, позволяющих снизить вероятность выхода радиации при любых авариях и их сочетаниях за пределы герметичного реакторного отделения – контейнмента. 

В итоге ВВЭР-1200 отличается повышенной на 20% мощностью при сопоставимых с ВВЭР-1000 размерах оборудования, сроком службы в 60 лет, возможностью маневра мощностью в интересах энергосистемы, высоким КИУМ (90%), возможностью работать 18 месяцев без перегрузки топлива и другими улучшенными удельными показателями.

Научный руководитель проекта – РНЦ «Курчатовский институт» (г. Москва); разработчик — ОКБ «Гидропресс» (г. Подольск), основной изготовитель – «Атоммаш» (г. Волгодонск). 

Проект предусматривает выгорание топлива до 70 МВт•сут/кгU. Сейсмика (SL-2) —  ≤ 0,3 g. В качестве опций возможно использование тихоходной турбины и маневренного блока (диапазон 100-50-100). 

Довольно много переделок коснулось внутренних элементов реактора (шахты, выгородки, блока защитных труб, датчиков и т.д.), как в целях  предотвращения различных аварий, так и для обеспечения 60-летнего срока службы. В перспективе возможно использование МОКС-топлива.

В технологии ВВЭР используется двухконтурная ядерная паропроизводящая корпусная установка с реактором на тепловых нейтронах, в котором теплоносителем и замедлителем является обычная вода под давлением. Конструкция включает в себя четыре петли охлаждения с парогенератором, главным циркуляционным насосом (ГЦН), компенсатор давления, сбросная и аварийная арматура на паропроводах, емкости системы аварийного охлаждения активной зоны (САОЗ) реактора. Таким образом, ВВЭР-1200 сочетает в себе надежность давно проверенных инженерных решений с комплексом активных и пассивных систем безопасности, доработанных с учетом «постфукусимских» требований.

Технические решения, используемые в ВВЭР-1200 – такие как бассейн выдержки отработанного топлива внутри контайнмента, фильтры на выходе из межоболочного вентилируемого пространства, уникальная «ловушка расплава» с жертвенным материалом, не имеющая аналогов пассивная система отвода тепла, – позволяют называть его реакторной установкой поколения III+. 

Интересны проектные решения системы САОЗ. Это емкости с холодной борной кислотой под давлением. В случае разрыва корпуса или трубопроводов они обеспечивают ввод борной кислоты в реактор, глуша его и обеспечивая охлаждение. Применение этой, а также других систем в комплексе гарантирует высокий уровень внутренней безопасности реакторной установки.

Первый энергоблок с реактором ВВЭР-1200 – энергоблок №6 Нововоронежской АЭС-2 – был включен в энергосистему России в августе 2016 года. Энергоблоки поколения III+ в настоящее время сооружаются в США, Франции и других странах, однако именно шестой энергоблок Нововоронежской АЭС стал первым в мире блоком последнего поколения, который вышел на этап физического пуска и опытно-промышленную эксплуатацию. Там же строится ещё один аналогичный блок. 

ВВЭР-1200 также используется на площадке Ленинградской АЭС-2 (энергоблок №5 ЛАЭС уже построен) и на Белорусской АЭС (близ г. Островец Гродненской области). Генеральным подрядчиком сооружения всех этих новых энергоблоков является Группа компаний ASE.

Справочно:

В свое время идея реактора ВВЭР была предложена в Курчатовском институте С.М. Фейнбергом. Работы над проектом начались в 1954 году, в 1955 году ОКБ «Гидропресс» приступило к его разработке. Научное руководство осуществляли И.В. Курчатов и А.П. Александров. Общее название реакторов этого типа в других странах –  PWR, они являются основой мировой мирной ядерной энергетики. Первая станция с таким реактором была запущена в США в 1957 году (АЭС «Шиппингпорт»). Первый советский ВВЭР (модификации ВВЭР-210) был введен в эксплуатацию в 1964 году на энергоблоке №1 Нововоронежской АЭС. Первой зарубежной станцией с реактором ВВЭР стала введённая в работу в 1966 году АЭС «Райнсберг» (ГДР, позже – Федеративная республика Германия).

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.

Белоярская АЭС

Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.

Курская АЭС

Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции — 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Энергосистемы

Энергосистемы — совокупность энергетических ресурсов всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.

Что входит в энергосистему

В энергосистемы входят:

  • электроэнергетическая система;
  • система нефте- и газоснабжения;
  • система угольной промышленности;
  • ядерная энергетика;
  • нетрадиционная энергетика.

Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой.

В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные.

Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико-экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.