Что такое емкость конденсатора?

Расстояние между пластинами

Емкость конденсатора обратно пропорциональна расстоянию между пластинами. Для того чтобы объяснить природу влияния этого фактора, необходимо вспомнить механику взаимодействия зарядов в пространстве (электростатику).

Если конденсатор не находится в электрической цепи, то на заряженные частицы, расположенные на его пластинах влияют две силы. Первая — это сила отталкивания между одноименными зарядами соседних частиц на одной пластине. Вторая – это сила притяжения разноименных зарядов между частицами, находящимися на противоположных пластинах. Получается, что чем ближе друг к другу находятся пластины, тем больше суммарная сила притяжения зарядов с противоположным знаком, и тем больше заряда может разместится на одной пластине.

Идея суперконденсатора

Электричество — чрезвычайно универсальный вид энергии, обладающий одним недостатком — его трудно саккумулировать быстро. Химические батареи способны сохранять большое количество энергии, но требуют нескольких часов для полной зарядки. Этого недостатка лишены конденсаторы — они могут заряжаться практически мгновенно. Но их ёмкость не позволяет хранить большое количество энергии, поэтому весьма заманчивой выглядит идея суперконденсатора, сочетающего лучшие качества химических и электростатических накопителей электричества.

Несмотря на функциональную схожесть, аккумуляторные батареи и конденсаторы устроены совершенно по-разному. Гальванические элементы работают на принципе высвобождения электрической энергии во время химической реакции веществ внутри них. При истощении запаса активных реагентов они прекращают генерировать разность потенциалов и для нового цикла требуют инициирования током обратных химических реакций для восстановления активных веществ. Основные недостатки аккумуляторов по сравнении и конденсаторами:

  • непродолжительный жизненный цикл;
  • невысокая удельная мощность;
  • узкий диапазон температур зарядки и разрядки;
  • неспособность быстро отдать весь запас энергии.

Тем не менее обычные конденсаторы не используются в качестве активных источников напряжения из-за низкой ёмкости. Теоретические и практические суперконденсаторы (ультраконденсаторы) отличаются от обычных крайне высокой ёмкостью при большой плотности хранимой энергии, что позволяет их рассматривать как альтернативу химическим элементам.

Крупнейшие коммерческие устройства обладают ёмкостью до нескольких тысяч фарад, но их возможности всё равно несопоставимы с аккумуляторами, поэтому подобные устройства используются для хранения зарядов в течение относительно короткого периода времени. Они нашли широкое применение в качестве электрических эквивалентов механических маховиков, чтобы сглаживать напряжение источников питания, например, в ветровых турбинах или рекуперативных тормозных системах электрических транспортных средств.

Первые ультраконденсаторы появились в середине прошлого века и обладали не очень впечатляющими ёмкостями. С тех пор прогресс в совершенствовании материалов привёл к утоньшению диэлектрического слоя до одной молекулы, что позволило создавать устройства с выдающимися характеристиками. Дальнейшее развитие наноиндустрии стало основой для фундаментальных перемен в накоплении электричества. Возможно, в скором времени экологически опасные и капризные химические аккумуляторы заменят суперконденсаторы на основе молекулярно структурированных пластин и диэлектрического слоя.

Электроемкость. Конденсаторы. Энергия конденсатора. Соединение конденсаторов

Электрическая
ёмкость —
характеристика проводника, мера его
способности накапливать электрический
заряд.

В теории электрических цепей ёмкостью
называют взаимную ёмкость между двумя
проводниками; параметр ёмкостного
элемента электрической схемы,
представленного в виде двухполюсника.

Такая ёмкость определяется как отношение
величины электрического заряда к разности
потенциалов между
этими проводниками.

В системе СИ ёмкость
измеряется в фарадах.
В системе СГС в сантиметрах.

  • Для одиночного
    проводника ёмкость равна отношению
    заряда проводника к его потенциалу в
    предположении, что все другие
    проводники бесконечно удалены
    и что потенциал бесконечно удалённой
    точки принят равным нулю. В математической
    форме данное определение имеет вид
  • где  — заряд,  —
    потенциал проводника.
  • Ёмкость определяется
    геометрическими размерами и формой
    проводника и электрическими свойствами
    окружающей среды (еёдиэлектрической
    проницаемостью)
    и не зависит от материала проводника.
    К примеру, ёмкость проводящего шара
    радиуса R равна
    (в системе СИ):

Понятие ёмкости
также относится к системе проводников,
в частности, к системе двух проводников,
разделённых диэлектриком —конденсатору.
В этом случае взаимная
ёмкость этих
проводников (обкладок конденсатора)
будет равна отношению заряда, накопленного
конденсатором, к разности потенциалов
между обкладками. Для плоского конденсатора
ёмкость равна:

где S —
площадь одной обкладки (подразумевается,
что они равны), d —
расстояние между обкладками, ε — относительная
диэлектрическая проницаемость среды
между обкладками, ε0 =
8.854·10−12 Ф/м
— электрическая
постоянная.

Конденса́тор (от лат. condensare —
«уплотнять», «сгущать») — двухполюсник с
определённым значением ёмкости и
малой омической проводимостью;
устройство для накопления заряда и
энергии электрического поля.

Конденсатор
является пассивным электронным
компонентом.

Виды конденсаторов:
1.
по виду диэлектрика: воздушные, слюдяные,
керамические, электролитические
2. по
форме обкладок: плоские, сферические.
3.
по величине емкости: постоянные,
переменные (подстроечные).

Электроемкость
плоского конденсатора

Включение
конденсаторов в электрическую цепь

параллельное

последовательное

  1. ЭНЕРГИЯ ЗАРЯЖЕННОГО
    КОНДЕНСАТОРА
  2. Конденсатор — это
    система заряженных тел и обладает
    энергией.
    Энергия любого конденсатора:
  3. где
    С — емкость конденсатора
    q — заряд
    конденсатора
    U — напряжение на обкладках
    конденсатора
    Энергия конденсатора
    равна работе, которую совершит
    электрическое поле при сближении пластин
    конденсатора вплотную,
    или равна
    работе по разделению положительных и
    отрицательных зарядов , необходимой
    при зарядке конденсатора.
  4. ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО
    ПОЛЯ КОНДЕНСАТОРА

13.

Электрическое поле точечного заряда

Под точечным зарядом понимается заряд очень малого физического объекта.

Точечный заряд Q создает некое электрическое поле. При этом, с помощью пробного заряда q можно измерить в разных точках силу, которую вызывает заряд Q:

F = kqQ/r2
E = F/q = kQ/r2

Напряженность электрического поля точечного заряда является векторной величиной, она направлена по прямой, соединяющей центры двух зарядов, при этом линии поля выходят из положительных зарядов и сходятся у отрицательных зарядов. Данная модель была впервые предложена в 19 веке Майклом Фарадеем.

Надо понимать, что линии электрического поля не могут начинаться и заканчиваться в некой точке пространства, где нет электрического заряда.

Для того, чтобы определить величину электрического поля от нескольких зарядов в конкретной точке поля, необходимо сложить векторы напряженности полей в этой точке.

Расчёт конденсаторов

В общем случае емкостной показатель С определяется по формуле:

C=q/U,

где q – заряд конденсатора на одной из его пластин, U – значение напряжения на конденсаторе.

Из этого выражения можно вывести формулу заряда конденсатора, величину которого можно найти, измерив два других показателя с помощью мультиметра.

Часто возникает вопрос, может ли этот параметр измениться. Он является постоянной величиной, присущей данному элементу и зависящей от его габаритов и устройства. Узнать емкостное значение можно с помощью мультиметра. Пользуясь этими данными, можно рассчитать целевую индуктивность дросселя для колебательного контура или параметры резистора.

В чем измеряется емкость? За измерительную единицу принимается параметр конденсаторного устройства, который можно зарядить 1 Кл до состояния, когда разница потенциалов будет равной 1 вольту. Название этой единицы – фарад (Ф).

Важно! Если сравнить два устройства, идентичных по габаритам, но различающихся тем, что у одного в зазоре между пластинами находится диэлектрический материал, а у другого – воздушное пространство, то при помещении одинаковых зарядов потенциальная разница первой детали будет в Е раз больше. Е – это число, равное диэлектрической проницаемости материала, из которого состоит использованный слой. Ниже приведены формулы для конденсаторных элементов разной конфигурации

Рассчитанные по ним значения соответствуют идеальным устройствам, но релевантны и для реальных в тех случаях, когда емкостными потерями можно пренебречь

Ниже приведены формулы для конденсаторных элементов разной конфигурации. Рассчитанные по ним значения соответствуют идеальным устройствам, но релевантны и для реальных в тех случаях, когда емкостными потерями можно пренебречь.

Формула электрической емкости плоского конденсатора

В основном электрополе пластин плоского конденсатора бывает однородным, за исключением боковых частей, влиянием которых обычно принято пренебрегать. Однако, если пространство между обкладками велико в сопоставлении с их габаритами, краевые искажения нужно учитывать. В общем случае, чтобы высчитать, сколько фарад составит емкость плоского конденсатора, пользуются выражением:

C=E*E0*S/d, где S – площадь меньшей обкладки, E0 – электрическая константа, d – длина пространства между пластинами.

Плоский конденсаторный элемент

Формула электрической емкости цилиндрического изделия

Такой компонент состоит из пары разных по размеру коаксиальных цилиндрических элементов проводника, в пространстве между которыми расположили диэлектрический материал. В этом случае для нахождения емкостной величины не нужно узнавать значение заряда на обкладках конденсатора. Можно воспользоваться следующей формулой емкости:

С=2 π *E*E0*l / ln(R2/R1).

Здесь R1 и R2 – радиусы, соответственно, внутреннего и наружного цилиндров, l – их высота (она одинакова, в то время как радиальные параметры отличаются).

Цилиндрическое изделие

Формула для сферического изделия

Сферическая деталь состоит из двух проводниковых сфер с диэлектрическим слоем между ними. Вот как найти емкость круглого конденсатора:

C=4 π *E*E0* R1* R2 / R2 – R1.

Буквами R обозначены, как и в предыдущем примере, радиусы компонентов.

Ёмкость одиночного проводника

Это характеристика способности твердого проводникового компонента к удержанию электрозаряда.  Она определяется особенностями средового окружения (в частности, диэлектрической проницаемостью), взаиморасположением тел, имеющих на себе заряд, размерами детали. От силы тока и величины заряда она не зависит.

Общие сведения

Измерение емкости конденсатора номинальной емкостью 10 мкФ с помощью осциллографа-мультиметра

Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:

C = Q/∆φ

Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).

В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.

Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).

Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.

В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.

Можно ли поставить конденсатор большей емкости

Точный ответ на поднятый в этом разделе вопрос можно дать после изучения конкретной схемы. Если надо выбрать деталь для фильтра (колебательного контура), необходимы аналогичные параметры. В противном случае частотные характеристики не будут соответствовать конструкторскому замыслу.

При сглаживании пульсаций в блоке питания подобная модернизация взамен штатного изделия может быть эффективной. В некоторых случаях, чтобы ограничить ток в цепи, придется подбирать подходящий резистор. Через него можно будет разряжать конденсатор без повреждений. Итоговое решение принимают с учетом рассмотренных выше факторов. Существенное значение имеют условия эксплуатации, тепловые и механические нагрузки. Разумное увеличение затрат на этапе приобретения надежных комплектующих продлит срок службы функционального устройства.

Формула электроемкости конденсатора

Обкладки должны иметь такую форму и быть расположены так относительно друг друга, что поле, которое создается данной системой, было максимально сосредоточено в ограниченной области пространства, между обкладками.

Назначение конденсатора в том, чтобы накапливать и отдавать в электрической цепи заряд.

Основной характеристикой конденсатора является электрическая емкость (C). Электрическая емкость конденсатора – это взаимная емкость принадлежащих ему обкладок:

q – величина заряда на обкладке; – разность потенциалов между обкладками.

Электрическая ёмкость конденсатора зависит от диэлектрической проницаемости диэлектрика, который заполняет пространство между его обкладками. Если пространство между обкладками одного конденсатора заполнено диэлектриком с проницаемостью равной , а у второго конденсатора воздух между пластинами, то емкость конденсатора с диэлектриком (C) в раз больше, чем емкость воздушного конденсатора ():

Формула электроемкости основных типов конденсаторов

При расчете электроемкости плоского конденсатора нарушением однородности поля около краёв обкладок обычно пренебрегают. Это становится возможным, если расстояние между пластинами существенно меньше, чем линейные размеры обкладок. В таком случае электрическую емкость плоского конденсатора вычисляют при помощи формулы:

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Если плоский конденсатор между обкладками имеет N слоев диэлектрика, при этом толщина каждого слоя равна , а диэлектрическая проницаемость , то его электрическую емкость рассчитывают при помощи формулы:

Цилиндрический конденсатор составляют две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполнено диэлектриком. При этом емкость цилиндрического конденсатора находят как:

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

У сферического конденсатора обкладками служат две концентрические сферические проводящие поверхности, пространство обкладками заполняет диэлектрик. Емкость сферического конденсатора вычисляют как:

где – радиусы обкладок конденсатора. Если , то можно считать, что , тогда, мы имеем:

так как – площадь поверхности сферы, и если обозначить , то получим формулу для емкости плоского конденсатора (3). Если расстояние между обкладками сферического и цилиндрического конденсаторов малы (в сравнении с их радиусами), то в приближенных расчетах используют формулу емкости для плоского конденсатора.

Электрическую емкость для линии из двух проводов находят как:

где d – расстояние между осями проводов; R – радиус проводов; l – длина линии.

Формулы для вычисления электрической емкости соединений конденсаторов

Если конденсаторы соединены параллельно, то суммарная емкость батареи (C) находится как сумма емкостей отдельных конденсаторов ():

При последовательном соединении конденсаторов емкость батареи вычисляют как:

Если последовательно соединены N конденсаторов, с емкостями то емкость батареи найдем как:

Сопротивление конденсатора

Если конденсатор включен в цепь с постоянного тока, то сопротивление конденсатора можно считать бесконечно большим.

При включении конденсатора в цепь переменного тока, его сопротивление носит название емкостного, и вычисляют его с помощью формулы:

где – частота переменного тока; – угловая частота тока; C – емкость конденсатора.

Энергия поля конденсатора

Электрическое поле локализованное между пластинами конденсатора обладает энергией, которую можно вычислить при помощи формулы:

где –энергия поля конденсатора; q – заряд конденсатора; C – емкость конденсатора; – разность потенциалов между обкладками конденсатора.

Энергия поля плоского конденсатора:

Номинальное напряжение

Второй по значимости характеристикой после емкости является максимальное номинальное напряжение конденсатора

. Данный параметр обозначает максимальное напряжение, которое может выдержать конденсатор. Превышение этого значения приводит к «пробиванию» изолятора между пластинами и короткому замыканию. Номинальное напряжение зависит от материала изолятора и его толщины (расстояния между обкладками).

Следует отметить, что при работе с переменным напряжением нужно учитывать именно пиковое значение (наибольшее мгновенное значение напряжения за период). Например, если эффективное напряжение источника питания будет 50В, то его пиковое значение будет свыше 70В. Соответственно необходимо использовать конденсатор с номинальным напряжением более 70В. Однако на практике, рекомендуется использовать конденсатор с номинальным напряжением не менее в два раза превышающим максимально возможное напряжение, которое будет к нему приложено.

3.1.9 Конденсатор. Электроёмкость конденсатора. Электроёмкость плоского конденсатора

Лекция: Конденсатор. Электроёмкость конденсатора. Электроёмкость плоского конденсатора

Для определения понятия конденсатора, необходимо воспользоваться всеми знаниями по поводу проводников и диэлектриков, поскольку и те, и другие одновременно используются для изготовления конденсаторов.

Ёмкость конденсатора

Во время изучения понятия конденсаторов будем использовать термин «уединенный конденсатор». Он значит, что данное проводящее тело находится вне поля действия других тел. Рассмотрим проводник, у которого имеется какой-то определенный потенциал «фи». Данный потенциал является пропорциональным к величине заряда проводника. Данный коэффициент принято обозначать 1/С. В данном случае величина, что находится в знаменателе, является электрической ёмкостью имеющегося проводника.

Если рассматривать некоторый объемный шар в виде проводника, то его ёмкость можно определить по следующей формуле:

Эпсилон нулевое

— это электрическая постоянная.

Судя из данной формулы, можно сделать вывод, что емкость сферического проводника зависит исключительно от внешнего диэлектрика, а также от радиуса сферы, то есть её размера. То есть, чем больше сфера, тем больше её емкость. Иными словами можно сказать, что ёмкость — это некая тара, которая вмещает в себя величину заряда.

Итак,

Ёмкость

— это некая ФВ, позволяющая определить величину заряда, необходимую для изменения потенциала проводника на 1 В.

Ёмкость измеряется в фарадах (Ф)

Самым главным для нас сферическим проводником является Земля. Посчитать её емкость достаточно просто. Если принять радиус за 6400 км, а окружающую диэлектрическую среду мы знаем — это воздух, то получим:

Плоский конденсатор

Самым простым примером для исследования конденсаторов являются плоские конденсаторы. Структура плоского конденсатора достаточно проста. Он состоит из двух металлических плоскостей (обкладок), которые параллельно расположены друг к другу, и располагаются на некотором расстоянии. Между данными пластинами имеется диэлектрик.

Самым простым примером плоского конденсатора является тот, у которого в виде диэлектрика воздух, то есть Ɛ = 1

Обе обкладки имеют противоположный заряд -q, +q

. Схематически конденсатор изображают следующим образом:

Следует отметить, что поле в конденсаторе показывается линиями, выходящими из положительно заряженной пластины, и входящими в отрицательно заряженную пластину.

Для определения его ёмкости следует воспользоваться следующей формулой:

Как уже говорилось раньше, ёмкость зависит исключительно от геометрических размеров конденсатора, а также от диэлектрика между пластинами.

Предыдущий урок Следующий урок

Характеристики конденсатора

Основной характеристикой данного элемента является емкость, или С. Она определяет способность устройства собирать электрический заряд, зависит от геометрической конфигурации крышек и от электрической проницаемости диэлектрика между крышками.

Важно! Емкость зависит от типа используемого диэлектрика, а также от геометрических размеров элемента. Для того, чтобы описать принцип работы устройства формулой, необходимо понять, что это постоянная пропорциональность в уравнении, представляющая собой взаимную зависимость накопленного заряда q от площади пластинок и от разности потенциалов V между ними. Для того, чтобы описать принцип работы устройства формулой, необходимо понять, что это постоянная пропорциональность в уравнении, представляющая собой взаимную зависимость накопленного заряда q от площади пластинок и от разности потенциалов V между ними

Для того, чтобы описать принцип работы устройства формулой, необходимо понять, что это постоянная пропорциональность в уравнении, представляющая собой взаимную зависимость накопленного заряда q от площади пластинок и от разности потенциалов V между ними.

Мощность выражается в единицах, называемых фарадами F. Но на практике используются и более мелкие единицы, такие как микрофарады и пикофарады.

Внешний вид устройств

Таким образом, если напряжение U приложено к конденсатору, электрический заряд накапливается на крышках детали. Значение накопленного заряда на каждой пластинке одинаково, они отличаются только знаком. Этот процесс накопления электрического показателя на называется зарядкой.

Другим параметром детали является номинальное напряжение, а именно, его максимальное значение, которое может подаваться на конденсатор. При подключении более высокого напряжения возникает пробой диэлектрика. Это приводит к короткому замыканию элемента. Каким будет номинальное значение напряжения, зависит от типа диэлектрика и его толщины.

Важно! Чем толще диэлектрик, тем выше номинальное напряжение, которое он выдерживает. Условные обозначения. Условные обозначения

Условные обозначения

Ещё одним параметром является ток утечки -значение проводящего показателя, возникающее при подаче постоянного напряжения на концы элемента.

Характеристики прибора

Важнейшей характеристикой накопительного прибора является ёмкость. От неё зависит время заряда при подключении устройства к источнику тока. Время разряда напрямую связано со значением сопротивления нагрузки: чем оно выше, тем быстрее происходит процесс отдачи накопленной энергии. Определяется эта ёмкость следующим выражением:

C = E*Eo*S / d, где E — относительная диэлектрическая проницаемость среды (справочная величина), S — площадь пластин, d — расстояние между ними. Кроме ёмкости конденсатор характеризуется рядом параметров, такими как:

  • удельная ёмкость — определяет отношение величины ёмкости к массе диэлектрика;
  • рабочее напряжение — номинальное значение, которое может выдержать устройство при подаче его на обкладки элемента;
  • температурная стабильность — интервал, в котором ёмкость конденсатора практически не изменяется;
  • сопротивление изоляции — характеризуется саморазрядом устройства и определяется током утечки;
  • эквивалентное сопротивление — состоит из потерь, образуемых на выводах прибора и слое диэлектрика;
  • абсорбция — процесс возникновения разности потенциалов на обкладках после разряда устройства до нуля;
  • ёмкостное сопротивление — уменьшение проводимости при подаче переменного тока;
  • полярность — из-за физических свойств материала, используемого при изготовлении, конденсатор сможет правильно работать, только если к обкладкам приложен потенциал с определённым знаком;
  • эквивалентная индуктивность — паразитный параметр, появляющийся на контактах устройства и превращающий конденсатор в колебательный контур.

Таблицы максимальных значений емкости конденсаторов.