Отличия между традиционным и штыревым заземлением
Традиционный контур заземления, который обычно монтируют самостоятельно, представляет из себя весьма громоздкую и трудоемкую подземную конструкцию.
Забивается несколько вертикальных электродов (уголок, труба, прут), между ними прокапывается траншея, и все они соединяются между собой горизонтальными связями (шиной или прутком).
Расстояние между вертикальными электродами должно быть не меньше их длины. Чем же плох такой способ?
Во-первых, мало кому охота перекапывать свой участок метровыми траншеями, а если территория оказалась уже облагорожена, то вообще возникает тупиковая ситуация. Кроме того, все эти ржавые металлические уголки, трубы и шины, находясь в земле, через несколько лет эксплуатации (буквально за 5-7 лет) начинают усиленно разрушаться.
Поэтому на сегодняшний день большую популярность получила другая система заземления, а именно — модульно штыревая или глубинная. Наиболее известные фирмы производители в наших краях Galmar и ZandZ.
Как известно, сопротивление заземляющего устройства зависит от:
типа грунта
времени года
глубины залегания электродов
Таким образом, если один электрод путем постепенного наращивания, забить на максимально возможную глубину, то можно получить идеальные показатели сопротивления. На этом принципе и работает глубинное заземление.
намного долговечнее
на порядок проще в монтаже
и при этом стоит уже не так дорого (можно найти комплекты порядка 5000 рублей)
Плюс ко всему этому, весь монтаж обходится без сварочных работ.
Именно необходимость сварки многих останавливает от самостоятельного выполнения данной работы. Либо нет аппарата, либо нет необходимых навыков.
Вот и приходится нанимать сторонних электриков.
Все заземление занимает место на территории вашего дома, буквально несколько квадратных сантиметров.
А еще его без проблем можно сделать прямо в подвале здания.
В среднем выходит, что в частном доме без котла для достижения требуемых 30 Ом, придется забить электрод общей длиной на 6-9 метров. Для дома с газовым отоплением (R=10 Ом) – на 9-15 метров.
Это усредненные показатели. Более точные данные всегда индивидуальны и напрямую зависят от региона, где вы проживаете, качества и состава грунта.
Если ваш дом построен на песке, однозначно покупайте 15-ти метровый комплект. Даже без наличия газового котла.
Расстояние трассы заземлителя от стены также регламентируется. В отличие от вводного кабеля оно должно быть не менее 1 метра.
Для подземного кабельного ввода этот показатель – 0,6м. Почему так, подробно читайте об этих и других требованиях в отдельной статье.
Правила для переносных установок
В некоторых ситуациях допускается отказ от местного заземлителя для электрооборудования, оснащенного автономными источниками питания с нейтралью, не вступающей в контакт с грунтом. Обычно переносное заземление используется для защиты установок, не питающих другое оборудование. При этом источники питания должны иметь собственные заземлители, а все элементы установки — стыковаться с корпусом источника электропитания.
Работы по заземлению мобильных электрических установок выполняют в соответствии с требованиями к напряжению или сопротивлению. Показатель сопротивления не должен превышать 25 Ом. Устройства с автономными источниками электропитания и изолированными нейтралями всегда контролируются по уровню сопротивления изоляции. Кроме того, нужно обеспечить постоянный доступ для проведения проверок работоспособности изоляции.
Переносные заземлительные установки монтируются во время перерывов в работе электрооборудования. Установка защиты начинается только после отключения напряжения в электросети. Заземление устанавливается на все отключенные фазы. Причем установка осуществляется со всех сторон, откуда подается напряжение.
К монтажу переносных систем в электрических установках с напряжением свыше 1000 вольт допускаются исключительно специалисты, обладающими группой электробезопасности не меньше четвертой. Для установок с напряжением менее 1000 вольт необходима третья или выше группа электробезопасности.
Основные требования
Большая часть профильных рекомендаций и правил регламентирует конструкцию и размещение такой составной части заземляющей системы. Требования, которым должен соответствовать искусственный заземлитель:
- Для засушливых территорий существует отдельная технология производства заземления с применением железобетонных конструкций.
- Искусственный заземлитель не подлежит окраске. Объясняется тем, что любое окрашивание выполняет роль изолятора. Изоляция будет препятствовать протеканию тока в почву. Искусственный заземлитель должен иметь естественный цвет.
- Окраске подлежат сварочные швы (соединения проводников). Окрашиваются битумной краской, предотвращается преждевременное разрушение соединительных элементов.
- Нестандартные (уменьшенные) значения электродов применяются исключительно при установке временных электроустановок.
Оптимальным выбором материала заземлителя считается круглая арматура. Обоснование такого приоритета:
- Минимальный расход металла. Следовательно, снижается себестоимость заземляющего устройства.
- Коррозионная стойкость у такого электрода значительно выше, чем у его аналогов.
- Легкость монтажа.
Помимо профильных требований, существует рекомендационная стандартизация параметров (размеров) материала, используемого для создания искусственного заземляющего элемента.
Сопротивление искусственного заземлителя
Чтобы ЗУ эффективно выполняло свою задачу, оно должно иметь сопротивление растекания, не превышающее определенных значений. Данный параметр показывает, насколько хорошо устройство проводит электрический ток.
Для заземляемой электроустановки с напряжением 380В сопротивление искусственного заземлителя не должно превышать 30 Ом. Работающие под высоким напряжением, медицинская аппаратура, серверные блоки, системы видеонаблюдения заземляются с сопротивлением 0,5-1 Ом.
Расчет для искусственных заземлителей производится с целью определить, какое количество вертикальных и горизонтальных токопроводящих стержней должно быть смонтировано для получения оптимального сопротивления.
Монтаж защитного заземления своими руками
Треугольный контур заземления
Вообще, качество защитного заземления напрямую зависит от грунта. Например, сложно сделать хорошее заземление на камнях. Здесь нужно создать «надёжный контакт» с землёй, что в данном случае очень проблематично. Но и здесь существуют свои методы и разработки, которые рассматривать не будем. Просто затронем обычный житейский вариант.
Самые подходящие почвы для надёжного контура заземления – это суглинок, глина и торф. На песчанике устроить хорошее заземление гораздо сложнее. Не маловажным показателем будет глубина залегания грунтовых вод. Чем выше грунтовые воды, тем лучше будет заземление. Как известно, вода отличный проводник электричества, поэтому, она играет важную роль в данном вопросе.
Для изготовления надёжного заземляющего контура Вашей бани или дома нужно выбрать примерно в метре от фундамента, влажное тенистое место возле постройки. Людям здесь ходить нежелательно, можно организовать цветник с тенелюбивыми растениями. После этого выкапывается траншея в виде периметра треугольника шириной на штык лопаты. Глубину выбираем в зависимости от грунта. Чем суше и каменистее почва – тем глубже копаем. Но в среднем углубляться следует не меньше полуметра.
Приготовив траншеи, переходим к заземлителям. В их роли могут быть использованы железные трубы, уголки, швеллера, металлические прутья и арматура. Конечно, стеклопластиковая арматура здесь применяться не может, так как является идеальным диэлектриком. Более продвинутый вариант – специальные электроды из стали или меди, которые изготавливают именно для этих целей. В этом видео как раз рекламный ролик этой темы.
Отрезав выбранный или имеющийся материал длиной примерно 2 метра, забиваем заземлители в грунт по углам приготовленного треугольника. Затем при помощи сварки или специальных зажимов (плашек) соединяем забитые уголки или электроды между собой. В роли соединителя лучше всего применить металлическую полосу.
Если соединения происходят при помощи сварки, то эти места очищаются от шлака и прокрашиваются суриком. Только не стоит красить все металлические части, это значительно ухудшит результат. Цель этой работы – создать большую площадь соприкосновения металлических частей с землёй. Чем больше будет площадь, тем лучше. Электрическое сопротивление при этом значительно снизится. Чего мы и добиваемся.
Соединение заземляющего контура
Следующий этап – проводом (лучше голым) соединяем сделанный заземляющий контур с заземляющей шиной в электрическом распределительном щите дома или бани. Сечение провода лучше взять 16 мм2 или больше. Соединяем с помощью болтовых соединений: для лучшего контакта целесообразно воспользоваться наконечниками. Если вводной щит металлический – его также заземляем через специальный болт. Это делается обязательно.
После того, как заземляющий контур смонтирован и подключен к сборке, можно его немного засыпать землёй, посыпать обычной поваренной солью, полить водой и хорошо утрамбовать. Соль и вода создадут наименьшее электрическое сопротивление между грунтом и контуром. Затем вся траншея засыпается остатками земли и выравнивается.
На этом монтаж защитного заземления можно считать законченным. Если всё сделано правильно, то при замерах, сопротивление контура не должно превышать 4 Ом. Но этого, как правило, никто никогда не делает. Существуют фирмы, которые занимаются электрическими замерами, но цены на эти услуги ощутимо «кусаются». Так что лучший вариант – всё устройство защитного заземления сделать самостоятельно и правильно, соблюдая те моменты, которые описаны выше.
Цитата мудрости: Настоящая жизнь совершается там, где она не заметна.
Чем они отличаются
Разницу между двумя этими видами сможет уловить только основательно изучивший их особенности человек. Для непрофессионала они с трудом различимы, поскольку чаще всего организуются с привлечением одних и тех же технических средств.
Отличия между рабочим заземлением и защитным заземлением проявляется не столько в технической части, сколько в том, для каких конкретных целей они организуются. В обоих случаях для обустройства ЗУ используются специальные приспособления (конструкции), способные отводить опасные токи на землю. И там и там потребуется присоединить корпуса приборов через толстую медную жилу к тому сооружению, которое выбрано для надежной защиты электрооборудования и людей.
Хорошо различимое отличие рабочего заземления от своего аналога состоит в следующем:
- функциональное заземление делается с целью защиты оборудования и приборов, подключенных к данной электрической сети, от выхода их из строя;
- для его реализации допускается использовать молниеотводы и распределенные системы выравнивания потенциалов, подключенные к местному заземляющему контуру;
- оно в меньшей мере, чем защитное, обеспечивает безопасность работающего на линии персонала и простых людей.
Хороший пример такой разницы – так называемые «переносные» или временные конструкции, применяемые исключительно для защиты работающих на отключенном оборудовании специалистов. К защите электроустановок они никакого отношения не имеют (последние отключены) и даже при случайной подаче в линию стороннего напряжения представляют угрозу лишь для человека. То есть это – чисто защитная мера.
Другим характерным отличием защитного заземления является обязательное присоединение к заземлителю все металлические части корпусов оборудования, то есть каркасы, рамы, стальные ограждения и тому подобное. Функцию самого заземлителя в этом случае могут выполнять как искусственно созданные конструкции, так и уже проложенные в земле стальные элементы коммуникаций (включая различные виды металлических труб и кабельных экранов).
К частям оборудования, подлежащим обязательному рабочему занулению и заземлению относятся:
- Приводы всех без исключения электрических аппаратов.
- Корпуса работающих на объекте электрических машин, а также понижающих трансформаторов, используемых для питания переносных светильников.
- Обмотки измерительных преобразователей, относящихся к разряду вторичных.
- Стальные остовы и корпуса передвижных (переносных) электрических приемников.
- Все открытые части работающего в данный момент оборудования.
Во всех этих случаях при невозможности организации заземления для снижения опасности поражения людей согласно ПУЭ используют электроприемники, рассчитанные на напряжение не более, чем 42 Вольта.
Принцип действия ЗУ
Ключевой принцип работы заземления заключен в том, чтобы снижать потенциал напряжения точки, которая соприкасается с токопроводящими частями, до того момента, пока это не станет безопасно для людей. Когда опасное напряжение попадает на поверхность оборудования, потенциал заземлителя, который находится ближе всего к нулю, должен быть перенесен в эту самую точку, что создает безопасные и комфортные условия для работы. По истечении времени автоматическое устройство, защищающее от утечек электричества, срабатывает. Линия питающего напряжения деактивируется, устраняя аварийную ситуацию.
Процесс изготовления заземляющих устройств требует соблюдения некоторых особых условий, которые обеспечат надежность и контакт частиц почвы с металлическими поверхностями. Повысить электропроводность можно, погрузив в грунт металлическую конструкцию заземления, а вокруг нее создать зону максимальной удельной проводимости. Добиться повышения этой проводимости можно непосредственным химическим воздействием на землю, например с помощью соли.
Все вышеперечисленные методы способны обеспечить надежное движение электричества в грунт по заземленному основанию защитных конструкций. Помимо того что обеспечивается преднамеренное слияние корпуса электрического оборудования с заземленным механизмом, представленный выше метод может быть использован в критических ситуациях замыкания фазы на почву.
Системы с глухозаземленной нейтралью системы заземления TN
К таким системам относятся:
- TN-C;
- TN-S;
- TNC-S;
- TT.
Согласно п. 1.7.3 ПУЭ TN-система — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.
TN включает в себя такие элементы, как:
- заземлитель средней точки, которая относится к источнику питания;
- внешние проводящие части устройства;
- проводник нейтрального типа;
- совмещенные проводники.
Нейтраль источника глухо заземлена, а внешние проводники установки подключены к глухозаземленной средней точке источника при помощи проводников защитного типа.
Сделать заземляющий контур можно только в электроустановках, мощность которых не превышает 1 кВ.
Система TN-C
В данной системе нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник. Они совмещены на всем протяжении системы. Полное название — Terre-Neutre-Combine.
Среди преимуществ TN-C можно выделить только легкий монтаж системы, который не требует больших усилий и денежных затрат. Для монтажа не требуется улучшение уже установленных кабельных и воздушных линий электропередачи, у которых есть всего 4 проводящих устройства.
Недостатки:
- возрастает вероятность получения удара током;
- возможно появление линейного напряжения на корпусе электрической установки во время обрыва электрической цепи;
- высокая вероятность потери заземляющей цепи в случае повреждения проводящего устройства;
- такая система защищает только от короткого замыкания.
Система TN-S
Особенность системы заключается в том, что электричество поставляется к потребителям через 5 проводников в трехфазной сети и через 3 проводника в однофазной сети.
Всего от сети отходит 5 проводящих источников, 3 из которых выполняют функцию силовой фазы, а оставшиеся 2 — это нейтральные проводники, подсоединенные к нулевой точке.
Конструкция:
- PN — нейтральный механизм, который задействован в схеме электрического оборудования.
- PE — глухозаземленный проводник, выполняющий защитную функцию.
Преимущества:
- легкость монтажа;
- низкая стоимость покупки и содержания системы;
- высокая степень электробезопасности;
- не требуется создание контура;
- возможность использовать систему в качестве устройства от защиты утечки тока.
Система TN-C-S
TN-C-S система предполагает разделение проводника PEN на PE и N в каком-то участке цепи. Обычно разделение происходит в щитке в доме, а до этого они совмещены.
Достоинства:
- простое устройство защитного механизма от попадания молний;
- наличие защиты от короткого замыкания.
Минусы использования:
- слабый уровень защиты от сгорания нулевого проводника;
- возможность появления фазного напряжения;
- высокая стоимость монтажа и содержания;
- напряжение не может быть отключено автоматикой;
- отсутствует защита от тока на открытом воздухе.
Система TT
TT разработана для обеспечения высокого уровня безопасности. Устанавливается на электростанциях с низким уровнем технического состояния, например, где используются оголенные провода, электроустановки, которые расположены на открытом воздухе или закреплены на опорах.
TT монтируется по схеме четырех проводников:
- 3 фазы, подающие напряжение, смещаются под углом 120° между собой;
- 1 общий ноль выполняет совмещенные функции рабочего и защитного проводника.
Преимущества TT:
- высокий уровень устойчивости к деформации провода, ведущего к потребителю;
- защита от КЗ;
- возможность использования на электроустановках высокого напряжения.
Недостатки:
- сложное устройство защиты от молний;
- невозможность отследить фазы короткого замыкания электрической цепи.
Взрывоопасные участки
В некоторых случаях на территории производственных предприятий работают взрывоопасные цеха
Здесь важно качественно отводить статическое электричество, возникающее в процессе трения жидкообразного вещества о внутренние стенки труб
В процессе обустройства таких конструкций обычно создается естественное заземление, которое проходит через аппаратуру и строительные конструкции. Тем не менее, этого недостаточно.
В подобных ситуациях необходимо снизить вынос потенциала. Хорошей мерой является установка промежуточного заземления трубопровода, применение кабельных проводников, имеющих неметаллическую оболочку. К таковым, например, относится марка ААШВ.
Экзотермическая сварка
Экзотермическая сварка ZANDZ — это современный и надёжный метод, который обеспечивает наиболее качественный контакт между двумя проводниками. Это превосходные сварные соединения, которые никогда не ослабнут, не заржавеют и имеют неизменное сопротивление.
Соединения, выполненные методом экзотермической сварки, по своей коррозионной стойкости превосходят все самые распространённые методы соединений (классическая сварка, болтовое соединение). Экзотермическая сварка не влияет на проводимость металлов, обеспечивает оптимальную площадь контакта и долговечность соединения.
Особенности установки
Для того чтобы искусственная заземлительная конструкция эффективно выполняла защитную функцию, она должна быть правильно установлена с применением техники и специального оборудования. При укладке двух горизонтальных электродов от заземляемой части установки их необходимо располагать в противоположном направлении. Если количество заземлителей больше двух, их монтаж требуется проводить под наклоном в 90−120 градусов. Таким образом удастся достичь улучшенного показателя сопротивляемости деталей.
В процессе установки происходит распределение электрических потенциалов. Наличие существенной разницы показателей на поверхности земли и внутри неё повлечёт за собой возникновение опасных напряжений. С целью предотвращения такой ситуации и выравнивания параметров применяется искусственный заземлительный элемент в виде сетки, когда горизонтальные электроды располагаются вдоль и поперёк, а места их пересечений фиксируются сваркой.
Заземлители искусственного типа должны иметь естественный цвет, их нельзя окрашивать, поскольку это приведёт к образованию изоляционного слоя. Он ограничит протекание электричества в грунт. Покрывать битумной краской разрешается только места соединения проводников, обработанные сваркой. Такое покрытие защитит элементы от раннего разрушения.
Самой простой и эффективной (с точки зрения монтажа и эксплуатации) считается установка круглой заземлительной конструкции. Она имеет низкую себестоимость, поскольку для её изготовления требуется минимальное количество материалов. Коррозийная устойчивость круглого контура значительно выше, чем контуров другой формы.
Различия между рабочим и защитным заземлениями
Рабочее и защитное заземление отличается друг от друга прежде всего назначением. Если первое необходимо для обеспечения правильной и бесперебойной работы электрооборудования, то второе служит для защиты людей от поражения электрическим током. Также оно защищает и оборудование от поломок в случае пробоя какого-нибудь электрического прибора на корпус. Если здание оборудовано громоотводом, такой тип заземления защитит приборы от перегрузки в случае удара молнии.
Рабочее заземление электроустановок, в случае возникновения чрезвычайной ситуации, сыграет роль защитного, но основная её функция — обеспечение правильной бесперебойной работы электрооборудования.
В неизменном виде функциональное заземление применяют только на промышленных объектах. В жилых домах используется заземляющий проводник, который подводится к розетке. Однако есть бытовые приборы в доме, которые таят в себе потенциальную опасность для потребителя, поэтому не будет лишним заземлить их, используя глухозаземлённую нейтраль.
Домашние приборы, которые требуется подключить к рабочему заземлению:
- Микроволновка.
- Духовка и плита, которые работают за счёт электричества.
- Стиральная машина.
- Системный блок персонального компьютера.
Как сделать модульно штыревое заземление
Каким образом производится весь монтаж? Во-первых, необходимо выкопать небольшой приямок глубиной 0,5м.
Далее накручиваете стартовый наконечник на первый стержень.
После чего, руками пробуем его забить в землю. Для облегчения вхождения в грунт подливайте водички.
При достаточно мягком грунте, поступательными движениями и ударами небольшого молотка, иногда получается целиком загнать первый штырь.
Почему это лучше попробовать сначала сделать вручную? При забивании первого или второго электрода, в этих верхних слоях зачастую попадаются камни. В случае ручной работы, электрод после этого легко вытаскивается наружу и переставляется на новое место.
А вот если вы с самого начала работали перфоратором, то плотность вхождения его в грунт будет таковой, что без раскопки еще на 1м его и вытащить то не получится.
После погружения первого заземлителя накручиваете муфту и вставляете второй прут.
Не забывайте про смазку. Она улучшает токопроводящие свойства и защищает резьбу от коррозии.
Также следите за тем, чтобы приямок постоянно был в воде. Это существенно улучшает вхождение электродов в грунт.
При этом обратите внимание на важный момент! Некоторые недобросовестные электрики таким дешевых способом пытаются обмануть заказчиков. Забивают два, три электрода, обильно смочив приямок соленой водичкой, присыпают место свежей землицей и тут же делают замер. Показатели с таким грунтом первоначально могут быть в идеале
Показатели с таким грунтом первоначально могут быть в идеале
Забивают два, три электрода, обильно смочив приямок соленой водичкой, присыпают место свежей землицей и тут же делают замер. Показатели с таким грунтом первоначально могут быть в идеале.
А вот через несколько дней после просыхания почвы, все резко меняется. Только вы об этом даже не узнаете.
Без специальных измерительных приборов невозможно понять, насколько надежно и качественно сделан контур заземления. Можете только перекреститься и уверовать.
Второй и последующие электроды загоняете в землю ударным перфоратором большой мощности, или отбойным молотком.
Производители заземлений рекомендуют для этого дела инструменты с ударом от 20 Джоулей и выше.
То есть, лучше, чтобы это был не дорогой перфоратор Хилти, а дешевый ноу нэйм китайский отбойник.
Кстати, есть комплекты заземлений, которые забиваются без отбойного молотка, а обычной кувалдой весом более 10кг.
Для этого понадобится специальный нагель, по которому и будут наноситься удары.
Здесь самое главное не сила удара и размер замаха, иначе быстро разобьете посадочное отверстие, а равномерность и поступательность движений.
При работе перфом следите за кривизной направляющей. Из-за сильного изгиба и вибраций, ударная головка нередко ломается!
После углубления очередного штыря делается замер. Там, где преобладает чернозем и суглинок с глиной, показатели всего с одного заземлителя уже могут достигать минимально требуемых 30 Ом. При погружении второго на глубину 3м, вполне реально приблизиться до 10 Ом.
А вот там, где песок, электроды один за одним будут просто улетать вниз, при этом не давая желаемого результата.
Здесь действует правило – чем тяжелее идет штырь, тем лучше будет сопротивление.
Но это конечно не относится к скальному грунту.
Если загнали почти все штыри из комплекта, а последний зашел наполовину и встал как мертвый, срезайте его болгаркой возле земли, оставив место под сжим.
При плохих результатах сопротивления, придётся отступить расстояние равное глубине уже забитых заземлителей и делать на новом месте второе. После чего соединять два контура горизонтальной шиной.
Опасность воздействия
Прохождение тока через тело, при прикосновении к элементам конструкций с разной величиной электрического напряжения, опасно для здоровья и жизни. Здесь тело является проводником тока от точки с высоким потенциалом к точке с низким значением напряжения.
Опасными характеристиками тока являются:
- частота;
- сила;
- путь прохождения через тело пострадавшего.
Наиболее опасен переменный ток. Он ощутим уже при величине до 0,6 мА. Ток, лежащий в пределах от 0,6 мА до 0, 025 мА, имеет притягивающие свойства из-за своей периодичности импульсов. Человек самостоятельно не может «отлепиться» от точек прикосновения. Конечности непроизвольно сжимаются, тело не слушается.
Сила тока выше 0,1 А вызывает фибрилляцию внутренних органов и сердца и является смертельно опасной.
Направления движения электричества через тело человека определяют уровень вреда здоровью.
Смертельные маршруты прохождения электротока:
- «рука – рука» – под воздействие попадают бронхи, лёгкие и сердце;
- «рука – нога» – страдают все внутренние органы;
- «голова – конечности» – поражаются как внутренние органы, так и мозг.
Ещё один путь вредного движения тока – «нога – нога». Это «шаговое напряжение», которое может возникнуть при нахождении в пятне растекания тока по поверхности в случае обрыва провода, находящегося под напряжением. Сердце при этом не повреждается, если человек не упал и не изменил точек соприкосновения с источником опасности.
Радиус действия напряжения шага
Функции искусственного заземляющего элемента
Согласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача.
Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта.
Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:
- Обеспечение электрической безопасности пользователям электроустановки. Основные задачи защитной функции — уменьшение показателей разности потенциалов, отвод блуждающего тока. Ток утечки образуется при взаимодействии заземляющего предмета с фазным кабелем.
- Поддержка эффективной и бесперебойной работы как электрического оборудования, так и всей электроустановки.
Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента.
Монтажные работы
Шаг 1 – Выбираем место
Сначала нужно определиться, в каком месте сделать заземляющий контур
Важность данного этапа очень высока, т.к. от выбора места заземления на дачном участке зависит безопасность использования системы. Если и случится пробой электропроводки, в результате чего сработает защита, то в месте, где находятся штыри, быть никого не должно
Присутствие человека либо животного на месте отвода электричества в почву может стать причиной летального исхода. Именно поэтому местоположение электродов выбирается с учетом того, что здесь никто не будет находиться. Лучше всего размещать отвод вдоль забора за домом, на расстоянии не больше, чем 1 метр от фундамента постройки. Дополнительно рекомендуется сделать невысокий заборчик либо бордюр для ограждения небезопасной зоны
Если и случится пробой электропроводки, в результате чего сработает защита, то в месте, где находятся штыри, быть никого не должно. Присутствие человека либо животного на месте отвода электричества в почву может стать причиной летального исхода. Именно поэтому местоположение электродов выбирается с учетом того, что здесь никто не будет находиться. Лучше всего размещать отвод вдоль забора за домом, на расстоянии не больше, чем 1 метр от фундамента постройки. Дополнительно рекомендуется сделать невысокий заборчик либо бордюр для ограждения небезопасной зоны .
Если Вы не хотите портить ландшафтный дизайн участка, рекомендуем организовать систему заземления жилого дома под валунами либо какой-нибудь объемной садовой скульптурой. В данном случае и находиться никто не сможет в опасной зоне и красоте приусадебной территории ничто не навредит!
Шаг 2 – Земляные работы
Для примера рассмотрим, как правильно сделать заземление в частном доме треугольником по схеме, которую мы рассматривали выше. На данном этапе необходимо лопатой прокопать треугольник со сторонами 2-3 метра (наиболее оптимальное расстояние между уголками). Глубина траншеи должна составлять от 50 до 70 см. Такую же траншею нужно прокопать к крыльцу дома.
Шаг 3 – Собираем конструкцию
Теперь начинается основная часть процесса. Согласно схеме необходимо забить электроды на 2 метра в землю (чтобы остались только верхушки, к которым нужно будет прихватиться сваркой).
Рекомендуется болгаркой подточить вбиваемый конец, чтобы он легче пронизывал почву.
Когда все штыри буду вбиты, необходимо приварить пластины к верхушкам, чтобы получился металлический треугольный каркас (как показано на фото).
Еще одна пластина укладывается в длинную траншею, идущую к дому, и прихватывается одним концом к ближайшей вершине треугольника.
После этого можно переходить к подсоединению кабеля к пластине, используя болт и, в конце концов, засыпать все ямы грунтом обратно.
Один важный нюанс – если участок представлен песочной подушкой, токопроводимость грунта нужно будет повысить раствором соли. Жидкость необходимо разлить под основание всех электродов. Недостаток такого мероприятия – металл быстрее начнет поддаваться коррозии, что сделает заземление в частном доме не таким мощным, как нужно.
Шаг 4 – Контрольная проверка
Последнее, что Вам останется сделать – провести замер сопротивления готового заземления в частном доме. По-хорошему для измерения необходимо использовать специальный электроприбор, стоимость которого довольно высокая.
В домашних условиях можно пойти другим путем решения проблемы, более простым – проверить работоспособность с помощью лампы, мощностью не менее 100 Вт. Все что нужно – подключить источник света одним контактом к заземляющему контуру, а другим к фазе. Если лампочка будет ярко гореть – монтаж заземления в собственном доме был выполнен правильно, тускло – контакт между элементами конструкции слабый и необходимо переделывать стыки. Если же свет вообще не появился, Вы где-то допустили ошибку и нужно будет полностью пересматривать всю систему, возможно, начиная с самой схемы! Более подробно об измерении сопротивления контура заземления мы рассказывали в отдельной статье.
На этом инструкция и завершается
Надеемся, что теперь Вы знаете, как сделать заземление в частном доме своими руками! Обращаем Ваше внимание на то, что данная технология и все размеры подходит и для дачи тоже
Более подробно увидеть весь процесс Вы можете на наглядных видео примерах:
Видео инструкция по созданию защитной линии (часть 1)
Видео инструкция по созданию защитной линии (часть 2)
Ошибки при монтаже заземляющего контура
https://youtube.com/watch?v=OWmyC8hspOs
Похожие материалы:
- Как сделать освещение в доме
- Как сделать контрольную лампу электрика
- Почему срабатывает УЗО в доме