Энергия заряженного конденсатора. калькулятор онлайн для любых конденсаторов

Содержание

Работа электрического поля

Электрическое поле называется потенциальным. Это значит, что работа его сил не зависит от траектории движения заряда, исключительно от энергии начального и конечного положения. Напомним, согласно определению:

Электрическое поле воздействует исключительно на электрические заряды. Создаётся двумя путями:

  1. Электрическими зарядами. Силовые линии начинаются на положительных и заканчиваются на отрицательных зарядах.
  2. Изменяющимся магнитным полем. При этом образуется электромагнитная волна, что используется в генераторах.

Когда говорят, что излучение приборов действует на человека, подразумеваются и магнитная, и электрическая составляющие. Особенно опасна первая, которая с большим трудом экранируется. Электрическое поле, рассматриваемое в физике школьного курса, считается стационарным, а линии напряжённости его параллельны. Приводятся два примера:

  1. Допустим, заряд перемещается вдоль линий поля на некоторое расстояние l. Тогда работа находится по упрощённой формуле A = Fl, где F – сила, действующая на заряд.
  2. Теперь предположим, что заряд переместился из прежней точки по косой линии. Так, что проекция пути lb на силовые линии снова равна l. Участок прямолинейный, угол отклонения – В. Работа вычисляется по формуле с учётом геометрических соотношений как A = FlbcosB = Fl.

Этот простой случай, легко распространяется на любую форму линий напряжённости. Сие означает, что в электрическом поле работа не зависит от траектории, а значит, равна разнице потенциалов поля: А = П1 – П2. Формула применима для любого поля. Чтобы адаптировать выражение, вводят понятие электрического потенциала как энергию единичного положительного заряда – ф = П / q1. Тогда формула для работы принимает иной вид.

Электрическим напряжением между двумя точками называется разница потенциалов между ними. Умножая указанное значение на величину заряда, поскольку величина удельная, получаем: А = (ф1 – ф2) q = U q. Потенциал через величины поля находится:

ф = q / 4 ε Пи r,

где q – величина заряда, создающего поля; ε – диэлектрическая проницаемость среды (для воздуха и вакуума равна единице); Пи = 3,14; r – расстояние до исследуемой точки от упомянутого заряда. Формула годится далеко не для любых случаев, приведена для примера. Допустимо применять для заряда, распределённого по поверхности шара, и точек, лежащих вне указанной поверхности.

Перевести кубы в литры и обратно

Литр (обозначение — л; L или l) — внесистемная метрическая единица измерения объёма и вместимости, равная 1 кубическому дециметру.

— Название литр идет французской единицы «литрон». Она использовалась для измерения сыпучих веществ. Его величина была меньше, чем современный литр и составляла около 830 грамм. Название «литрон» берет свое начало от монеты того времени – ЛИТРА, которая имела соответствующий вес – около 830 грамм.

— В 1901 году принято определение литра: объем, занимающий 1 кг воды, при температуре воды +3,98 градусов по Цельсию и 1 единице атмосферного давления.

— Литр не считается единицей СИ. Единица объема СИ – кубический метр.

История накопителей заряда

Самое раннее письменное свидетельство получения зарядов с помощью трения принадлежит учёному Фалесу из Милета (635—543 гг. до н. э.), который описал трибоэлектрический эффект от взаимодействия янтаря и сухой шерсти. Для приблизительно 2300 последующих лет любое получение электричества заключалось в трении двух различных материалов друг о друга.

Качественный рывок в знаниях о зарядах произошёл в эпоху Просвещения — период революционного развития научной мысли в образованных кругах. В это время электричество становится популярной темой, а энтузиастами было произведено немало опытов и экспериментов с генераторами на основе трения.

Открытие явления произошло во время опытов у обоих экспериментаторов, но с той разницей, что Мюссенбрук, во-первых, сделал немало усовершенствований первоначально созданного оборудования, а во-вторых, письменно сообщил коллегам о своих достижениях. Прошло совсем немного времени и учёные мира стали создавать накопители зарядов собственных конструкций. Это были первые шаги в эволюции конденсаторов, продолжающейся и в наши дни. Основные даты хронологии появления устройств для хранения зарядов:

  • 1746 г. — изобретение лейденской банки в результате экспериментов по доработке устройства Клейста;
  • 1750 г. — опыты Бенджамина Франклина с батареями конденсаторов;
  • 1837 г. — публикация Майклом Фарадеем теории диэлектрической поляризации — научной основы работы накопителей;
  • конец XIX в. — начало практического применения лейденских банок вместе с первыми устройствами постоянного тока;
  • начало XX в. — изобретение слюдяных и керамических конденсаторов.

Как вычислить объём цистерны выполненной в виде цилиндра

Подобные геометрические фигуры используются для хранения пищевых продуктов, транспортирования топлива и других целей. Многие не знают, как рассчитать объем воды, но основные нюансы такого процесса опишем дальше в нашей статье.

Высоту жидкости в цилиндрической ёмкости определяют по специальному устройству метрштоку. В данном случае емкость цистерны вычисляется по специальным таблицам. Изделия со специальными таблицами измерения объёма в жизни встречаются редко, поэтому подойдём к решению проблемы другим путём и опишем, как рассчитать объём цилиндра по специальной формуле – V=S*L, где

  • V- объём геометрического тела;
  • S – площадь сечения изделия в конкретных единицах измерения (м³);
  • L – длина цистерны.

Показатель L можно измерить при помощи всё той же рулетки, но площадь сечения цилиндра придётся считать. Показатель S вычисляют по формуле S=3,14*d*d/4, где d – диаметр окружности цилиндра.

А теперь ознакомимся с конкретным примером. Допустим, длина нашей цистерны имеет значение 5 метров, её диаметр 2,8 метра. Сначала вычислим площадь сечения геометрической фигуры S= 3,14*2,8*2,8/4=6,15м. А теперь можно приступать к вычислению объёма цистерны 6,15*5= 30,75 м³.

https://youtube.com/watch?v=ZmYg285gv2Q

https://youtube.com/watch?v=PtYFGdU6gaI

https://youtube.com/watch?v=Ai3DO-Ppr54

В чем измеряется емкость конденсатора

Одной из важнейших характеристик конденсатора является его емкость. Данный параметр определяется количеством электроэнергии, накапливаемой этим прибором. Накопление происходит в виде электронов. Их количество, помещающееся в конденсаторе, определяет величину емкости конкретного устройства.

Для измерения емкости применяется единица – фарада. Емкость конденсатора в 1 фараду соответствует электрическому заряду в 1 кулон, а на обкладках разность потенциалов равна 1 вольту. Эта классическая формулировка не подходит для практических расчетов, поскольку в конденсаторе собираются не заряды, а электроны. Емкость любого конденсатора находится в прямой зависимости от объема электронов, способных накапливаться при нормальном рабочем режиме.

Для обозначения емкости все равно используется фарада, а количественные параметры определяются по формуле: С = Q / U, где С означает емкость, Q – заряд в кулонах, а U является напряжением. Таким образом, просматривается взаимная связь заряда и напряжения, оказывающих влияние на способность конденсатора к накоплению и удержанию определенного количества электричества.

Для расчетов емкости плоского конденсатора используется формула:

в которойε = 8,854187817 х 10 -12 ф/м представляет собой постоянную величину. Прочие величины: ε – является диэлектрической проницаемостью диэлектрика, находящегося между обкладками, S – означает площадь обкладки, а d – зазор между обкладками.

Параллельное соединение конденсаторов

Параллельное соединение конденсаторов — это соединение при котором конденсаторы соединяются собой обоими контактами. В результате к одной точке может быть присоединено несколько конденсаторов. При параллельном соединении формируется один большой конденсатор с площадью обкладок, равной сумме площадей обкладок всех отдельных компонентов. Поскольку емкость конденсаторов прямо пропорциональна площади обкладок, общая емкость Собщ при параллельном соединении равняется сумме емкостей всех конденсаторов в цепи.

Напряжение при параллельном соединении

На все параллельно соединенные конденсаторы падает одинаковое напряжение. Так происходит, потому что существует всего лишь две точки, между которыми может быть разность потенциалов (напряжение). Другими словами, можно сказать что при параллельном соединении все конденсаторы подключены к одному источнику напряжения. Ток конденсатора во время переходного периода зависит от его емкости и изменения напряжения:

  • ic — ток конденсатора
  • C — Емкость конденсатора
  • ΔVC/Δt – Скорость изменения напряжения

При параллельном соединении через каждый конденсатор потечет одельный ток, в зависимости от емкости конденсатора:

Электрическая емкость конденсатора

Дальнейшие опыты с распределением электричества по поверхности наэлектризованного проводника, проводимые Кулоном и другими естествоиспытателями, позволили установить, что равномерное распределение электричества имеет место только на правильной шаровой поверхности. В общем случае заряд неравномерен и зависит от формы проводника, будучи больше в местах большей кривизны. Отношение количества электричества на части поверхности проводника к величине этой поверхности назвали плотностью (толщиной) электрического слоя. Экспериментально было установлено, что электрическая плотность и электрическая сила особенно велики в местах поверхности, имеющих наибольшую кривизну, особенно на остриях.

Величину, характеризующую зависимость потенциала наэлектризованного проводника от его размеров, формы и окружающей среды, называют электроемкостью проводника и обозначают буквой С. Электроемкость проводника измеряется количеством электричества, необходимым для повышения потенциала этого проводника на единицу:

Будет интересно Как работает выпрямитель напряжения

С = q/ϕ.

За единицу электроемкости в системе СИ принимается 1 фарада (1 Ф). Фарадой называется электроемкость проводника, которому для повышения его потенциала на один вольт нужно сообщить один кулон электричества. Электроемкостью, равной 1 Ф, обладал бы шар радиусом 9·10 6 км, что в 23 раза больше расстояния от Земли до Луны. Если проводник соединить с источником электричества определенного потенциала, то проводник получит электрический заряд, зависящий от емкости проводника. Его емкость, а, следовательно, и количество электричества, которым он заряжается, увеличиваются, если приблизить к нему второй проводник, соединенный с землей.

Конструкция, состоящая из двух проводников, разделенных изолятором, с электрическим полем между ними, все силовые линии которого начинаются на одном проводнике, а заканчиваются на другом, была названа электрическим конденсатором. При этом оба проводника называются обкладками, а изолирующая прокладка – диэлектриком. Процесс накопления зарядов на обкладках конденсатора называется его зарядкой. При зарядке на обеих обкладках накапливаются равные по величине и противоположные по знаку заряды.

Поскольку электрическое поле заряженного конденсатора сосредоточено в пространстве между его обкладками, то электроемкость конденсатора не зависит от окружающих тел. Электроемкость конденсатора измеряется отношением количества электричества на одной из обкладок к разности потенциалов между обкладками:

С = q/ U.

1 Ф – электроемкость такого конденсатора, который может быть заряжен количеством электричества, равным 1 Кл, до разности потенциалов между обкладками, равной 1 В. Например, электрическая емкость плоского конденсатора в системе СИ определяется по соотношению:

С =εε 0 S/ d, где ε – диэлектрическая проницаемость материала, находящегося между обкладками конденсатора; ε 0 – диэлектрическая проницаемость вакуума; S – величина площади поверхности пластины (меньшей, если они не равны); d – расстояние между пластинами.

Если обкладки заряженного конденсатора соединить проводником, то заряды будут переходить с одной обкладки на другую и нейтрализуют друг друга. Этот процесс называется разрядкой конденсатора. Каждый конденсатор рассчитан на определенное напряжение. Если напряжение между обкладками станет слишком большим, то разрядка может произойти и непосредственно через диэлектрик (без соединительного проводника), т.е. получится пробой диэлектрика.

Будет интересно Что такое термопара: об устройстве простыми словами

Пробитый конденсатор к дальнейшему употреблению не пригоден. Для получения электроемкости нужной величины конденсаторы соединяют в батарею. На практике встречается как параллельное, так и последовательное соединение конденсаторов.


Строение конденсатора.

Паразитные параметры

Отдельные виды параметров являются паразитными, которые стараются снизить при конструировании и изготовлении. Их описание приведено ниже.

Эквивалентная схема

Данный параметр зависит от свойств диэлектрика и материала корпуса. Он показывает, насколько уменьшается заряд с течением времени у элемента, не включенного во внешнюю цепь. Утечка происходит в результате неидеальности диэлектрика и по его поверхности.

Для некоторых конденсаторов в характеристиках указывается постоянная времени Т, которая показывает время, в течении которого напряжение на обкладках уменьшится в е (2.71) раз. Численно постоянная времени равняется произведению сопротивления утечки на емкость.

Эквивалентное последовательное сопротивление (Rs)

Эквивалентное последовательное сопротивление ЭПС (в англоязычной литературе ERS) слагается из сопротивления материала обкладок и выводов. К нему также может добавляться поверхностная утечка диэлектрика.

По своей сути, ЭПС представляет собой сопротивление, соединенное последовательно с идеальным конденсатором. Такая цепь в некоторых случаях может влиять на фазочастотные характеристики. ЭПС обязательно должно учитываться при проектировании импульсных источников питания и контуров авторегулирования.

Электролитические конденсаторы имеют особенность, когда из-за наличия внутри паров электролита, воздействующих на выводы, величина ЭПС со временем увеличивается.

Эквивалентная последовательная индуктивность (Li)

Поскольку выводы обкладок и сами обкладки металлические, то они имеют некоторую индуктивность. Таким образом, конденсатор представляет собой резонансный контур, что может оказать влияние на работу схемы в определенном диапазоне частот. Наименьшую индуктивность имеют СМД компоненты ввиду отсутствия у них проволочных выводов.

Тангенс угла диэлектрических потерь

Отношение активной мощности, передаваемой через конденсатор, к реактивной, называется тангенсом угла диэлектрических потерь. Данная величина зависит от потерь в диэлектрике и вызывает сдвиг фазы между напряжением на обкладке и током. Тангенс угла потерь важен при работе на высоких частотах.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ означает изменение емкости при колебаниях температуры. ТКЕ может быть как положительным, так и отрицательным, в зависимости от того, как ведет себя емкость при изменениях температуры.

Для фильтрующих и резонансных цепей для компенсации температурного дрейфа в одной цепи используют элементы с разным ТКЕ, поэтому многие производители группируют выпускаемые элементы по величине и знаку коэффициента.

Диэлектрическая абсорбция

Данный эффект еще называют эффектом памяти. Проявляется он в том, что при разряде конденсатора через низкоомную нагрузку через некоторое время на обкладках возникает небольшое напряжение.

Величина диэлектрической абсорбции зависит от материалов, из которых изготовлен элемент. Она минимальна для тефлона и полистирола и максимальна для танталовых конденсаторов

Важно учитывать эффект при работе с прецизионными устройствами, особенно интегрирующими и дифференцирующими цепями

Паразитный пьезоэффект

Так называемый «микрофонный эффект» выражается в том, что при воздействии механических нагрузок, в том числе акустических колебаний, керамический диэлектрик в некоторых типах устройств проявляет свойства пьезоэлектрика и начинает генерировать помехи.

Самовосстановление

Свойством самовосстановления после электрического пробоя обладают электролитические бумажные и пленочные конденсаторы. Такие типы конденсаторов и их разновидности нашли применение в цепях, обеспечивающих запуск электродвигателей, в особенности, если трехфазный асинхронный электродвигатель включается в однофазную сеть. Свойство восстановления широко используется в силовой технике.

Задачи на конденсаторы и электроемкость с решением

Если вы не знаете, как решать задачи с конденсаторами, сначала посмотрите теорию и вспомните про памятку по решению задач по физике и полезные формулы.

Задача №1 на электроемкость батареи конденсаторов

Условие

Плоский конденсатор емкостью 16 мкФ разрезают на 4 равные части вдоль плоскостей, перпендикулярных обкладкам. Полученные конденсаторы соединяют последовательно. Чему равна емкость батaреи конденсаторов?

Решение

Из условия следует, что площадь получившихся конденсаторов в 4 раза меньше, чем у исходного. Зная это, можно найти емкость каждого полученного конденсатора:

Соединяя 4 таких конденсатора последовательно, получаем:

Ответ: 1 мкФ.

Задача №2 на энергию плоского конденсатора

Условие

Плоский конденсатор заполнили диэлектриком с диэлектрической проницаемостью, равной 2. Энергия конденсатора без диэлектрика равна 20 мкДж. Чему равна энергия конденсатора после заполнения диэлектриком? Считать, что источник питания отключен от конденсатора.

Решение

Энергия конденсатора до заполнения диэлектриком равна:

После заполнения емкость конденсатора изменится:

Энергия конденсатора после заполнения:

Ответ: 40 мкФ.

Задача №3 на последовательное и параллельное соединение конденсаторов

Условие

На рисунке изображена батарея конденсаторов. Каждый конденсатор имеет емкость 1 мкФ. Найдите емкость батареи.

Решение

Как видим, часть конденсаторов соединена параллельно, а часть последовательно. Это типичный пример смешанного соединения конденсаторов. Алгоритм решения задач при смешанном соединении конденсаторов сводится к тому, чтобы упростить схему и свести все только к параллельному или последовательному соединению.

Конденсаторы 3 и 4 соединены параллельно. Складывая их емкость, получаем в итоге последовательное соединение четырех конденсаторов: 1, 2, 5 и 3-4. Для параллельного соединения:

Для последовательного соединения:

Ответ: 0,285 мкФ.

Задача №4 на пролет частицы в конденсаторе

Заряд конденсатора равен 0,3 нКл, а емкость – 10 пФ. Какую скорость приобретет электрон, пролетая в конденсаторе от одной пластины к другой. Начальная скорость электрона равна нулю. 

Решение

По закону сохранения энергии, разность кинетических энергий электрона в начале и в конце пути будет равна работе поля по его перемещению. По условию, начальная кинетическая энергия электрона равна 0. Запишем:

С учетом этого, получим:

Ответ: 10^7 м/с.

Задача №5 на вычисление энергии электрического поля конденсатора

Условие

Конденсатор подключен к источнику постоянного напряжения U=1 кВ. Емкость конденсатора равна 5 пФ. Как изменяться заряд на обкладках конденсатора и его энергия, если расстояние между обкладками уменьшить в три раза.

Решение

Заряд конденсатора равен:

Изменение заряда будет равно:

Изменение энергии:

Ответ: 5 мкДж.

Разряд конденсатора

После того как конденсатор зарядился, отключим источник питания и подключим нагрузку R. Так как конденсатор уже заряжен, он сам превратился в источник питания. Нагрузка R образовала проход между пластинами. Отрицательно заряженные электроны, накопленные на одной пластине, согласно силе притяжения между разноименными зарядами, двинутся в сторону положительно заряженных ионов на другой пластине.

В момент подключения R, напряжение на конденсаторе то же, что и после окончания переходного периода зарядки. Начальный ток по закону Ома будет равняться напряжению на обкладках, разделенном на сопротивление нагрузки.

Как только в цепи пойдет ток, конденсатор начнет разряжаться. По мере потери заряда, напряжение начнет падать. Следовательно, ток тоже упадет. По мере понижения значений напряжения и тока, будет снижаться их скорость падения.

Время зарядки и разрядки конденсатора зависит от двух параметров – емкости конденсатора C и общего сопротивления в цепи R. Чем больше емкость конденсатора, тем большее количество заряда должно пройти по цепи, и тем больше времени потребует процесс зарядки/разрядки ( ток определяется как количество заряда, прошедшего по проводнику за единицу времени). Чем больше сопротивление R, тем меньше ток. Соответственно, больше времени потребуется на зарядку.

Продукт RC (сопротивление, умноженное на емкость) формирует временную константу ?

(тау). За один? конденсатор заряжается или разряжается на 63%. За пять? конденсатор заряжается или разряжается полностью.

Советуем изучить — Мощность трехфазной цепи при несимметричной нагрузке

Использование конденсаторов

Подученное соотношение величин характерно для всех типов конденсаторов. Его используют для того, чтобы определить накопленную энергию при подключении к источнику питания. Измерить напряжение на выводах можно с помощью мультиметра. Кроме емкости, на корпусе конденсатора указывают другие важные параметры:

  • рабочий ток;
  • номинальное напряжение;
  • диэлектрический материал;
  • тип элемента.

К сведению. На миниатюрных деталях места для размещения всех данных недостаточно. Применяют систему сокращенных кодировок. Необходимые сведения уточняют в сопроводительной документации либо на официальном сайте производителя.

В следующем перечне приведены примеры электротехнических схем и устройств, которые создают с применением конденсаторов:

  • частотный (сглаживающий) фильтр;
  • колебательный контур;
  • накопитель энергии для формирования мощного импульса (лазер, фотовспышка);
  • ограничитель силы тока (компенсатор подключаемой реактивной нагрузки);
  • измерение перемещений (изменение емкости при сближении/ отдалении обкладок).

Для автоматизированного расчета типовой схемы можно использовать специализированный калькулятор онлайн. Следующий пример демонстрирует расчет корректного подключения электродвигателя:

  • соединение обмоток – треугольник;
  • мощность потребления – 1 200 Вт;
  • напряжения сети – 220 В;
  • cos ϕ – 0,9;
  • КПД – 85%;
  • емкость рабочего (пускового) конденсатора – 52 (130) мкФ.

Инструкция для калькулятора количества и объема жидкости в цистерне

Размеры вводите в миллиметрах:

D – диаметр емкости можно замерить рулеткой. Необходимо помнить что диаметр – это отрезок наибольшей длины, соединяющий две точки на окружности и проходящий через ее центр.

H – уровень жидкости замеряют, используя метршток, но если такого инструмента нет под рукой, воспользуйтесь обычным стержнем из проволоки или деревянной планкой подходящей длины. Соблюдая меры безопасности, опустите строго вертикально стержень в цистерну до дна, отметьте на нем уровень, достаньте и измерьте рулеткой. Также определить H можно, измерив, расстояние от верха цистерны до поверхности жидкости и отняв этот показатель от значения диаметра.

L – длина емкости.

Если необходим чертеж в бумажном виде, целесообразно отметить пункт «Черно-белый чертеж». Вы получите контрастное изображение и сможете его распечатать, не расходуя зря цветную краску или тонер.

Нажмите «Рассчитать» и получите следующие данные:

Объём емкости – этот параметр характеризует полный объём цистерны, т.е. какое максимальное количество жидкости в кубических метрах или литрах может в нее поместиться.

Количество жидкости – сколько вещества находится в цистерне на данный момент.

Свободный объём позволяет оценить, сколько жидкости еще можно залить в емкость.

В результате, Вы получаете расчет не только объема цистерны, но и объема жидкости в неполной цистерне.

Изделия из металла следует периодически красить, тогда срок их службы значительно возрастет. Зная площадь передней поверхности, площадь боковой поверхности и общую площадь емкости легко оценить необходимое количество лакокрасочных материалов для обработки всей емкости или ее отдельных частей.

Формула

Нахождение тока конденсаторного заряда происходит по формуле, представленной ниже. Измеряется он в фарадах, что равно кулону или вольту.

Формула нахождения заряда конденсатора

В целомэто элемент электросети, накапливающий и сохраняющий напряжение в ней. Бывает разного типа и размера, к примеру, электролитическим, керамическим и танталовым. Состоит, в основном, из нескольких токопроводящих обкладок с диэлектриком. Его емкость зависит от размеров диэлектрика и заполнителя между обкладками. Заряжается благодаря электричеству. Определить ток конденсаторного заряда можно измерительными приборами и формулой.

Принцип работы конденсатора

Конструкция

На схемах конденсатор обозначается в виде двух параллельных линий, не связанных между собой:

Это соответствует его простейшей конструкции — двум пластинам (обкладкам), разделенным диэлектриком. Фактическое исполнение этого изделия чаще всего представляет собой завернутые в рулон обкладки с прослойкой диэлектрика или иные причудливые формы, но суть остается той же самой.

Емкость конденсатора

Электрическая ёмкость – способность проводника накапливать электрические заряды. Чем больше заряд вмещает проводник при данной разности потенциалов, тем больше ёмкость. Зависимость между зарядом Q и потенциалом φ выражается формулой:

C=Q/φ

где Q заряд в кулонах (Кл), φ потенциал в вольтах (В).

Емкость измеряется в фарадах (Ф), что вы помните еще с уроков физики. На практике чаще встречаются более мелкие единицы: миллифарад (мФ), микрофарад (мкФ), нанофарад (нФ), пикофарад (пФ).

Накопительная способность зависит от геометрических параметров проводника, диэлектрической проницаемости среды, где он находится. Так, для сферы из проводящего материала она будет выражаться формулой:

C=4πεε0R

где ε0—8,854·10^−12 Ф/м, электрическая постоянная, а ε диэлектрическая проницаемость среды (табличная величина для каждого вещества).

В реальной жизни нам чаще приходится иметь дело не с одним проводником, а с системами таковых. Так, в обычном плоском конденсаторе емкость будет прямо пропорциональна площади пластин и обратно — расстоянию между ними:

C=εε0S/d

ε здесь — диэлектрическая проницаемость прокладки между пластинами.

Емкость параллельных и последовательных систем

Параллельное соединение емкостей представляет собой один большой конденсатор с тем же слоем диэлектрика и суммарной площадью пластин, поэтому общая емкость системы представляет собой сумму таковых у каждого из элементов. Напряжение при параллельном соединении будет одним и тем же, а заряд распределится между элементами схемы.​

C=C1+C2+C3

Последовательное соединение конденсаторов характеризуется общим зарядом и распределенным напряжением между элементами. Поэтому суммируется не емкость, а обратная ей величина:

1/C=1/С1+1/С2+1/С3

Из формулы емкости одиночного конденсатора можно вывести, что при одинаковых элементах, соединенных последовательно, их можно представить в виде одного большого с той же площадью обкладки, но с суммарной толщиной диэлектрика.

Как найти объем бочки по диаметру?

Для того, чтобы найти объем бочки по диаметру необходимо преобразовать стандартную формулу, по которой обычно находят объем цилиндра через радиус и высоту:

V = Пи * r² * h

Зная, что диаметр равен двум радиусам, получаем следующую формулу, которую можно применить для нахождения объема бочки в м3, по диаметру и высоте:

V = Пи * d²/4 * h

Все расчеты необходимо проводить в единой мере измерения длины, в нашем случае — это метры.

Для примера, необходимо найти объем цилиндрической бочки зная диаметр и высоту:

  • D = 84 см — диаметр бочки;
  • h = 56 см — высота бочки.

Подставляем данные в формулу, предварительно переведя см в метры:

V бочки в м3 = 3,14159 * (0,84 м)² / 4 * 0,56 м = 0,3103 м3

Если округлить, то получается, что объем цилиндрической бочки с размерами D = 84 см, h = 56 см = 0,31 м3

Назначение

Свойство запасания и отдачи энергии определило широкое применение конденсаторов в современной электронике. Наравне с резисторами и транзисторами они являются основой электротехники. Нет ни одного современного устройства, где они не использовались бы в каком-либо качестве.

Их способность заряжаться и разряжаться совместно с индуктивностью, обладающей теми же свойствами, активно применяются в радио- и телевизионной технике. Колебательный контур из конденсатора и индуктивности — основа передачи и приема сигналов. Изменение емкости конденсатора позволяет менять частоту колебательного контура. Например, радиостанции могут передавать сигнал на своих частотах, а радиоприемники подключаться к этим частотам.

Важной функцией является сглаживание пульсаций переменного тока. Любому электронному устройству, питающемуся от сети переменного тока, для получения постоянного тока хорошего качества необходимы фильтрующие электрические конденсаторы. Активно применяется механизм зарядки и разрядки в фототехнике

Все современные фотоаппараты используют для съемок вспышку, которая реализуется благодаря свойству быстрой разрядки. В данной области невыгодно использовать аккумуляторы, умеющие хорошо запасать энергию, но медленно отдающие ее. А конденсаторы, напротив, моментально отдают всю запасенную энергию, которой достаточно для яркой вспышки

Активно применяется механизм зарядки и разрядки в фототехнике. Все современные фотоаппараты используют для съемок вспышку, которая реализуется благодаря свойству быстрой разрядки. В данной области невыгодно использовать аккумуляторы, умеющие хорошо запасать энергию, но медленно отдающие ее. А конденсаторы, напротив, моментально отдают всю запасенную энергию, которой достаточно для яркой вспышки.

Возможность генерации конденсаторами импульсов высокой мощности используется в радиолокации и создании лазеров.

Конденсаторы выполняют роль искрогашения контактов в телеграфии и телефонии, а также телемеханике и автоматике, где необходимы переключения высоконагруженных реле.

Регулировка напряжения протяженных линий электропередач осуществляется благодаря использованию компенсационных емкостей.

Современные конденсаторы, благодаря своим возможностям, применяются не только в области радиоэлектроники. Их используют в металлообрабатывающей, горнодобывающей, угольной промышленности.

Практические измерения

Значение ёмкости конденсатора обозначается на корпусе в дробных фарадах или с помощью цветового кода. Но со временем компоненты способны потерять свои качества, поэтому для некоторых критических случаев последствия могут быть неприемлемыми. Существуют и другие обстоятельства, требующие измерений. Например, необходимость знать общую ёмкость цепи или части электрооборудования. Приборов, осуществляющих непосредственное считывание ёмкости, не существует, но значение может быть вычислено вручную или интегрированными в измерительные устройства процессорами.

Для обнаружения фактической ёмкости нередко используют осциллограф как средство измерения постоянной времени (т). Эта величина обозначает время в секундах, за которое конденсатор заряжается на 63%, и равна произведению сопротивления цепи в омах на ёмкость цепи в фарадах: т=RC. Осциллограф позволяет легко определить постоянную времени и даёт возможность с помощью расчётов найти искомую ёмкость.

Существует также немало моделей любительского и профессионального электронного измерительного оборудования, оснащённого функциями для тестирования конденсаторов. Многие цифровые мультиметры обладают возможностью определять ёмкость. Эти устройства способны контролируемо заряжать и разряжать конденсатор известным током и, анализируя нарастание результирующего напряжения, выдавать довольно точный результат. Единственный недостаток большинства таких приборов — сравнительно узкий диапазон измеряемых величин.

Вам это будет интересно Выбор и особенности подключения счётчика энергомера

Можно ли поставить конденсатор большей емкости

Точный ответ на поднятый в этом разделе вопрос можно дать после изучения конкретной схемы. Если надо выбрать деталь для фильтра (колебательного контура), необходимы аналогичные параметры. В противном случае частотные характеристики не будут соответствовать конструкторскому замыслу.

При сглаживании пульсаций в блоке питания подобная модернизация взамен штатного изделия может быть эффективной. В некоторых случаях, чтобы ограничить ток в цепи, придется подбирать подходящий резистор. Через него можно будет разряжать конденсатор без повреждений. Итоговое решение принимают с учетом рассмотренных выше факторов. Существенное значение имеют условия эксплуатации, тепловые и механические нагрузки. Разумное увеличение затрат на этапе приобретения надежных комплектующих продлит срок службы функционального устройства.