Адресная светодиодная лента ws2812 и arduino

Правильная покупка светодиодной ленты на AliExpress.

Что еще можно сказать по сечению проводов? Например,
лента 2812 на один диод потребляет порядка 60мА. При длине подсветки в 5 метров
ток составит 18 Ампер!

По всем расчетным таблицам для такого тока требуются
провода сечением 2,0-2,5мм2. Даже на самой ленте медные дорожки такого сечения
не обеспечивают.

Поэтому, если хотите нормального свечения и яркости, даже
на стандартные отрезки по 5 метров всегда подключайте питание с обоих концов.

Помимо сечения проводов важное значение играет и качество
самих дорожек. Конечно, китайцы вам будут говорить, что у них самая лучшая
продукция и никто не жаловался

Но как это проверить, не покупая изделие? Элементарно –
запросите информацию по весу ленты. После этого сравните одинаковые модели от
разных производителей.

Так например, у ленты длиной 5м (60 светодиодов на метр)
при весе менее 100гр просадки напряжения начинаются уже через 1,5 метра!

Объясняется это очень тонкими медными дорожками или
некачественной медью в них.

RGB лента длиной 15-20 метров

Если нужно подключить 15, 20 метров или более, такой вариант только с одним контроллером уже не подойдет. Есть два выхода:

использовать два контроллера

использовать RGB усилитель

Первый вариант неудобен более высокими затратами. А во-вторых, у вас будет два пульта управления, каждый из которых отвечает за различные участки ленты. И как вы их синхронизируете, тот еще вопрос.

Поэтому лучший вариант, когда все управляется от одного контроллера и с одного пульта. Это можно легко реализовать при помощи rgb усилителя.

Из названия понятно, что его предназначение усиливать сигнал от контроллера. Правда некоторые заблуждаются, полагая, что он нужен для более яркого свечения ленты. И его именно с этой целью можно использовать даже для 5-ти метровых участков. Это не так.

Выбирается он по мощности не всей длины светодиодной ленты, а только того участка, который к нему и подключается, помимо первых 5 или 10 метров.

Протокол

Теперь, когда мы разобрались, как подключить нашу ленту к Arduino, нам надо понять, как ею управлять, для этого в даташите есть описание протокола, который мы сейчас и рассмотрим. Каждый светодиод WS2812B имеет один вход (DIN) и один выход (DO). Выход каждого светодиода подключается ко входу следующего. Подавать сигналы же надо на вход самого первого светодиода, таким образом, он запустит цепь, и данные будут поступать от первого ко второму, от второго к третьему и т. д. Команды светодиодам передаются пачками по 24 бита (3 байта, один байт на каждый цвет, первым передается байт для зеленого, потом для красного, и заканчивает байт для синего светодиода.


Вывеска из светодиодной ленты.

Порядок бит – от старшего к младшему). Перед каждой пачкой идет пауза в 50 мкс. Пауза больше 100 мкс воспринимается как окончание передачи. Все биты, будь то 0 или 1, имеют фиксированное время 1.25 мкс. Бит 1 кодируется импульсом в 0.8 мкс, после чего идет пауза в 0.45 мкс. Бит 0 кодируется импульсом в 0.4 мкс, после чего идет пауза в 0.85 мкс. Собственно, наглядная диаграмма на фото ниже. Так же допускаются небольшие погрешности в 0-150 нс на каждый фронт. Ну и следует учесть, что подобное необходимо повторить для каждого светодиода на ленте, после чего сделать паузу минимум в 100 мкс. Потом можно повторить передачу.

Глядя на все эти цифры, становится ясно, что сделать все это, используя стандартные функции digitalWrite, delay и тому подобные – попросту невозможно, ввиду их долгой работы и неточности. Реализовать подобный протокол можно только использовав специальные библиотеки вроде CyberLib или написав собственную на чистом Си или, того хуже для нынешнего программиста, на Ассемблере. Но не все так плохо, как кажется. Светодиоды WS2812B довольно таки популярны в Arduino сообществе, а это значит, что нам не придётся вдаваться в такие сложности, и достаточно выбрать одно из понравившихся решений.

Будет интересно Что такое биполярный транзистор

Ардуино и адресная светодиодная лента

Этот проект – простой способ начать работу, но идеи, которые он охватывает, могут быть расширены для действительно эффектного освещения. С помощью всего лишь нескольких компонентов вы можете создать свой собственный восход солнца. Если у вас есть стартовый комплект с Arduino, вы можете использовать любую кнопку или датчик для запуска светодиодов при входе в комнату, например:

Теперь, когда мы рассмотрели схему с обычной светодиодной лентой, перейдем к адресным светодиодным лентам  SPI RGB лента.

Светодиодная лента Ардуино – Яркие идеи.

Эти ленты требуют меньшего количества компонентов для запуска, и есть некоторая свобода в отношении именно того, какие значения компонентов вы можете использовать. Конденсатор в этой цепи гарантирует, что светодиоды 5v получают постоянный источник питания. Резистор становится гарантом того, что сигнал данных, полученный от Arduino, не загружен всяческими помехами.

Вам понадобится:

● Светодиодная лента 5v WS2811/12/12B; Все три модели имеют встроенные микросхемы и работают одинаково.

● 1 x Arduino Uno или аналогичная совместимая плата;

● 1 x резистор 220-440 Ом;

● 1 x конденсатор microFarad 100-1000 (все, что между этими двумя значениями, отлично подойдет);

● Макет и монтажные провода;

● Блок питания 5 В.

Настройте схему, как показано на рисунке:

Обратите внимание, что конденсатор должен быть правильной ориентации. Вы можете понять, какая сторона прикрепляется к рейке земля, ища знак минуса (-) на корпусе конденсатора

На этот раз мы задействуем Arduino, используя источник питания 5 В. Это позволит устройству работать автономно

Вы можете понять, какая сторона прикрепляется к рейке земля, ища знак минуса (-) на корпусе конденсатора. На этот раз мы задействуем Arduino, используя источник питания 5 В. Это позволит устройству работать автономно.

Во-первых, убедитесь, что ваша плата может работать с 5 В, прежде чем присоединить ее к источнику питания. Почти все платы работают на 5V через USB-порт, но штыри питания на некоторых могут иногда пропускать регуляторы напряжения и превращать их в поджаренные тосты.

Кроме того, рекомендуется убедиться, что несколько отдельных источников питания не подключены к Arduino – отсоединяйте USB-кабель всякий раз, когда используете внешний источник питания.

Светодиодная лента Ардуино – Бегущий огонь или световая волна

Чтобы безопасно запрограммировать нашу плату, отсоедините линию VIN от линии электропередач. Вы подключите ее позже обратно.

Присоедините свой Arduino к компьютеру и откройте Arduino IDE. Убедитесь, что у вас правильный номер платы и порта, выбранный в меню «Сервис»> «Сервис и инструменты»> «Порт».

Мы будем использовать библиотеку FastLED для тестирования нашей установки. Вы можете добавить библиотеку, нажав на Эскиз> Включить библиотеку> Управление библиотеками и поиск FastLED. Нажмите «Установить», и библиотека будет добавлена в среду IDE.

В разделе «Файл»> «Примеры»> «FastLED» выберите эскиз DemoReel100. В этом эскизе задействованы различные эффекты, которые можно сделать с помощью светодиодных полос WS2812, и невероятно легко настроить.

Все, что вам нужно изменить, — это переменная DATA_PIN, чтобы она соответствовала значку 13 и переменной NUM_LEDS для определения количества светодиодов, находящихся в полосе, которую вы используете. В этом случае я применяю только небольшую линию из 10 светодиодов, вырезанных из более длинной полосы.

Используйте большее количество для красивейшего светового шоу!

Загрузите эскиз на свою плату, отсоедините USB-кабель и включите источник питания 5 В.

Наконец, подключите VIN Arduino к линии электропередач и наслаждайтесь представлением.

Светодиодная лента Ардуино – Безграничные возможности

Демо-эскиз демонстрирует некоторые из многих возможных комбинаций эффектов, которые могут быть достигнуты с помощью светодиодных лент. Наряду с тем, что они являются украшением интерьера, их также можно использовать для практических целей. Хорошим проектом будет создание вашей собственной атмосферы для медиацентра или рабочего места.
Хотя эти полосы определенно функциональнее, чем SMD5050, пока не списывайте со счетов стандартные 12-вольтовые светодиодные полосы. Они являются непревзойденными с точки зрения цены. Плюсом будет то, что существует огромное количество приложений для светодиодных лент.

Учиться работать со светодиодными лентами — хороший способ познакомиться с базовым программированием на Arduino, но лучший способ учиться — изменять коды. Побалуйтесь с приведенным выше кодом и посмотрите, что вы можете сделать! Если все это слишком сложно для вас, подумайте о проектах Arduino для начинающих.

Многообразие видов светодиодных лент

Конкуренция на рынке светотехнического оборудования заставляет производителей закрывать все ниши применения LED-приборов, и даже создавать новые. Делается это путем выпуска разновидностей осветителей, не имеющих аналогов и прототипов в более ранних разработках.

По цвету излучения

Монохромные ленты

С разработкой светодиода с белым цветом излучения у LED-оборудования не осталось препятствий для полного завоевания рынка. Но даже белый свет не одинаков, и имеет градации по спектру излучения, характеризуемого цветовой температурой (в Кельвинах).

Шкала цветовых температур.

Потребитель может выбрать от теплых красно-желтых оттенков до холодных сине-фиолетовых. Также можно приобрести монохромные светильники с цветом, отличным от белого. В их маркировке присутствует название цвета на английском языке (Green, Blue и т.д.).

RGB-светильники

Этот тип лент содержит три светодиода красного, зеленого и синего цветов. Это дает возможность получать свечение практически любого цвета путем смешивания в разных пропорциях трех основных оттенков. И это свечение можно изменять динамически. У дизайнеров в руках оказывается почти неограниченный потенциал по созданию архитектурных подсветок, визуальных эффектов и т.д. Такие приборы в обозначении имеют символы RGB и управляются с помощью контроллеров (промышленных или любительской разработки).

Единственное ограничение такие светильники имеют по белому цвету – чистый белый получить из трех основных цветов невозможно. Для случаев, где это критично, к каждым трем цветным светодиодам добавляется один белый. Он «подкрашивает» синтезированный белый цвет. Маркируется такая лента литерами RGBW (RGB+White).

Светильник на основе адресных светодиодов

Эта разновидность LED-лент не имеет аналогов в мире осветительной техники и обладает безграничной мультимедийной составляющей. Ее главное отличие от обычной RGB-ленты в том, что доступно регулирование свечения каждого трехцветного элемента отдельно. Светильники с шиной SPI могут управляться от промышленных пультов, для приборов с однопроводной шиной (например, на основе элементов WS2812b) используют схемы управления на основе микроконтроллеров (в том числе, на платформе Ардуино). Это позволяет полностью использовать возможности, заложенные разработчиками.

Разновидности по исполнению

Обычные LED-ленты имеют степень защиты IP20. Это означает, что прибор защищен от попадания твердых частиц размером более 12,5 см и совсем не защищен от попадания воды. Такое исполнение не позволяет применять осветитель на открытом пространстве, не говоря о влажных помещениях. Поэтому производятся специальные типы лент с дополнительной защитой:

  • в виде надетой на полотно прозрачной силиконовой трубки – в маркировке присутствует обозначение P;
  • полотно может быть залито прозрачным герметиком – обозначается символами SE;
  • если присутствуют оба способа защиты (силиконовая трубка заполнена герметиком), в маркировке есть символы PGS.

Светодиодный светильник в герметичном исполнении.

Такие методы защиты позволяют выпускать LED-светильники со степенью защиты до наивысшей (IP68) и применять ленты даже под водой.

По применяемым светоизлучающим элементам

Для формирования светового потока LED-лент применяются различные типы светодиодов, включая корпусные цилиндрические. Но наибольшее распространение получили ленты на основе безвыводных элементов (SMD). Такое исполнение наиболее технологично при производстве и позволяет несколько снизить стоимость светотехники. Форм-фактор LED маркируется четырьмя цифрами, обозначающими размеры элемента в плане (длина и ширина). Эти символы обычно входит в маркировку ленты.

Внешний вид основных светодиодов применяемых в лентах.

Таблица размеров LED
Тип светоизлучающего элемента Габариты, мм
3,5 х 2,8
5,6 х 3
5 х 5
5,7 х 3

Для лент RGB используются светодиоды, содержащие в одном корпусе три кристалла с различными цветами излучения. Они имеют раздельное управление, но их аноды соединены. Обычно эти элементы применяются также в безвыводном исполнении.

Трехцветная LED-сборка.

Для создания адресных лент используют миниатюрные ШИМ-драйверы, в которые могут быть встроены светоизлучающие p-n переходы. Но также широко применяются микросхемы с внешним подключением трех LED базовых цветов (или светодиодной матрицы в едином корпусе).

Адресный светодиод WS2812B.

Типы контроллеров

Контроллеры используют на монохромных и многоцветных лентах. Основные показатели элемента – его рабочее напряжение и мощность

При выборе контроллера важно обращать внимание на параметры светодиодной лампы, чтобы не возникало «конфликта»

Этот простой элемент позволяет изменять яркость лампы, скорость загорания одного цвета и затухания другого. Также, контроллер может зафиксировать конкретный цвет (из нескольких), изменить оттенок или выполнить ряд аналогичных задач.

Есть несколько типов управления освещением:

  1. сенсорный;
  2. механический;
  3. радиоволновой;
  4. инфракрасный.

Наиболее примитивный способ управления — механический. При таком управлении регулировка производится без пульта, с помощью кнопки.

Сенсорный, как и механический способ – не имеет дистанционного управления. Для регулировки достаточно прикоснуться к сенсорной панели. Данный способ позволяет изменять яркость, оттенок и иные параметры освещения.

Инфракрасный способ управления подразумевает под собой регулировку освещения с помощью такого инструмента как пульт. Для управления необходимо, чтобы лампа попадала в поле зрения пульта. Максимальная дистанция, с которой можно выполнить регулировку – 10 метров.

Последний тип управления – радиоволновой. Этот способ позволяет передавать сигналы на блок без прямого контакта лампы с элементом управления. Пользователь может делать запрос даже с другой комнаты. Единственное ограничение – 30-ти метровый радиус действия. Стоит отметить, что каждый радиоволновой пульт работает на отдельной частоте, что делает его очень ценным устройством.

Есть и инновационные контроллеры для ргб лент. Их принцип действия построен на работе по Wi-Fi сети. Также, есть возможность интеграции контроллера со смартфоном.

Контроллеры отлично подходят для установки в запыленных и влажных помещениях, так как имеют высокую степень защиты.

Выбор контроллера для адресной ленты

При выборе SPI контроллера для
умных лент нужно рассчитывать не на мощность подсветки, как обычно это
делается, а на количество пикселей.

Данные параметр всегда указывается на корпусе изделия.

Что касается выбора мощности блока питания, то здесь
ориентируйтесь на следующий показатель. Один светодиод для моделей sw2812b – это
примерно 60мА при белом свете.

Считайте их общее количество в ленте, берите запас в 30% и подбирайте подходящий блок.

От блока питания провода подключаются на контроллер, а с
другой стороны контроллера запитывается сама лента.

Питание можно подать и напрямую, но наличие контроллера
обязательно.

Почему светодиоды на конце ленты теплого белого света / розового цвета на конце при движении белого цвета?

Это происходит из-за падения напряжения на светодиодной ленте при попытке питания большей длины ленты. В результате падения напряжения пиксели вдоль ленты будут постепенно меняться в цвете, если их приводить в движение белым цветом. Лучше всего определить максимально возможную длину пробега до того, как падение напряжения начнет влиять на их цвет, и вводить мощность через каждые х метров.

Чем больше падение напряжения вдоль ряда белых светодиодов, тем более розового оттенка будут появляться самые дальние от источника питания. Вся длина также будет незначительно уменьшаться по мере снижения напряжения. Большинство лент и точек отображают эти явления очень тонко, в то время как некоторые другие могут быть немного более выраженными. Аналогично, степень, в которой человеческий глаз воспринимает это, будет естественно отличаться от человека к человеку, но большинство людей найдут изменение цвета практически неразличимым.

(ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ: приведенный выше чертеж не предназначен для точной научной диаграммы. Это простое визуальное представление, чтобы дать вам приблизительное представление о том типе эффекта, который вы иногда можете наблюдать, когда происходит различный процент падения напряжения.)

Лампа на светодиодной ленте с красивыми эффектами

Сразу скажу, что проект не мой, а является немного доработанной версией лампы от Alex Gyver, за что ему большое спасибо!

Вот ссылка на оригинальный проект: огненный светильник.

Из изменений:

  • корпус напечатан на 3D-принтере (файлы для печати ниже)
  • разъем для подключения блока питания
  • не сенсорная а обычная кнопка, размещенная сбоку внизу

Лампу делал не с целью улучшения, а в подарок, но решил все-таки добавить описание на сайт – вдруг кому-то пригодится.

Подготовка

Итак, для реализации проекта использовался все тот же плафон из Леруа-мерлен “плафон цилиндр”:

Все остальное можно заказать у китайцев:

  • Arduino Nano:   
  • Адресная RGB-лента WS2812B:   
  • Блок питания на 5 вольт (3А, но хватит и 2A):   
  • Кнопка (использовал самую большую):   
  • Резистор на 220 Ом:   
  • Разъем питания использовал такой:

Были использованы следующие инструменты:

  • Паяльник (пользуюсь таким давно, идеальный по соотношения цена/качество):   
  • 3D-принтер (закрытый корпус, можно печатать и PLA, и ABS без проблем): ,  
  • Инструмент для зачистки и обжима проводов (фирменный китайский LAOA): ,  

Сборка

Файлы для печати верхней и нижней части: lamp.zip.

При печати следует учесть, что, хоть размеры подгонялись под конкретный плафон, все же могут быть небольшие расхождения в размерах. Зависит от того, на каком 3D-принтере вы печатаете, с какими настройками и каким пластиком. Поэтому для плотного прилегания плафона к напечатанным частям может понадобится чуть подкорректировать размер моделей и перепечатать, либо применить изоленту/напильник.

Для лампы я использовал 4 куска светодиодной ленты по 10 светодиодов на каждом. У вас может быть другое количество светодиодов, в зависимости от типа ленты. Главное: лента должна быть именно адресная WS2812B.

После печати нижней части можно приступать к сборке. В модели предусмотрено гнездо для кнопки. Сажаем ее туда, приклеив на любой подходящий клей (я использовал клеевой пистолет). Предварительно нужно отломать 2 из 4 ножек, а 2 оставшиеся должны пропускать ток при нажатии (они расположены рядом). Просовываем их в отверстие сверху от углубления. И вставляем разъем питания.

Ну и наклеиваем куски ленты

Обратите внимание на то, что наклеивать их нужно одинаково, контактами DO вниз. Так как при использовании ленты она нагревается, я после всей остальной сборки закрепил ленту небольшими хомутами, через каждые 2 светодиода, чтобы она не отклеилась. Далее – спаиваем 4 части адресной ленты – контакты 5v, gnd и сигнальный

Как именно – подробно показано в видео на странице оригинального проекта. Если вы только учитесь паять – не следует бояться паять адресную ленту, паяется все она очень легко. Единственный совет – я использую жидкий флюс ЛТИ-120. Он в разы лучше, чем твердая канифоль. Наносить его удобнее всего кисточкой от лака для ногтей. Также он не является активным, поэтому после его применения не нужно очищать контакты

Далее – спаиваем 4 части адресной ленты – контакты 5v, gnd и сигнальный. Как именно – подробно показано в видео на странице оригинального проекта. Если вы только учитесь паять – не следует бояться паять адресную ленту, паяется все она очень легко. Единственный совет – я использую жидкий флюс ЛТИ-120. Он в разы лучше, чем твердая канифоль. Наносить его удобнее всего кисточкой от лака для ногтей. Также он не является активным, поэтому после его применения не нужно очищать контакты.

Вся остальная сборка делается по инструкции оригинального проекта, там все подробно показано, а также есть схема, что и как спаять. Разница только в использовании механической кнопки, припаять ее нужно к разъемам gnd (земле) и любому цифровому пину платы.

Код

Код был полностью взять с оригинального проекта. Единственное изменение, которое нужно сделать, это поменять тип используемой кнопки. Для этого в основном файле прошивки (на данный момент это gyverLight_v1.4.ino) меняем строчку 39:

на

В общем то и все.

Как подключить светодиод к Arduino Uno

Для теста нам понадобится:

  • Arduino Uno
  • макетная плата
  • светодиод
  • резистор для светодиода
  • соединительные провода

Все соединяем, согласно указанной схеме.

Конечно можно подключить светодиод и резистор без использования макетной платы и соединительных проводов, но данное решение является более универсальным и элегантным.

Как можно видеть, мы использовали два контакта Arduino. Первый из них pin13 будет служить для управления светодиодом, второй – минус схемы.

Следует обратить внимание на. Анод (+) светодиода нужно подключить через резистор к pin13

Катод (-) светодиода подключаем к минусу платы

После проверки правильности соединения мы можем перейти к написанию нашей первой программы

Катод (-) светодиода подключаем к минусу платы. После проверки правильности соединения мы можем перейти к написанию нашей первой программы.

Наша первая программа позволит поочередно включать и выключать светодиод. Частота мигания светодиода составит около 1Гц.

const int ledPin = 13; // номер контакта для светодиода
void setup()
{
pinMode(ledPin, OUTPUT);
}
void loop()
{
digitalWrite(ledPin, HIGH); // устанавливаем высокое состояние на pin13
delay(500); //остановка 0,5 сек (500ms)
digitalWrite(ledPin, LOW); // устанавливаем низкое состояние на pin13
delay(500); // остановка 0,5 сек (500ms)
}

Программа начинается с объявления используемого контакт (ledPin). С этого момента везде, где мы будем ссылаться на «ledPin», будет ссылка на pin13 Arduino.

Затем в функции setup() мы указываем, что наш pin13 будет использоваться как выход.

Функция pinMode(pin, mode) позволяет определить, будет ли использоваться наш контакт как вход или как выход. Первый параметр функции это номер контакта, второй предопределенное значение INPUT (вход) или OUTPUT (выход).

При написании кода вы можете использовать номера контактов напрямую, но метод, приведенный в этом примере, является гораздо лучшим решением для читаемости программы.

Функция loop() содержит непосредственно сам код программы, который выполняется в бесконечном цикле.

Функция digitalWrite(pin, value) позволяет изменять статус каждого из контактов. Цифровые выходы могут иметь низкий (LOW) или высокий (HIGH) логический уровень. LOW (лог.0) — электрически замкнут на минус, а HIGH (лог.1) — около 5 В.

Номер порта в функции digitalWrite () может быть указан непосредственно в виде числа (в нашем случае 13) или обозначен так, как мы прописали его в функции pinMode () (т.е ledPin).

Последним элементом программы является функция delay(), которая останавливает выполнение программы на определенное время. Время задается в миллисекундах. Одна секунда это 1000 мс.

Зная, для чего служат отдельные функции программы, мы можем изучить работу программного кода целиком:

Итак, pin13 Arduino устанавливается как выход. Следующим шагом идет установка высокого состояния на Pin13 и приостановка дальнейшего выполнения кода на 0,5 сек. Затем Pin13 устанавливается в низкое состояние и исполнение кода приостанавливается на 0,5 сек. Согласно философии написания программ в Arduino IDE, функция loop () выполняется в бесконечном цикле, что вызовет визуальное мигание светодиода.

После того, как вы написали программу, скомпилируйте ее и отправьте в Arduino. Если все шаги были выполнены правильно, светодиод должен начать мигать с частотой примерно в 1 Гц.

При отсутствии положительного результата необходимо еще раз проверить правильность соединений и программный код.

Подключение более 5 метров.

Если вам нужно подключить более 5м умной ленты, то для ее равномерного свечения нельзя просто наращивать подсвету последовательно. Речь здесь идет в первую очередь про питание!

Когда количество пикселей на контроллере позволяет подключить большую длину, вы без проблем стыкуете коннекторы DI и DO между собой. Но вот питание (5В или 12В), все равно придется тянуть отдельно (параллельно).

Есть контроллеры с дополнительными проводами под “лишнее” питание на такой случай.

Ошибка №6

Нельзя подключать несколько кусков ленты последовательно и при этом подавать на них изначально большее напряжение.

Например, взять три куска ws2812b (5м+5м+5м) и подать на них в самом начале ленты 15 вольт, рассчитывая при этом на последовательное падение напряжения.

В этом случае придется ставить на каждый отрезок по своему контроллеру, да еще каким-то образом гарантировать одинаковое потребление отрезков.

Ошибка №7

Лента вместо белого светится с оттенком желтоватого или красного цвета.

Скорее всего дело здесь в неправильно подобранном сечение проводов. Всегда берите минимум 1,5мм2.

Недостаток цвета – это первый признак просадки напряжения. Уход в красноту объясняется тем, что для синего и зеленого цветов на чипе 2812b требуется порядка 3,5В, а вот для красного достаточно и 2В.

Поэтому, когда напряжение на светодиодах падает, выключаются зеленые и синие кристаллы, а красный горит до последнего.

Адресная лента ws2813

Поэтому прогресс не стоял на месте и позже были разработаны более совершенные ленты – ws2813 (5V), ws2815 (12V).

У таких лент добавлена четвертая дублирующая дорожка. По ней передаются данные, если какой-то из диодов сгорел и вышел из строя.

Как это работает? Сигнал в нормальном состоянии поступает на Data Input (DIN) и выходит с чипа на Data Out (DO). По такой цепочке данные проходят по всей ленте.

Когда первый чип выходит из строя и данные перестают выходить с DO, благодаря дублирующей дорожке сигнал продолжает поступать на разъем BIN.

Второй чип анализирует пропажу сигнала на DIN, но видит его наличие на BIN и продолжает работать как ни в чем не бывало.

Самое главное, чтобы при выходе из строя первого диода не произошло замыкания между VDD и GND.

Ошибка №1

Никогда не используйте подсветку на чипах типа WS2812b при съемке видео.

Если захотите снимать кино или видеоклип с такой подсветкой, то применяйте только ленту WS2813, не меньше.

Дело здесь в частоте регенерации. У старых моделей она всего 400Гц.

Для человеческого глаза это может быть и незаметно, а вот камера вам такой ошибки не простит.

Вот очень наглядный эксперимент с такими светодиодами в динамике. Подключите отрезок ленты с двумя разными чипами и попробуйте помахать ими из стороны в сторону.

Результат на пойманом стопкадре.

Надо заметить, что это всего лишь один подключенный светодиод 2812b и 2813, а не несколько их штук в одном ряду.

Вводная информация о светодиодах

Светодиоды – электронный компонент, способный излучать свет. Сегодня они массово применяются в различной электронной технике: в фонариках, компьютерах, бытовой технике, машинах, телефонах и т.д. Многие проекты с микроконтроллерами так или иначе используют светодиоды.

Основных назначений у них два:

  • демонстрация работы оборудования или оповещение о каком-либо событии;
  • применение в декоративных целях (подсветка и визуализация).

Внутри светодиод состоит из красного (red), зеленого (green) и синего (blue) кристаллов, собранных в одном корпусе. Отсюда такое название – RGB.

Подключение светодиодной RGB ленты

Правильный порядок подключения элементов цепи выглядит следующим образом:

Правильный порядок подключения

Запомните. Участки ленты, длиной больше 5 метров, должны подключаться только параллельно.

Что будет, если подключить последовательно?

Во-первых, вы заметно потеряете в яркости на конце участка. Хотя светодиоды и имеют очень малое сопротивление, но потери есть. При такой протяженности на конце напряжение будет порядка 10В. Пониженное напряжение даст пониженную яркость, уже заметную для глаза.

Неправильное подключениеПравильное подключение

Во-вторых, токопроводящие дорожки ленты рассчитаны на максимальную длину 5м. Подключив последовательно еще 5, дорожки будут перегреваться и освещение скорее всего перегорит в самом начале участка.

RGB коннектор

Соединять ленту между собой можно с помощью пайки или клеммами. Для одноцветных вариантов продаются двухвыводные клеммы (коннекторы), для RGB – четырёх или пяти. Уточняйте этот момент при покупке.

Подробнее как соединять rgb ленту между собой.

Блок питания подключается в сеть 220В (клеммы AC, полярность не важна), преобразует переменное напряжение в постоянное 12В (клеммы V+, V-)

При подключении следующих элементов цепи важно соблюдать полярность

Клеммы подключения на БП

RGB контроллер подключается после блока питания (с соблюдением полярности), а в него подключается ргб лента. Каждый вывод на корпусе предназначен для конкретного вывода светодиодов. Если перепутаете местами, ничего страшного не произойдет, просто цвета будут перепутаны.

Клеммы подключения контроллера к светодиодам

В результате готовая схема в сборе должна иметь вид:

Схема в сборе

Усилитель внешне похож на контроллер, отдельно подключается к БП, только имеет не одну плашку с клеммами, а две. Маркируется чаще всего как Led Amplifier, устанавливается в разрыв ленты. Подключается по схеме:

Порядок подключения RGB усилителя в цепьНазначение клемм led amplifier

Разберем теперь схемы подключения лент разной длины с усилителем и без, с одним или несколькими блоками питания.

Схема подключения RGB светодиодной ленты без усилителя

Это простейшая схема включения rgb светодиодной ленты длиной до 5 метров через контроллер с пультом.

Электрическая схема подключения RGB освещения

Для подключения светодиодной RGB ленты длиной 10 или 15 метров, убедитесь, что хватает мощности контроллера и БП (с запасом), и подключайте по следующей схеме:

Схема подключения 10 или 15 

Схема подключения ленты с RGB усилителем

Усилитель используем, если не хватает мощности контроллера. Если мощность блока питания позволяет подключить контроллер и усилитель, используем следующую схему:

Когда суммарная мощность контроллера и усилителя выше мощности БП или блок такой мощности использовать нерационально (большой, сильно греется или шумит), тогда подключаем led amplifier к отдельному питанию по схеме:

Схема подключения усилителя с 2 блоками питания

По такой схеме наращивать суммарную длину ленты можно сколько угодно. Вся она будет управляться с одного пульта.

Помимо последовательного подключения, как в примерах выше, усилители можно подключать параллельно.

Схема параллельного подключения нескольких RGB усилителей с одним блоком питания.

Схема: один БП несколько усилителей

Схема с несколькими параллельными усилителями с отдельным питанием.

Схема: несколько параллельных усилителей с отдельными БП

Если клемм нет – используйте паяльник и монтажный провод, НО не перегревайте контактные площадки. Подробнее как соединять ленту.

Правильная схема подключения 20 метров RGB ленты показана на видео.

Теперь тайминги

Изначально на ножке стоит лог. единица. Для перевода светодиода в режим получения сигнала необходимо подать логический ноль в течение 5 мс. После этого идут биты данных: для передачи «нулевого» символа необходимо подать логическую единицу, и сразу подать логический ноль. Для передачи «единичного» символа необходимо подать логическую единицу, подождать 3 мкс и подать логический ноль. Интервал между сигналами от 6 до 20 мкс. Временные интервалы можете увидеть на осциллограммах в разных временных развертках.(рис3, рис2, рис1).

После подачи последнего информационного бита на шину необходимо подать логическую единицу. Установленные таким образом цвета будут светиться пока вы не выключите питание или не обновите цветовой рисунок новым пакетом данных.

И последний нюанс — на моей ленте при таком управлении светодиодами, если долго не отправлялись данные, и при попытке начала передачи нового пакета данных первый светодиод принимает 24 бита, дальнейшие биты начинает передавать на следующие светодиоды, но свой цвет не меняет.

Пока с проблемой справился таким образом: в исходном состоянии стоит лог. единица, даю сигнал инициализации (5 мс), 24 бита — пакет данных для первого светодиода, жду 30 мкс, снова даю сигнал инициализации (5 мс), и отправляю информационные биты для всех светодиодов.

Яркость светодиодной ленты

Яркость светодиодной ленты, как и ее мощность, определяется видом установленных светодиодов и их плотностью размещения на ленте. Т.е. зная яркость одного светодиода будет несложно рассчитать яркость всей ленты. В теории все просто, но на практике светодиоды могут оказаться некачественными.

Светодиоды можно разделить на фирменные качественные и дешевые китайские, и какие именно установлены на светодиодной ленте иногда остается только догадываться. При покупке фирменных светодиодных лент можно с большой вероятностью рассчитывать на установленные качественные SMD светодиоды.

Фирменные и китайские дешевые светодиоды внешне практически ничем не отличаются, но характеристики у них могут сильно отличаться. Китайские SMD светодиоды могут иметь характеристики в два раз ниже, что естественно скажется на яркости ленты. В таблицах ниже будут представлены параметры для белых светодиодов. Для светодиодов теплого белого и холодного белого света данные светового потока могут быть меньше.

Яркость и мощность дешевых популярных SMD светодиодов


Яркость и мощность фирменных SMD светодиодов


Но даже зная точные параметры установленных в светодиодной ленте светодиодов световой поток можно будет рассчитать приблизительно, так как табличный световой поток будет выдаваться только при номинальном подаваемом напряжении питания, которое может немного отличаться.