Электрическая дуга: причины возникновения и воздействие на человека. как защитится от разряда тока ?

Применение — электрическая дуга

Применение электрической дуги для освещения было осуществлено в 1876 г. П. И. Яблочковым, который, расположив параллельно угольные электроды, подвел к ним переменное напряжение. Дуга получилась устойчивой, электроды изнашивались равномерно.

Возможность применения электрической дуги для сварки и резки металлов была вскоре использована промышленностью.

Схема сварки плавящимся электродом.| Схема сварки неплавящимся электродом с подачей присадочного материала.

Возможность применения электрической дуги для целей сварки была обоснована русскими учеными Н. Н. Бенар-досом ( 1882 г.) и Н. Г. Славяновым ( 1888 г.), которые впервые осуществили дуговую сварку металлов.

Перечислим некоторые применения электрической дуги. Электрическая дуга используется в осветительной аппаратуре, в плавильных печах ( рис. 251), в медицинской аппаратуре ( в аппаратах искусственного горного солнца) и для дуговой сварки металлов. Для зажигания, например, медицинской лампы, представляющей собой кварцевый баллон с ртутными электродами ( рис. 252), ее наклоняют до появления струйки ртути, соединяющей электроды. При повороте лампы в вертикальное положение в месте разрыва струйки образуется дуга, дающая много ультрафиолетовых лучей.

Что касается применений электрической дуги для осветительных целей, то оно было тесно связано с проблемой регулирования расстояния между концами электродов.

Почти одновременно с применением электрической дуги для плавки металлов в дуговых печах, электрическая дуга с угольным электродом впервые в 1886 г. была использована русским изобретателем Н. Н. Бенардосом ( 1842 — 1905 гг.) для сварки металлов, а несколько позднее ( в 1890 г.) горный инженер Н. Г. Славянов ( 1854 — 1897 гг.) применил для сварки и наплавки металла электрическую дугу с металлическим электродом.

По мере того, как применения электрической дуги в технике становятся все более многочисленными ( освещение, дуговые электрические печи, электросварка, выключатели и пр. Ведутся работы как по изучению физических процессов в дуге и установлению ее физических характеристик, так и по разработке теории дуги. Ряд важных исследований дуги был проведен в двадцатых годах. Значительно усилились исследования дуги в тридцатых и сороковых годах. Исследование дуги интенсивно продолжалось и в пятидесятых годах.

При современных способах сварки с применением электрической дуги ( ручная, контактная) появление таких дефектов маловероятно.

Титульный лист книги В. В. Петрова.

В своих работах он показал возможность применения электрической дуги для освещения, плавки и сварки металлов, а также восстановления металлов из окислов. Это было крупнейшим открытием, которое после работ ряда ученых и изобретателей широко стало применяться в промышленном производстве и в быту.

Разновидностью способа испарения металла в вакууме является применение электрической дуги между двумя электродами из этого металла. Под действием этой дуги металл плавится, испаряется и осаждается тонким слоем на поверхности изделий.

Разновидностью способа испарения металла в вакууме является применение электрической дуги между двумя электродами из этого металла. Под действием этой дуги металл плавится, испаряется и осаждается тонким слоем на поверхности изделий.

Разновидностью способа испарения металла в вакууме является применение электрической дуги между двумя электродами из наносимого металла. Под действием этой дуги металл плавится, испаряется и осаждается тонким слоем па поверхности изделий.

Разновидностью способа испарения металла в вакууме является применение электрической дуги между двумя электродами из наносимого металла. Под действием этой дуги металл плавится, испаряется и осаждается тонким слоем на поверхности изделий.

Гашение дуги в масле

Если контакты выключателя помещены в масло, то возникающая при их размыкании дуга приводит к интенсивному испарению масла. В результате вокруг дуги образуется газовый пузырь (оболочка), состоящий в основном из водорода (70…80 %), а также паров масла. Выделяемые газы с большой скоростью проникают непосредственно в зону ствола дуги, вызывают перемешивание холодного и горячего газа в пузыре, обеспечивают интенсивное охлаждение и соответственно деионизацию дугового промежутка. Кроме того, деионизирующую способность газов повышает создаваемое при быстром разложении масла давление внутри пузыря.

Интенсивность процесса гашения дуги в масле тем выше, чем ближе соприкасается дуга с маслом и быстрее движется масло по отношению к дуге. Учитывая это, дуговой разрыв ограничивают замкнутым изоляционным устройством — дугогасительной камерой. В этих камерах создается более тесное соприкосновение масла с дугой, а при помощи изоляционных пластин и выхлопных отверстий образуются рабочие каналы, по которым происходит движение масла и газов, обеспечивая интенсивное обдувание (дутье) дуги.

Дугогасительные камеры по принципу действия разделяют на три основные группы: с автодутьем, когда высокие давление и скорость движения газа в зоне дуги создаются за счет выделяющейся в дуге энергии, с принудительным масляным дутьем при помощи специальных нагнетающих гидравлических механизмов, с магнитным гашением в масле, когда дуга под действием магнитного поля перемещается в узкие щели.

Наиболее эффективны и просты дугогасительные камеры с автодутьем. В зависимости от расположения каналов и выхлопных отверстий различают камеры, в которых обеспечивается интенсивное обдувание потоками газопаровой смеси и масла вдоль дуги (продольное дутье) или поперек дуги (поперечное дутье). Рассмотренные способы гашения дуги широко используются в выключателях на напряжение выше 1 кВ.

Вред и борьба с ней

Физические параметры разряда могут нести угрозу как здоровью человека, так и оборудованию. Особенно высокий риск возникновения несут высоковольтные сети – длина такого разряда может достигать полутора метров.

Важно! Горение дуги сопровождается выделением огромного количества тепла. Средняя температура может достигать значения 2500-3000 Сº.. Но даже в быту, выдернув шнур питания мощного электрообогревателя, можно увидеть небольшую вспышку, которая образовалась в момент прерывания контакта

Но даже в быту, выдернув шнур питания мощного электрообогревателя, можно увидеть небольшую вспышку, которая образовалась в момент прерывания контакта.

В качестве средств защиты контактов применяют специальные дугогасительные камеры – корпус из диэлектрического материала с набором из нескольких проводящих перегородок. Они принимают на себя разряд, разделяя его на несколько частей, что способствует его охлаждению.

Строение вакуумного выключателя.

Эксплуатация высоковольтных сетей предусматривает использование различных типов выключателей:

  • масляный;
  • вакуумный;
  • газовый;

Особенности

Она имеет следующие особенности по сравнению с другими электрическими зарядами:

  • Высокая плотность тока, которая достигает нескольких тысяч ампер на квадратный сантиметр, благодаря чему достигается очень высокая температура;
  • Неравномерность распределения электрического поля в пространстве между электродами. Вблизи электродов падение напряжения очень велико, когда в столбе – наоборот;
  • Огромная температура, которая достигает самых больших значений в столбе из-за высокой плотности тока. При увеличении длины столба температура уменьшается, а при сужении – наоборот увеличивается;
  • С помощью сварочных дуг можно получать самые различные вольт-амперные характеристики – зависимости падения напряжения от плотности тока при постоянной длине, то есть установившемся горении. На данный момент существует три вольтамперные характеристики.

Первая – падающая, когда при увеличении силы и ,соответственно, плотности тока, напряжение падает. Вторая- жесткая, когда изменение силы тока никак не влияет на значение величины напряжения итретья – возрастающая, когда при увеличении силы тока напряжение также увеличивается.

Таким образом, сварочную дугу можно назвать самым лучшим и надежным способом скрепления металлических конструкций. Сварочный процесс оказывает большое влияние на сегодняшнюю промышленность, потому что только высокая температура сварочной дуги способна скреплять большинство металлов. Для получения качественных и надежных швов необходимо правильно и верно учитывать все характеристики дуги, следить за всеми значениями, благодаря этому процедура пройдет быстро и наиболее эффективно. Также необходимо учитывать свойства дуги: плотность тока, температуру и напряжение.

Что такое сварочная дуга, ее определение

Сварочной дугой считается очень большой по величине мощности и длительности электрический разряд, который существует между электродами, на которые подано напряжение, в смеси газов. Ее свойства отличаются высокой температурой и плотностью тока, благодаря которым она способна расплавлять металлы, имеющие температуру плавления выше 3000 градусов. Вообще можно сказать, что электрическая дуга – это проводник из газа, который преобразует электрическую энергию в тепловую. Электрическим зарядом называется прохождение электрического тока через газовую среду.

Существует несколько видов электрического разряда:

  • Тлеющий разряд. Возникает в низком давлении, применяется в люминесцентных лампах и плазменных экранах;
  • Искровой разряд. Возникает, когда давление равно атмосферному, отличается прерывистой формой. Искровому разряду соответствует молния, также применяется для зажигания двигателей внутреннего сгорания;
  • Дуговой разряд. Применяет при сварке и для освещения. Отличается непрерывистой формой, возникает при атмосферном давлении;
  • Коронный. Возникает, когда тело электрода шероховато и неоднородно, второй электрод может отсутствовать, то есть возникает струя. Применяется для очистки газов от пыли;

Что же такое электрическая дуга?

По сути, так в обиходе именуют хорошо известный в физике и электротехнике дуговой разряд – вид самостоятельного электроразряда в газе. Каковы же физические свойства электрической дуги? Она горит в широком диапазоне давления газа, при постоянном или переменном (до 1000 Гц) напряжении между электродами в диапазоне от нескольких вольт (сварочная дуга) до десятков киловольт. Максимальная плотность тока дуги наблюдается на катоде (102-108 А/см2), где она стягивается в катодное пятно, очень яркое и малое по размерам. Оно беспорядочно и непрерывно перемещается по всей площади электрода. Температура его такова, что материал катода в нем кипит. Поэтому возникают идеальные условия для термоэлектронной эмиссии электронов в прикатодное пространство. Над ним образуется небольшой слой, заряженный положительно и обеспечивающий ускорение эмитируемых электронов до скоростей, при которых они ударно ионизируют атомы и молекулы среды в межэлектродном промежутке.

Такое же пятно, но несколько большее и малоподвижное, формируется и на аноде. Температура в нем близкая к катодному пятну.

Если ток дуги порядка нескольких десятков ампер, то из обоих электродов вытекают с большой скоростью нормально к их поверхностям плазменные струи или факелы (см. на фото ниже).

При больших токах (100-300 А) возникают добавочные плазменные струи, и дуга становится похожей на пучок плазменных нитей (см. на фото ниже).

Почему возникает?

По теории в нормальных условиях газы являются диэлектриками. При возникновении подходящих условий они могут поддаваться ионизации, наделяя свои элементы положительными или отрицательными зарядами.

Внешнее электрическое поле, обладающее заданными параметрами, и высокая температура влияют на газ, преобразуя его в плазму, которая обладает всем свойствами проводника электричества.

Данное свойство получило широкое распространение в промышленности, используя дугу в качестве газового проводника.

Алгоритм образования электрической сварочной дуги следующий:

  1. Контакт. Он соединяет электрод и металл.
  2. Разрыв контакта. Под влиянием тока поверхность электрода и металла начинает плавиться, образуя прослойку жидкого металла. В течение некоторого времени, с увеличением слоя расплава происходит разрыв контакта.
  3. Возбуждение дуги. Пространство между анодом и катодом заполняют ионы и электроны испарений расплавленного металла, которые под действием напряжения притягиваются противоположным полюсам, возбуждая дугу.
  4. Стабилизация дуги. С ростом концентрации заряженных частиц дуговое соединение подвергается интенсивной ионизации, в этой точке достигается полная стабилизация горения.
  5. Образование сварочной ванны. Под действием дуги металлы электрода и поверхности переходят в жидкое агрегатное состояние, образуя смесь.
  6. Кристаллизация. После отключения источника питания для сварки поверхность остывает, образуя сварное соединение.

Явления ионизации и деионизации

Внутренними процессами, которые способствуют возникновению и гашению дуги, являются ионизация и деионизация. Изучение данных явлений позволяет разобраться с факторами, влияющими на внешние процессы. Преобладание процессов ионизации характерно для причин возникновения дуги. При ее стабилизации явления происходят с равной периодичностью. С превалированием явлений деионизации дуга потухнет.

Виды ионизации:

  1. Термическая. Наиболее распространенный процесс, который способствует сохранению дуги после ее образования. Благодаря значительному температурному воздействию возрастает количество и скорость элементов, что благотворно сказывается на ионизации.
  2. Ударная. При перемещении на высокой скорости электрон неизбежно сталкивается с нейтральной частицей. После взаимодействия образуется новая заряженная частица – ион.
  3. Полевая электронная эмиссия. Под действием внешнего электрического поля с высокой напряженностью электроны покидают поверхность без предварительного возбуждения.
  4. Эффект Эдисона или термоэлектронная эмиссия. Под воздействием высокой температуры уровень энергии электронов увеличивается. При достижении определенного показателя они способные преодолеть потенциальный барьер на границе с металлом.

К явлениям деионизации относятся:

  1. Рекомбинация. Процесс взаимодействия частиц с противоположными зарядами сопровождается образованием нейтрально заряженных элементов.
  2. Диффузия. Процесс переноса заряженных частиц в окружающую среду, сопровождающийся выводом тепловой энергии.

Нормативные документы

В списках несчастных случаев на производстве лидирует электротравматизм. По статистике, поражения, связанные с электричеством составляют 10% от числа производственных травм. При этом электроэнергия — на первом месте по смертности, от ее воздействия гибнет до 50% от общего числа пострадавших.

К отраслям производства, персонал которого часто подвержен несчастным случаям, вызванными термическими рисками электрической дуги, относится в первую очередь электроэнергетика, а также металлургия, нефтегазовый комплекс, электрифицированный транспорт. Последним барьером между опасностью и несчастным случаем является комплексная защита (защитный костюм, средства индивидуальной защиты, обувь) от поражающего фактора электрической дуги.

Нормативные документы:

  1. Технический регламент Таможенного союза TP TC 019/2011 «О безопасности средств индивидуальной защиты».
  2. ГОСТ Р 12.4.234-2012 Система стандартов безопасности труда (ССБТ). «Одежда специальная для защиты от термических рисков электрической дуги. Общие технические требования и методы испытаний» (МЭК 61482-1-1:2009, МЭК 61482-2-2009).
  3. Приказ Министерства Здравоохранения и социального развития Российской Феде‑ рации от 25 апреля 2011 г. N 340н «Об утверждении типовых норм бесплатной выдачи специальной одежды, специальной обуви и других средств индивидуальной защиты работникам организаций электроэнергетической промышленности, занятым на работах с вредными и (или) опасными условиями труда, а также на работах, выполняемых в особых температурных условиях или связанных с загрязнением».

Эти нормативные акты обязали руководство компаний, где есть контакт с высоковольтным электричеством, внедрить защитную одежду на предприятиях. Теперь рабочие опасных профессий — а это почти все сотрудники, имеющие к обслуживанию и ремонту электрических сетей и подстанций, должны быть одеты в дорогостоящую высокотехнологичную спецодежду. Однако данные затраты считаются у ответственных работодателей вполне обоснованными, ведь речь идет о человеческой жизни.

Перечень специальностей подлежащих обязательному обеспечению защитными костюмами:

  • электромонтер по обслуживанию электрооборудования электростанций;
  • электрослесарь по ремонту и обслуживанию автоматики и средств измерений электростанций;
  • электрослесарь по ремонту электрических машин;
  • инженер по наладке, совершенствованию технологии и эксплуатации электрических станций и сетей;
  • инженер — энергетик службы (группы) релейной защиты, автоматики, измерений и телемеханики;
  • машинист гидроагрегатов;
  • электромонтер главного щита управления электростанции;
  • электромонтер — линейщик по монтажу воздушных линий высокого напряжения и контактной сети;
  • электромонтер по испытаниям и измерениям;
  • электромонтер по обслуживанию подстанций;
  • электрослесарь по ремонту оборудования распределительных устройств;
  • электромонтер оперативно-выездной бригады;
  • электромонтер по оперативным переключениям в распределительных сетях;
  • электромонтер по ремонту воздушных линий электропередачи;
  • электромонтер по ремонту и монтажу кабельных линий;
  • электромонтер по эксплуатации распределительных сетей;
  • инженер электротехнической лаборатории;
  • электромонтажник по силовым сетям и электрооборудованию;
  • электромонтер по ремонту аппаратуры релейной защиты и автоматики;
  • инженер по испытаниям;

Популярные марки электродов

Как мы упоминали ранее, зачастую для сварки алюминия используют угольный электрод. Но помимо него есть ряд марок, не менее популярных у начинающих и опытных сварщиков. Итак, какие можно использовать электроды для сварки алюминия своими руками?

Стержни марки ОК

Эти электроды изготавливает компания ESAB и маркировка OK является их особенностью. Мы рекомендуем использовать модели 96.10, 96.20 и 96.50. Да, они не являются универсальными, но с их помощью можно сварить технический алюминий или алюминиевые сплавы на основе марганца. Эти электроды по алюминию для сварки в домашних условиях показали себя с положительной стороны, но учтите, что за ними необходим особый уход и строгое соблюдение срока годности.

Стержни марки ОЗА

Такие электроды для сварки алюминия своими руками в принципе можно сделать, поскольку в их основе простая алюминиевая проволока. Эти стержни используются для сварки чистого алюминия или его кремниевых сплавов.

Стержни марки УАНА

Это очень узконаправленные стержни, используемые для сварки литейных алюминиевых сплавов. Их практически не используют при домашней сварке, но мы не могли ни включить их в наш список.

Стержни марки ЭВЧ

ЭВЧ — это вольфрамовые электроды, их нужно использовать при сварке аргоном. Сложно сделать такие электроды по алюминию своими руками, но если у вас есть возможность приобрести их, то обязательно попробуйте в своей работе. Да, с их помощью сложно правильно зажечь дугу, и профессионалы часто не рекомендуют такие электроды. Но если вы научитесь держать дугу с такими стержнями, то и со всеми остальными у вас не будет проблем.

Как регулировать длину дуги

От этого параметра зависят не только электрические величины, но и качество сварки. Дугу стремятся делать как можно более короткой, в пределах 3-4 мм.

При большей длине наблюдаются следующие негативные явления:

  1. Капли расплавленного металла с электрода на пути к сварочной ванне успевают вобрать в себя из воздуха много кислорода и азота. В результате шов теряет прочность, пластичность и ударную вязкость.
  2. Разряд перемещается по поверхности заготовки (блуждание), вследствие чего тепло распределяется по относительно большой площади. Глубина провара уменьшается; капли расплава с расходника, попадая на непрогретый металл, не сливаются с ним, а отскакивают.

Рекомендуем к прочтению Способы сварки ворот в домашних условиях

Короткая дуга издает сухой треск, напоминающий шипение масла на горячей сковороде.


При большой длине сварочной дуги наблюдаются негативные явления.

Выполненный ей шов выглядит аккуратным и имеет следующие признаки:

  1. Правильную форму.
  2. Гладкую выпуклую поверхность.

Шов, выполненный длинной дугой, имеет неровные очертания, вдоль него налипают капли расплавленного металла.

Плавящийся электрод в процессе сварки уменьшается. Поэтому его постепенно приближают к заготовке, чтобы длина разряда оставалась постоянной.

Свойства дуги постоянного тока

Дуга может возникать как при постоянном токе-напряжении, так и при переменном. Начнем рассмотрение с постоянки:

Анодная и катодная области

— размер=10-4см; суммарное падение напряжения=15-30В; напряженность=105-106В/см; в катодной области происходит процесс ударной ионизации из-за высокой напряженности, образовавшиеся в результате ионизации электроны и ионы образуют плазму дуги, которая обладает высокой проводимостью, данная область отвечает за разжигание дуги.

Ствол дуги

— падение напряжения пропорционально длине дуги; плотность тока порядка 10кА на см2, за счет чего и температура порядка 6000К и выше. В данной области дуги происходят процессы термоионизации, данная область отвечает за поддержание горения.

ВАХ дугового разряда постоянного тока

Эта кривая соответствует кривой 3 на самом верхнем рисунке. Тут есть:

  • Uз — напряжение зажигания
  • Uг — напряжение гашения

Если ток уменьшить от Io до 0 мгновенно, то получится прямая, которая лежит снизу. Эти кривые характеризуют дуговой промежуток как проводник, показывают какое напряжение нужно приложить, чтобы создать в промежутке дугу.

Чтобы погасить дугу постоянного тока, необходимо, чтобы процессы деионизации преобладали над процессами ионизации.

Сопротивление дуги:

  • можно определить из ВАХ дуги
  • активное, независимо от рода тока
  • переменная величина
  • падает с ростом тока

Если разорвать цепь амперметра под нагрузкой, то тоже можно увидеть дугу.

Определение степени риска

Специальная одежда для защиты работников от термического воздействия электрической дуги относится к средствам индивидуальной защиты (СИЗ). Разумеется, СИЗ никогда не смогут заменить безопасные методы работы, но они снижают степень риска, дают выигрыш во времени для эвакуации в случае аварии, повышают шансы пострадавшего на выживание.

Одной из особенностей комплектов, защищающих от термического воздействия электрической дуги, является то, что набор их компонентов определяется в зависимости от конкретных условий эксплуатации.

Формированию заказа предшествует небольшая, но очень ответственная подготовительная работа. Заказчику предлагается заполнить таблицу параметров, соответствующих конкретным видам электроустановок.

Параметры, указанные в таблице, соответствуют параметрам электроустановки по паспорту и реальным условиям выполнения работ:

  • Сила тока – сила тока по паспорту электроустановки
  • Напряжение – напряжение по паспорту электроустановки
  • Время действия эл. дуги – время срабатывания первого контура автоматической защиты
  • Расстояние до источника дуги – по факту расположения человека в электроустановке при проведении работ
  • Расстояние между электродами – расстояние между шинами по паспорту электроустановки
  • Вид распредустройства – ОРУ или ЗРУ

На основании полученных данных проводится расчет вероятной энергии дуги, результаты которого позволяют определить тип модели защитного комплекта для работы на данном оборудовании.

Для определения типа модели защитного комплекта для разных электроустановок необходимо условно разбить все наличные электроустановки на варианты по напряжению, типу РУ и условиям выполняемых работ. После этого заполнить для каждого варианта свой столбец в таблице. При условии обслуживания одним работником электроустановок, относящихся к разным вариантам, модель защитного комплекта для такого работника выбирается по высшему уровню защиты. Такой подход оптимизирует затраты на приобретение защитных комплектов и надежно защищает людей при возникновении аварийной ситуации.

Строение сварочной дуги

Разогреть металл до температуры плавления за очень короткое время можно, но для этого потребуется мощная электрическая дуга. Основные ее характеристики – вольтаж, ампераж и плотность потока заряженных частиц. Как электротехническое явление дуговой столб представляет собой проводник между полярными полюсами, состоящий из газовой среды. При этом он обладает большим сопротивлением и способен светиться.

Детальный анализ построения дуги помогает разобраться с течением температурного воздействия на металл. Сравнительно небольшая длина электрической дуг – 5 см, которые состоят из трех зон:

  • собственно, столб – это видимая светящаяся часть;
  • катодная – 1 микрон;
  • анодная – 10 микрон.

Поток свободных электронов определяет температуру сварочной дуги. Они формируются на катоде, который нагревается до 38% от температуры плазмы. В газовой среде отрицательные частички – электроны двигаются по направлению к аноду, в то время как положительные элементы направляются к катоду. Столб лишен какого-либо заряда и все время остается нейтральным.

Температура частиц внутри достигает 10 000 градусов Цельсия. Воздействуя на металл, они разогревают его до 2350 градусов. Точка входа электронов среди специалистов называется анодным пятном. По сравнению с катодным оно имеет температуру на 6% выше. Поскольку плазма генерирует ультрафиолетовые, световые и инфракрасные волны, то она находится в видимом для человека спектре

Но важно учесть, что данные волны вредны для человека: и для кожи, и для глаз. Поэтому для сварщиков были разработаны специальные средства защиты

Физические явления

Электрическая дуга между двумя электродами в воздухе при атмосферном давлении образуется следующим образом:

При увеличении напряжения между двумя электродами до определённого уровня в воздухе между электродами возникает электрический пробой. Напряжение электрического пробоя зависит от расстояния между электродами и других факторов. Потенциал ионизации первого электрона атомов металлов составляет приблизительно 4,5 — 5 В, а напряжение дугообразования — в два раза больше (9 — 10 В). Требуется затратить энергию на выход электрона из атома металла одного электрода и на ионизацию атома второго электрода. Процесс приводит к образованию плазмы между электродами и горению дуги (для сравнения: минимальное напряжение для образования искрового разряда немногим превышает потенциал выхода электрона — до 6 В).

Для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь. Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения в воздушном промежутке образуется достаточное количество плазмы для значительного падения напряжения пробоя или сопротивления воздушного промежутка. При этом искровые разряды превращаются в дуговой разряд — плазменный шнур между электродами, являющийся плазменным тоннелем. Возникающая дуга является, по сути, проводником и замыкает электрическую цепь между электродами. В результате средний ток увеличивается ещё больше, нагревая дугу до 5000-50000 K. При этом считается, что поджиг дуги завершён. После поджига устойчивое горение дуги обеспечивается термоэлектронной эмиссией с катода, разогреваемого током и ионной бомбардировкой.

После поджига дуга может оставаться устойчивой при разведении электрических контактов до некоторого расстояния.

Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии.

Строение дуги

Строение электрической дуги при дуговой сварке. 1-анодная область, 2-область дуги и защитного газа, 3-дуга, 4-катодные пятна, 5-катодная область

Электрическая дуга состоит из катодной и анодной областей, столба дуги, переходных областей. Толщина анодной области составляет 0,001 мм, катодной области — около 0,0001 мм.

Температура в анодной области при сварке плавящимся электродом составляет около 2500 … 4000°С, температура в столбе дуги — от 7 000 до 18 000°С, в области катода — 9000 — 12000°С.

Столб дуги электрически нейтрален. В любом его сечении находятся одинаковое количество заряженных частиц противоположных знаков. Падение напряжения в столбе дуги пропорционально его длине.

Сварочные дуги классифицируют по:

  • Материалам электрода — с плавящимся и неплавящимся электродом;
  • Степени сжатия столба — свободную и сжатую дугу;
  • По используемому току — дуга постоянного и дуга переменного тока;
  • По полярности постоянного электрического тока — прямой полярности («-» на электроде, «+» — на изделии) и обратной полярности;
  • При использовании переменного тока — дуги однофазная и трехфазная.

Саморегулирование дуги

При возникновении внешнего возмущения — изменения напряжения на дуге, скорости подачи электрода и др. — возникает нарушение в установившемся равновесии между скоростью подачи и скоростью плавления. При увеличении длины дуги увеличивается её сопротивление и уменьшается сварочный ток. Это приводит к уменьшению выделяемого тепла и уменьшению скорости плавления электрода. При этом, скорость подачи, оставаясь постоянной, становится больше скорости плавления, что приводит к восстановлению длины дуги. При уменьшении длины дуги скорость плавления проволоки становится больше скорости подачи, это приводит к восстановлению нормальной длины дуги.

На эффективность процесса саморегулирования дуги значительно влияет форма вольт-амперной характеристики источника питания. Большое быстродействие колебания длины дуги отрабатывается автоматически при жестких ВАХ цепи.

Как защитится от электродугового разряда

Ношение специализированной одежды является основным способом защиты от электродуги. Материалы, из которых изготавливаются комплекты должны отвечать следующим требованиям:

  • защищать от высоких температур;
  • не проводить электрический ток;
  • снижать воздействие ультрафиолетового излучения;
  • исключить возгорание и тление одежды;
  • уменьшить воздействие механических повреждений.

Спецодеждой обязательно обеспечиваются работники, взаимодействующие с электричеством, обслуживающие высоковольтные сети электроснабжения и промышленное оборудование. К защитной одежде относятся:

  • сварочные маски и шлемы со щитками;
  • диэлектрические перчатки, калоши и боты;
  • костюмы, комбинезоны и плащи;
  • ботинки, подшлемники, фуфайки.

Костюм выбирается с учётом времени года и погодных условий, должен максимально закрывать открытые участки тела, защищать от возгораний и ударов тока. Кроме этого, существуют вспомогательные приспособления, которые помогут защитить от пробоя. К ним относятся: изолирующие коврики, накладки, штанги, подставки и колпаки.