Что это такое
Транзистор — это особый элемент электроцепи полупроводникового типа, который служит для изменения основных электрических параметров электротока и для регулирования этих параметров. В стандартном полупроводниковом триоде есть всего 3 вывода: коллектор, инжектор зарядов и базовый элемент, на который собственно и направляются электроны от управления. Также имеются комбинированные транзисторы с большой мощностью. Если обычные элементы, используемые в интегральных схемах, могут быть размером в несколько нанометров, то производственные транзисторы для промышленных предприятий имеют корпус и составляют до 1 сантиметра в ширину. Напряжение обратного типа производственных управляющих триодов достигает 1 тысячи Вольт.
2SD1710 для импульсных блоков питания
Конструкция триода сделана на основе слоев полупроводника, заключенных в корпусе элемента. В качестве полупроводников выступают материалы, в основу которых входит кремний, германий, галлий и некоторые другие химические элементы. В настоящее время проводится множество исследований, которые предлагают в качестве материалов различные виды полимеров и углеродных нанотрубок.
Важно! Когда-то кристаллы полупроводников располагали в металлических отсеках в виде шляп с тремя выводами. Такое строение было характерно для точечных элементов транзисторного типа
Различные виды рассматриваемых радиоэлементов
На сегодняшний день строение практически всех плоских и кремниевых транзисторов основано на легированном монокристалле. Они находятся в пластмассовых, металлических или стеклянных корпусах. У многих из них есть выступающие выводы, позволяющие отвести тепло при сильном нагреве от электричества.
Кремниевый биполярный транзистор 2SA1286
Выводы современных транзисторов расположены, как правило, в один ряд. Это удобно, так как плату собирают роботы, и это экономит ресурсы. Выводные контакты также не маркируются на корпусе элемента. Вид вывода определяют по инструкции эксплуатации или после тестовых замеров.
Вам это будет интересно Редактор для рисования схем
Важно! Для транзисторов применяют сплавы полупроводникового типа с разным строением: PNP или NPN. Их различие заключается в разных знаках напряженности на выводах
Если брать схематически, то описать этот радиоэлемент можно так: два полупроводника, разделенные дополнительным слоем, который управляет проводимостью триода.
Схема устройства полевых радиоэлементов
Виды транзисторов
Каждая из ветвей отличается на 0.
Изображение схем подключения полевых триодов Практически каждая схема способна работать при очень низких входных напряжениях. Схема включения MOSFET Традиционная, классическая схема включения «мосфет», работающего в режиме ключа открыт-закрыт , приведена на рис 3.
Испытания показали, что транзисторный ключ прекрасно работает, подавая напряжение на нагрузку. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
Если к такому транзистору приложить напряжение, к стоку плюс, а к истоку минус, через него потечет ток большой величины, он будет ограничен только сопротивлением канала, внешними сопротивлениями и внутренним сопротивлением источника питания. Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Среди них можно выделить: биполярные транзисторы с внедрёнными и их схему резисторами; комбинации из двух триодов одинаковых или разных структур в одном корпусе; лямбда-диоды — сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением; конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом применяются для управления электромоторами. Чтобы на резисторе Rи не выделялась переменная составляющая напряжения, его шунтируют конденсатором Си.
Каскад с общим истоком дает очень большое усиление тока и мощности. Разница потенциалов достигает величины от 0,3 до 0,6 В. Только вот стрелки на условном изображении полевых транзисторов имеют направление, прямо противоположное своим биполярным аналогам.
Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Стабильность при изменении температуры. При некотором напряжении Uси происходит сужение канала, при котором границы обоих р-n- переходов сужаются и сопротивление канала становится высоким. Это возможно благодаря тому, что не используется инжекция неосновных носителей заряда.
Принцип работы триода При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается. Поэтому использование такого подхода на практике сильного ограничено в усилительной технике.
Также сюда подключается и усилитель колебаний. Функцию затвора исполняет металлический вывод, который отделяется от кристалла слоем диэлектрика и, таким образом, электрически с ним не контактирует.
Защита от переполюсовки на основе полевого транзистора
Полевые транзисторы с изолированным затвором. Устройство и принцип действия
Полевой транзистор с изолированным затвором (МДП-транзистор, MOSFET) – это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. МДП-транзисторы (структура: металл-диэлектрик-полупроводник) выполняют из кремния. В качестве диэлектрика используют окисел кремния SiO2. отсюда другое название этих транзисторов – МОП – транзисторы (структура: металл-окисел-полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов (1012 … 1014Ом).
Полевые транзисторы – это однополярные устройства, как и обычные полевые транзисторы. То есть управляемый ток не должен проходить через PN переход. В транзисторе имеется PN переход, но его единственное назначение – обеспечить непроводящую обедненную область, которая используется для ограничения тока через канал.
Принцип действия МДП-транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Приповерхностный слой полупроводника является токопроводящим каналом этих транзисторов. МДП-транзисторы выполняют двух типов – со встроенным и с индуцированным каналом.
Полевые транзисторы разных размеров
Рассмотрим особенности МДП-транзисторов со встроенным каналом. Конструкция такого транзистора с каналом n-типа показана на рис. 4, а. В исходной пластинке кремния р- типа с относительно высоким удельным сопротивлением, которую называют подложкой, с помощью диффузионной технологии созданы две сильнолегированные области с противоположным типом электропроводности – n. На эти области нанесены металлические электроды – исток и сток. Между истоком и стоком имеется тонкий приповерхностный канал с электропроводностью n- типа. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. На слой диэлектрика нанесен металлический электрод – затвор. Наличие слоя диэлектрика позволяет в таком полевом транзисторе подавать на затвор управляющее напряжение обеих полярностей.
Основные характеристики полевых транзисторов.
Основные параметры полевых транзисторов:
- Максимально допустимая постоянная рассеиваемая мощность;
- Максимально допустимая рабочая частота;
- Напряжение сток-исток;
- Напряжение затвор-сток;
- Напряжение затвор-исток;
- Максимально допустимый ток стока;
- Ток утечки затвора;
- Крутизна характеристики;
- Начальный ток стока;
- Емкость затвор-исток;
- Входная ёмкость;
- Выходная ёмкость;
- Проходная ёмкость;
- Выходная мощность;
- Коэффициент шума;
- Коэффициент усиления по мощности.
Полевые транзисторы разных размеров
Полевой транзистор с изолированным затвором
Полевой транзистор с изолированным затвором могут называться как МОП-транзистор (металл-оксид-полупроводник), так и МДП-транзистор (металл-диэлектрик-полупроводник).
В качестве диэлектрика обычно применяется оксид кремния SiO2.
Они делятся на МДП (МОП) транзисторы с встроенным и с индуцированным каналами.
МДП транзисторы отличаются от ПТ с p-n переходом тем, что затвор изолирован от полупроводника диэлектриком. Благодаря диэлектрику затвор электрически не связан с полупроводником,
что дало возможность увеличить входное сопротивление полевого транзистора до 1017 Ом.
МДП-транзистор с встроенным каналом
Такой полевой транзистор представляет собой кристалл полупроводника p или n- типа который называется подложкой.
На кристалле, допустим р-типа, созданы две сильно легированные (обогащенные) области противоположного типа относительно подложки (в нашем случае n-типа).
Это будет исток и сток транзистора на которые нанесен слой диэлектрика.
Между ними встраивается тонкий канал состоящий из слаболегированного (обедненного) слоя полупроводника с типом проводимости как у истока и стока .
Сверху диэлектрика нанесен металлический электрод — затвор. Получается «бутерброд»: металл — диэлектрик — полупроводник.
Металлические выводы, соединяющие области n-типа, через диэлектрик выводят наружу.
Так же от подложки идет вывод, который обычно соединяют с истоком, и его потенциал принимают за нулевой.
При подаче напряжения между истоком и стоком, при нулевом напряжении на затворе (Uзи=0), через встроенный канал (на рис. границы толщины канала:
сплошная линия 1.0 — диэлектрик) будет протекать начальный ток стока Iст.нач.,
который представляет собой поток электронов находящихся в канале.
Подавая положительное напряжение на затвор создаем электрическое поле которое будет притягивать электроны из подложки в канал, а дырки выталкивать из него.
Канал, получая дополнительно основные носители заряда, расширяется (пунктирная линия 3(+) — диэлектрик); его проводимость увеличивается,
Icи возрастет и транзистор работает в режиме насыщения.
При отрицательном напряжении на затворе электроны будут выталкиваются в подложку, а дырки из подложки втягиваются в канал и он обедняясь электронами, сужается ( линия 2(-) — диэлектрик).
Это приводит к уменьшению тока Iси относительно Iст.нач.
Полевой транзистор переходит в режим обеднения.
МДП-транзистор с индуцированным каналом
Этот полевой транзистор выполнен без встроенного обедненного слоя полупроводника между истоком и стоком.
Поэтому, при отсутствии напряжении на затворе и подаче напряжения любой полярности на исток и сток, между ними не будет тока,
т.к. один из p-n переходов, образованный р-подложкой и областями n-проводимости, закрыт.
Если подать на управление полевого транзистораположительное напряжение, то возникшее электрическое поле начнет из приграничной зоны выталкивать положительно заряженные дырки
и на их место притягивать электроны из подложки.
Когда концентрация электронов превысит концентрацию дырок сформируется тонкий канал n-типа и между истоком и стоком появится ток.
Чем больше напряжение на затворе тем толще канал, а значит и больше протекающий через него ток. Отсюда следует, что транзистор с индуцированным каналом может работать только в режиме обогащения.
Cледующая >> |
Определение полевого транзистора
Транзистор полевого типа считается полупроводниковым прибором, в конструкции которого регулировка осуществляется измерением проводимости проводящего канала, благодаря использованию поперечного электрического поля.
Другими словами, он является источником тока, который управляется Uз-и. От параметра напряжения между затвором и истоком зависит проводимость канала. Помимо p–n – канальных транзисторов существует их разновидность с затвором из металла, который изолирован от канала кремниевым диэлектриком. Это МДП-транзисторы (металл – диэлектрик, (окисел) – проводник). Транзисторы с использованием окисела называются МОП-транзисторы.
Виды полевых транзисторов
Полевой транзистор с n-р переходами подразделяется на несколько классов в зависимости:
- От типа каналов проводников: n или р. Каналы воздействую на знаки, полярности, сигналы управления. Они должны быть противоположны по знакам n-участку.
- От структуры приборов: диффузных, сплавных по р -n — переходам, с затворами Шоттки, тонкопленочными.
- От общего числа контактов: могут быть трех или четырех контактными. Для четырех контактных приборов, подложки также являются затворами.
- От используемых материалов: германия, кремния, арсенид галлия.
В свою очередь разделение классов происходит в зависимости от принципа работы транзистора:
- устройства под управлениями р-n переходов;
- устройства с изолированными затворами или с барьерами Шоттки.
Полевые транзисторы с управляющим р-п-переходом
Поскольку перемещаются однотипные заряды, электроны или дырки, полевые транзисторы называются униполярными, в отличие от биполярных приборов. Они могут иметь управляющий р-п-переход или изолированный затвор. Основными параметрами устройств является входное и внутреннее (выходное) сопротивление, а также напряжение отсечки и прочие характеристики.
Данный прибор состоит из полупроводниковой пластины, на концах которой установлены электроды истока и стока. Именно при их участии происходит подключение устройства к управляемой сети. Соединение управляющей сети осуществляется с третьим электродом, выступающим в роли затвора. Поскольку у пластины и третьего электрода различные типы проводимости, то за счет этого и образуется р-п-переход.
С помощью источника питания, включенного во входную цепь, в области р-п-перехода создается обратное напряжение. Дополнительно к входной цепи производится подключение источника усиливаемых колебаний. Когда входное напряжение изменяется, то происходит изменение и обратного напряжения в районе р-п-перехода. В результате, происходит изменение п-канала, представляющего собой обедненный слой. То есть, фактически, изменяется поперечное сечение, через которое проходят основные носители заряда.
В зависимости от выполняемых функций, электроды прибора имеют следующие наименования:
- Электрод исток: из него происходит вхождение в канал основных носителей зарядов.
- Электрод сток: через него из канала происходит выход основных носителей зарядов.
- Электрод затвор: регулирует поперечное сечение канала.
Сам канал может обладать одной из двух проводимостей. Проводимость полевых транзисторов бывает с «р» или «п» каналом. Напряжения смещения, которые подаются на эти электроды, имеют противоположную полярность.
Таким образом, принцип действия полевого транзистора очень похож на работу вакуумного триода. Триод имеет катод, анод и сетку, которые соответствуют истоку, стоку и затвору. Однако, конструкция полупроводникового прибора отличается в лучшую сторону и обладает большим набором функций.
емкость затвор-исток — с французского на русский
- резервуар
- емкость
- водохранилище
- водоем
- барабан стационарного котла
барабан стационарного котла барабан Элемент стационарного котла, предназначенный для сбора и раздачи рабочей среды, для отделения пара от воды, очистки пара, обеспечения запаса воды в котле. Примечание Барабан объединяет, в зависимости от места установки парообразующие, пароотводящие и опускные трубы котла.
котел, водонагреватель
FR
водоем Водный объект в углублении суши, характеризующийся замедленным движением воды или полным его отсутствием.
FR
водохранилище Искусственный водоём, образованный, как правило, водоподпорным сооружением на водотоке с целью хранения воды и регулирования стока
водохранилище Искусственный водоем, образованный водоподпорным сооружением, заполнением водой впадины или обвалованной территории с целью хранения воды и/или регулирования стока специальными сооружениями, создания напора.
FR
емкость Вместилище для газообразных, жидких и сыпучих тел
FR
резервуар Ёмкость для хранения жидкостей и газов
резервуар Стационарный сосуд, предназначенный для хранения газообразных, жидких и других веществ
Типы резервуаров :
РВС — резервуар вертикальный со стационарной крышей без понтона; РВСП — резервуар вертикальный со стационарной крышей с понтоном; РВСПК — резервуар вертикальный с плавающей однодечной крышей.
1 — каркас крыши; 2 — пояса стенки; 3 — промежуточные кольца жесткости; 4 — кольцо окраек; 5 — центральная часть днища; 6 — понтон; 7 — опорные стойки; 8 — уплотняющий затвор; 9 — катучая лестница; 10 — плавающая крыша; 11 — верхнее кольцо жесткости ( площадка обслуживания)
FR
47. Барабан стационарного котла
Барабан
D. Trommel
E. Drum
F. Reservoir
Элемент стационарного котла, предназначенный для сбора и раздачи рабочей среды, для отделения пара от воды, очистки пара, обеспечения запаса воды в котле.
Примечание. Барабан объединяет, в зависимости от места установки парообразующие, пароотводящие и опускные трубы котла
Технология изготовления биполярных транзисторов.
Технология изготовления транзисторов ни чем не отличается от технологии изготовления диодов. Еще в начальный период развития транзисторной техники биполярные транзисторы делали только из германия методом вплавления примесей, и такие транзисторы называют сплавными.
Берется кристалл германия и в него вплавляются кусочки индия.Атомы индия диффузируют (проникают) в тело кристалла германия, образуя в нем две области p-типа – коллектор и эмиттер. Между этими областями остается очень тонкая (несколько микрон) прослойка полупроводника n-типа, которую именуют базой. А чтобы защитить кристалл от влияния света и механического воздействия его помещают в металлостеклянный, металлокерамический или пластмассовый корпус.
На картинке ниже показано схематическое устройство и конструкция сплавного транзистора, собранного на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу диска – ее наружный проволочный вывод.
Внутренние выводы коллектора и эмиттера приварены к проводникам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Металлический колпак защищает прибор от влияния света и механических повреждений. Так устроены наиболее распространенные маломощные низкочастотные германиевые транзисторы из серии МП37 — МП42.
В обозначении буква «М» говорит, что корпус транзистора холодносварной, буква «П» — это первая буква слова «плоскостной», а цифры означают порядковый заводской номер транзистора. Как правило, после заводского номера ставят буквы А, Б, В, Г и т.д., указывающие на разновидность транзистора в данной серии, например, МП42Б.
С появлением новых технологий научились обрабатывать кристаллы кремния, и уже на его основе были созданы кремниевые транзисторы, получившие наиболее широкое применение в радиотехнике и на сегодняшний день практически полностью вытеснившие германиевые приборы.
Кремниевые транзисторы могут работать при более высоких температурах (до 125ºС), имеют меньшие обратные токи коллектора и эмиттера, а также более высокие пробивные напряжения.
Основным методом изготовления современных транзисторов является планарная технология, а транзисторы, выполненные по этой технологии, называют планарными. У таких транзисторов p-n переходы эмиттер-база и коллектор-база находятся в одной плоскости. Суть метода заключается в диффузии (вплавлении) в пластину исходного кремния примеси, которая может находиться в газообразной, жидкой или твердой фазе.
Как правило, коллектором транзистора, изготовленного по такой технологии, служит пластина исходного кремния, на поверхность которой вплавляют близко друг от друга два шарика примесных элементов. В процессе нагрева до строго определенной температуры происходит диффузия примесных элементов в пластину кремния.
При этом один шарик образует в пластине тонкую базовую область, а другой эмиттерную. В результате в пластине исходного кремния образуются два p-n перехода, образующие транзистор структуры p-n-p. По такой технологии изготавливают наиболее распространенные кремниевые транзисторы.
Также для изготовления транзисторных структур широко используются комбинированные методы: сплавление и диффузия или сочетание различных вариантов диффузии (двусторонняя, двойная односторонняя). Возможный пример такого транзистора: базовая область может быть диффузионная, а коллектор и эмиттер – сплавные.
Использование той или иной технологии при создании полупроводниковых приборов диктуется различными соображениями, связанными с техническими и экономическими показателями, а также их надежностью.
Что это такое
Транзистор — это особый элемент электроцепи полупроводникового типа, который служит для изменения основных электрических параметров электротока и для регулирования этих параметров. В стандартном полупроводниковом триоде есть всего 3 вывода: коллектор, инжектор зарядов и базовый элемент, на который собственно и направляются электроны от управления. Также имеются комбинированные транзисторы с большой мощностью. Если обычные элементы, используемые в интегральных схемах, могут быть размером в несколько нанометров, то производственные транзисторы для промышленных предприятий имеют корпус и составляют до 1 сантиметра в ширину. Напряжение обратного типа производственных управляющих триодов достигает 1 тысячи Вольт.
2SD1710 для импульсных блоков питания
Конструкция триода сделана на основе слоев полупроводника, заключенных в корпусе элемента. В качестве полупроводников выступают материалы, в основу которых входит кремний, германий, галлий и некоторые другие химические элементы. В настоящее время проводится множество исследований, которые предлагают в качестве материалов различные виды полимеров и углеродных нанотрубок.
Важно! Когда-то кристаллы полупроводников располагали в металлических отсеках в виде шляп с тремя выводами. Такое строение было характерно для точечных элементов транзисторного типа
Различные виды рассматриваемых радиоэлементов
На сегодняшний день строение практически всех плоских и кремниевых транзисторов основано на легированном монокристалле. Они находятся в пластмассовых, металлических или стеклянных корпусах. У многих из них есть выступающие выводы, позволяющие отвести тепло при сильном нагреве от электричества.
Кремниевый биполярный транзистор 2SA1286
Выводы современных транзисторов расположены, как правило, в один ряд. Это удобно, так как плату собирают роботы, и это экономит ресурсы. Выводные контакты также не маркируются на корпусе элемента. Вид вывода определяют по инструкции эксплуатации или после тестовых замеров.
Вам это будет интересно Электрические схемы
Важно! Для транзисторов применяют сплавы полупроводникового типа с разным строением: PNP или NPN. Их различие заключается в разных знаках напряженности на выводах
Если брать схематически, то описать этот радиоэлемент можно так: два полупроводника, разделенные дополнительным слоем, который управляет проводимостью триода.
Схема устройства полевых радиоэлементов
Особенности устройства биполярного транзистора
Биполярный транзистор включает в себя три области:
- эмиттер;
- базу – очень тонкую, которая изготавливается из слаболегированного полупроводника, сопротивление этой области высокое;
- коллектор – его область больше по размерам, чем область эмиттера.
К каждой области припаяны металлоконтакты, служащие для подсоединения прибора в электроцепь.
Электропроводность коллектора и эмиттера одинакова и противоположна электропроводности базы. В соответствии с видом проводимости областей, различают p-n-p или n-p-n приборы. Устройства являются несимметричными из-за разницы в площади контакта – между эмиттером и базой она значительно ниже, чем между базой и коллектором. Поэтому К и Э поменять местами путем смены полярности невозможно.