Чем называют эффективно заземленную нейтраль? эффективно заземленная нейтраль и глухозаземленная отличия

Содержание

7.4. Сеть с эффективно заземленной нейтралью

Сеть с эффективно заземленной нейтралью является частным слу­чаем сети с глухозаземленной нейтралью. Электрическая сеть с эффек­тивно заземленной нейтралью – трехфазная электрическая сеть напря­жением выше 1000 В, в которой коэффициент замыкания на землю не превышает 1,4.

Под К3 понимают отношение

где Uф.з – фазное напряжение неповрежденной фазы при замыкании на землю.

Сети напряжением 110 кВ и выше выполняются с эффективным за­землением нейтрали по соображениям стоимости изоляции, так как в таких сетях при замыкании на землю одной фазы напряжение на двух, других не превышает 0,8 номинального междуфазного напряжения. Это означает, что изоляцию рассчитывают на это напряжение, а не на полное между фазное напряжение в случае изолированной или компен­сированной нейтрали.

При эффективном заземлении нейтрали замыкание фазы на землю является, по существу, однофазным коротким замыканием, которое требует немедленного отключения. Тяжелым аварийным режимом яв­ляется также двух- или трехфазное короткое замыкание на землю. Од­нако при таких КЗ напряжения на неповрежденных фазах, а также токи КЗ оказываются меньшими, чем при однофазных замыканиях на зем­лю. Поэтому двух- и трехфазное короткое замыкание на землю не рас­сматривается.

Значительная часть однофазных замыканий в сетях 110 кВ и выше при снятии напряжения самоустраняется, поэтому автоматическое по­вторное включение восстанавливает питание потребителей.

Обычно в электрических сетях с эффективно заземленной нейтра­лью для ограничения тока однофазного КЗ заземляют нейтрали не всех, а лишь части силовых трансформаторов. Например, из двух уста­новленных на подстанции трансформаторов нейтраль заземляют толь­ко у одного. Для этой же цели в некоторых случаях нейтрали транс­форматоров заземляют через дополнительное активное или реактивное сопротивление.

Основным преимуществом такого заземления нейтрали, в особен­ности для сетей напряжением 110 кВ и более, является ограничение напряжений, возникающих в неповрежденных фазах при замыканиях на землю в сети. Следовательно, изоляцию таких сетей можно рассчи­тывать на меньшую кратность перенапряжений. Некоторое значение имеет также возможность применения в сетях с эффективным заземлением нейтрали относительно простых устройств релейной защиты от замыканий на землю.

К недостаткам таких сетей по сравнению с сетями, в которых обес­печивается режим изолированной нейтрали, относятся более тяжелые последствия однофазных замыканий на землю (необходимость их немедленного отключения и т.д.), а также более высокая электроопасность для обслуживающего персонала, пожаро- и взрывоопасность. Кроме того, реализация режима эффективного заземления нейтрали, которое должно быть рассчитано на больший ток КЗ, требует сущест­венного усложнения системы заземления на подстанциях.

Основными областями применения эффективного заземления ней-! трели следует считать сети с номинальными напряжениями 110 кВ и более, а также сети напряжением до 1000 В при условии отсутствия в них установок с повышенной электро-, пожаро- и взрывоопасностью.

Следует отметить, что в последние годы эффективное заземление нейтрали получает распространение и в городских сетях. В этом слу­чае, если сеть имеет К3 < 1,0, при замыкании на землю перенапряже­ния не возникают и изоляция фаз по отношению к земле выбирается по фазному, а не по линейному напряжению. Благодаря этому сеть с на­пряжением 6 кВ может эксплуатироваться с напряжением 10 кВ. В ре­зультате мощность, передаваемая по сети, увеличивается в раз без замены токоведущих частей и изоляции, в том числе без замены кабелей.

Системы с изоляцией от земли

Работа высоковольтных сетей с эффективно заземленной нейтралью изоляционного типа является распространенной в различных регионах России. В этом случае нейтральная точка в трансформаторе или генераторе с трехфазной обмоткой не заземляется. Популярность подобного варианта включения нейтрали объясняется тем, что замыкание на землю фазы не является коротким, т. к. попросту отсутствует взаимосвязь с грунтом.

Особенность же заключается в том, что ВЛ в таком аварийном режиме работает без существенных поломок на протяжении нескольких часов. Среди достоинств такой схемы отмечено также наличие малых токов в точке замыкания ОЗЗ (одна фаза на землю). Объясняется такой принцип небольшой емкостью сети по отношению к грунту.

Отсутствует необходимость во включении защитных быстродействующих устройств от ОЗЗ, в результате чего снижаются затраты при эксплуатации систем. Не обойтись и без недостатков при подключении:

  1. В некоторых случаях создаются перенапряжения, имеющие дуговой эффект даже при небольших токах в месте заземления одной фазы.
  2. Существует вероятность выхода из строя высоковольтных, кабельных установок вследствие повреждения изоляционного слоя.
  3. Ведется повышенный учет напряжений (380 В). При необходимости линейная электрическая техника подвергается тщательной изоляции.
  4. Сложное нахождение и определение конкретной точки повреждения.

Вам это будет интересно Гофра для прокладки проводов и кабелей

Выбирая описанный тип подсоединения нейтральной точки, следует учитывать все его преимущества и недостатки, тщательно продумать последствия от возможных аварийных ситуаций.

Сеть с глухозаземленной нейтралью

Рядовые потребители электрической энергии редко понимают, что источником тока в розетке являются силовые трансформаторы. При соединении трёхфазных обмоток трансформатора в «звезду» появляется совместная точка. Нейтраль – так она называется. При соединении нейтрали с контуром заземления непосредственно у источника появляется глухозаземленная нейтраль.

Наибольшая область применения систем с глухозаземленной нейтралью – напряжение до 1000 Вольт (так называемое низкое напряжение). Электрические сети городов и посёлков, дачные домики и элитные коттеджи – все они запитываются от силовых трансформаторов с заземлѐнной нейтралью.

Особенности конструктива

Конструктивной особенностью глухозаземленной нейтрали является наличие фазного и линейного напряжения. Источники электрической энергии, используемые в рассматриваемых электроустановках, обладают тремя силовыми: фазными концами и одним нейтральным – нулевым. Разность потенциалов, появляющаяся между фазными проводами, называется линейным напряжением, а между одним из фазных и нулевым – фазным.

По величине показателя линейного напряжения говорят о напряжении всей электросети. В нашей стране оно зафиксировано на значениях, равных 220В, 380В и 660В.

√3 раз – такова разница между фазным и линейным напряжением. Соответственно, фазное напряжение будет принимать вид 127 В, 220 В и 380 В. Самое распространённая величина номинального напряжения – 380 В. При линейном напряжении 380 В фазное равно 220 В.

Электрическую сеть с нейтралью, заземлённой непосредственно рядом с источником, можно использовать для электроснабжения трехфазных нагрузок на напряжение 380 В и однофазных на напряжение 220 В. Для последних подключение производится между «фазой» и «нулём». Распределение однофазных потребителей производят равномерно по фазам А, В и С во избежание перекоса.

Контур заземления ТП

Любая трансформаторная подстанция с действующим трансформатором обязана быть окружена контуром заземления. Контур заземления трансформаторной подстанции – это таким образом соединённые между собой металлические заземлители, заглублённые в грунт, чтобы сопротивление их не превышало 4-х Ом при номинальном напряжении 380 В. Это значение закреплено в главном нормативном документе электротехники – ПУЭ.

От контура заземления подстанции делаются выводы для присоединения в распределительном устройстве к специальной металлической полосе – нулевой шине. К ней же подключается нулевой вывод трансформатора. У отходящих кабельных линий соответствующие жилы так же заводятся на эту шину. Фазные жилы «сажаются» на коммутационные аппараты.

Кабели, выходящие из кабельного полуэтажа подстанции, должны быть четырёхжильными. В давно введённых в эксплуатацию электроустановках встречаются кабели с тремя жилами и оболочкой из алюминия. В этом случае она используется как нулевой проводник.

Для принятия напряжения от сетевой организации каждый потребитель обязан организовать у себя на объекте вводное распределительное устройство 0,4 кВ (ВРУ). В нем необходимо предусмотреть нулевую шину соответствующего сечения. К ней присоединяются все нулевые жилы подходящих и отходящих кабелей. Повторное заземление ВРУ тоже заводится на нулевую шину.

Разберем ситуацию со схемами

С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.

Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

Представим ситуацию, когда нулевой провод по какой-то причине разорван:

  • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
  • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
  • несанкционированное вмешательство доморощенного «электрика»;
  • авария на подстанции (возможно отключение только нулевой шины).

На схеме это выглядит следующим образом:

При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.

Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

Для справки: Обычно используется цветовая маркировка проводов:

  1. Фаза — коричневого или белого цвета.
  2. Рабочий ноль — синего цвета.
  3. Защитное заземление — желто-зеленая оболочка.

Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.

Что такое заземление, принцип действия и устройство

При создании электросети, в помещениях различного назначения, требуется создание защиты, которая предотвратит вероятное поражение током. Чтобы избежать этого выполняется устройство заземления. В соответствии с ПЭУ п.1.7.53 заземление выполняется в электрооборудовании с напряжением более 50 В переменного и 120 В постоянного тока.

Шина заземления от ГРЩ к потребителю

Заземление – намеренное соединение нетоковедущих металлических частей электроустановок (которые могут оказаться под напряжением) с землей или ее эквивалентом. Данная защитная мера предназначена для исключения вероятности поражения человека электротоком при замыкании на корпус оборудования.

Принцип действия

Принцип работы защитного заземления заключается в:

  • снижении разности потенциалов, между заземляемым элементом и другими токопроводящими предметами с естественным заземлением, до безопасного значения;
  • отвод тока в случае непосредственного контакта заземляемого оборудования с фазным проводом. В грамотно спроектированной электросети возникновение тока утечки вызывает мгновенное срабатывание устройства защитного отключения (УЗО).

Схемы заземления в трехфазных сетях

Из вышесказанного следует, что заземление имеет большую эффективность при использовании в комплексе с УЗО.

Устройство заземления

Конструкция системы заземления состоит из заземлителя (проводящая часть, которая имеет непосредственный контакт с землей) и проводника, обеспечивающего контакт между заземлителем и нетоковедущими элементами электрооборудования. Обычно в качестве заземлителя используется стальной или медный (очень редко) стержень, в промышленности это как правило, сложная система, состоящая из нескольких элементов специальной формы.

Эффективность системы заземления во многом определяется величиной сопротивления защитного устройства, которую можно уменьшить, повышая полезную площадь заземлителей или увеличивая проводимость среды, для чего задействуется несколько стержней, повышается уровень солей в земле и т.п.

Заземляющее устройство это…

Выше мы рассмотрели в общих чертах, что такое защитное заземление. Однако стоит упомянуть, что используемые в системе заземлители различаются на естественные и искусственные.

В качестве устройств заземления в первую очередь предпочтительнее использовать такие естественные заземлители, как:

  • трубы водоснабжения, находящиеся в грунте;
  • металлоконструкции зданий и сооружений, имеющие надежный контакт с землей;
  • обсадные трубы артезианских скважин;
  • металлические оболочки кабелей (исключение составляет алюминий).

Вариант использования трубы в качестве естественного заземлителя

Естественные заземлители должны иметь соединение с защитной системой из двух и более разных точек.

В роли искусственного заземлителя может использоваться:

  • стальная труба с толщиной стенок 3,5 мм и диаметром 30÷50 мм и длиной порядка 2÷3 м;
  • стальные полосы и уголки толщиной от 4 мм;
  • стальные пруты длиной до 10 и более метров и диаметром от 10 мм.

Использование металлических полос в качестве искусственного заземлителя

Для агрессивных почв необходимо использование искусственных заземлителей с высокой устойчивостью к коррозии и изготовленных из меди, оцинкованного или омедненного металла. Итак, мы разобрались с тем, что является определением понятия искусственного и естественного заземлителя, теперь же рассмотрим, когда применяется заземление.

Предлагаемое видео наглядно объясняет, что такое защитное заземление:

Устройство заземления своими руками: поэтапная инструкция

Если Вы задаетесь вопросом: «как сделать заземление на даче?», то для выполнения данного процесса потребуется следующий инструмент:

  • сварочный аппарат или инвертер для сварки металлопроката и вывода контура на фундамент здания;
  • угловая шлифмашинка (болгарка) для разрезания металла на заданные куски;
  • гаечные глючи для болтов с гайками М12 или М14;
  • штыковая и подборная лопаты для рытья и закапывания траншей;
  • кувалда для вбивания электродов в землю;
  • перфоратор для разбивания камней, которые могут встречаться при рытье траншей.

Чтоб правильно и согласно нормативным требованиям выполнить контур заземления в частном доме нам потребуются следующие материалы:

  1. Уголок 50х50х5 — 9 м (3 отрезка по 3 метра).
  2. Сталь полосовая 40х4 (толщина металла 4 мм и ширина изделия 40 мм) — 12 м в случае вывода одной точки заземлителя на фундамент здания. Если же Вы хотите выполнить контур заземления по всему фундаменту к указанному количеству добавьте общий периметр здания и еще возьмите запас для подрезки.
  3. Болт М12 (М14) с 2 шайбами и 2-я гайками.
  4. Медный заземлитель. Может быть использована заземляющая жила 3-х жильного кабеля либо провод ПВ-3 с сечением 6–10 мм².

После того как все необходимые материалы и инструменты есть в наличии можно переходить непосредственно к монтажным работам, которые детально расписаны в следующих главах.

Выбор места для монтажа контура заземления

В большинстве случаев рекомендуется монтировать контур заземления на расстоянии в 1 м от фундамента здания в месте где оно будет скрыто от человеческого глаза и к которому будет сложно добраться как людям, так и животным.

Такие меры необходимы для того, что при повреждении изоляции в электропроводке потенциал будет идти на контур заземления и может возникнуть шаговое напряжение, которое может привести к электротравме.

Выполнение земляных работ

После того как было выбрано место, выполнена разметка (под треугольник со сторонами 3 м), определено место вывода полосы с болтами на фундамент здания можно приступать к земляным работам.

Для этого необходимо с помощью штыковой лопаты по периметру размеченного треугольника со сторонами по 3 м снять слой земли в 30–50 см. Это необходимо для того, чтоб в дальнейшем без особых трудностей к заземлителям приварить полосовой металл.

Также стоит дополнительно прокопать траншею такой же глубины для подвода полосы к зданию и выводу ее на фасад.

Забивание заземлителей

После подготовки траншеи можно приступать к монтажу электродов контура заземления. Для этого предварительно с помощью болгарки необходимо заточить края уголка 50х50х5 или круглой стали диаметром 16 (18) мм².

Далее выставить их в вершины полученного треугольника и с помощью кувалды забить в землю на глубину 3 м

Также важно чтоб верхние части заземлителей (электродов) находились на уровне выкопанной траншеи чтоб к ним можно было приварить полосу

Сварные работы

После того как электроды будут забиты на необходимую глубину с помощью стальной полосы 40х4 мм необходимо сварить между собой заземлители и вывести данную полосу на фундамент здания где будет подключен заземляющий проводник дома, дачи или коттеджа.

Там, где полоса будет выходить на фундамент на высоте 0.3–1 мот земли, необходимо приварить болт М12 (М14) к которому в дальнейшем будет подключено заземления дома.

Обратная засыпка

После выполнения всех сварных работ полученную траншею можно засыпать. Однако перед этим рекомендуется залить траншею соляным раствором в пропорции 2–3 пачки соли на ведро воды.

После полученную почву необходимо хорошо утрамбовать.

Проверка контура заземления

После выполнения всех монтажных работ возникает вопрос «как проверить заземление в частном доме?». Для этих целей конечно обычный мультиметр не подойдет, поскольку у него очень большая погрешность.

Для выполнения данного мероприятия подойдут приборы Ф4103-М1, Клещи Fluke 1630, 1620 ER и так далее.

Однако эти приборы очень дорогие, и если Вы выполняете заземление на даче своими руками, то для проверки контура Вам будет достаточно обычной лампочки на 150–200 Вт. Для данной проверки Вам необходимо один вывод патрона с лампочкой подключить к фазному проводу (обычно коричневого цвета) а второй — к контуру заземления.

Если лампочка будет ярко светить — все отлично и контур заземления полноценно функционирует, если же лампочка будет тускло светить или вообще не испускать световой поток — значит контур смонтирован неверно и нужно либо проверять сварные стыки или монтировать дополнительные электроды (что бывает при низкой электропроводимости почвы).

Системы с изоляцией от земли

Работа высоковольтных сетей с эффективно заземленной нейтралью изоляционного типа является распространенной в различных регионах России. В этом случае нейтральная точка в трансформаторе или генераторе с трехфазной обмоткой не заземляется. Популярность подобного варианта включения нейтрали объясняется тем, что замыкание на землю фазы не является коротким, т. к. попросту отсутствует взаимосвязь с грунтом.

Особенность же заключается в том, что ВЛ в таком аварийном режиме работает без существенных поломок на протяжении нескольких часов. Среди достоинств такой схемы отмечено также наличие малых токов в точке замыкания ОЗЗ (одна фаза на землю). Объясняется такой принцип небольшой емкостью сети по отношению к грунту.

Отсутствует необходимость во включении защитных быстродействующих устройств от ОЗЗ, в результате чего снижаются затраты при эксплуатации систем. Не обойтись и без недостатков при подключении:

  1. В некоторых случаях создаются перенапряжения, имеющие дуговой эффект даже при небольших токах в месте заземления одной фазы.
  2. Существует вероятность выхода из строя высоковольтных, кабельных установок вследствие повреждения изоляционного слоя.
  3. Ведется повышенный учет напряжений (380 В). При необходимости линейная электрическая техника подвергается тщательной изоляции.
  4. Сложное нахождение и определение конкретной точки повреждения.

Вам это будет интересно СИП: расшифровка и характеристики кабеля с изоляцией и без

Выбирая описанный тип подсоединения нейтральной точки, следует учитывать все его преимущества и недостатки, тщательно продумать последствия от возможных аварийных ситуаций.

ЛИТЕРАТУРА

1. Вильгейм Р., Уотерс М. Заземление нейтрали в высоковольтных системах. — М.: Госэнергоиздат, 1959, 415 с.
2. Сирота И.М., Кисленко С.П., Михайлов А.М. Режимы нейтрали электрических сетей. — Киев: Наукова думка, 1985,264 с.
3. Зильберман в.А., Эпштейн И.М., Петрищев А.С., Рождественский Г.Г. влияние способа заземления нейтрали сети собственных нужд блока 500 МВт на перенапряжения и работу релейной защиты. — Электричество, 1987, № 12, с. 52—56.
4. Глушко в., Ямный О., Ковалёв Э., Бохан Н. Белорусские сети 6—35 кв переходят на режим заземления нейтрали через резистор. Новости Электротехники, 2006, № 3 (39), с. 37—40.
5. Миронов И.А. Проблема выбора режимов заземления нейтрали в сетях 6—35 кв. — Электро, 2006, № 5, с. 32—36.
6. Челазнов АА. Методические указания по выбору режима заземления нейтралей в сетях напряжением 6—10 кв. — Энергоэксперт, 2007, № 1, с. 60—67.
7. Лихачев Ф.Ф. Замыкания на землю в сетях с изолированной нейтралью и с компенсацией ёмкостных токов. — М.: Энергия, 1971, 152 с.
8. Правила устройства электроустановок. Раздел 1. Общие правила. — 7-е изд. — М.: Изд-во НЦ ЭНАС, 2003 г., 176 с.
9. Альберто Черретти, Джорджо Ди Лембо и др. Автоматическое отключение КЗ на сетях среднего напряжения с нейтралью, подключённой к заземлению через полное сопротивление. CIRED. 17-я Международная конференция по распределению электроэнергии. Барселона, 12—15 мая, 2003 г., 8 с.
10. Фишман в. Универсальное решение по заземлению нейтрали пока не найдено. Новости электротехники, 2003, № 6, с. 36—38.
11. Кужеков С.Л., Хнычев в.А., Корогод А.А. и др. Предотвращение многоместных повреждений кабельных линий 6—10 кв средствами релейной защиты и электроавтоматики // Релейная защита и электроавтоматика энергосистем: сборник докладов XX конференции, Москва: Научно-инженерное информационное агентство, 2010, с. 259—263.
12. Фишман в. Регулирование режима заземления нейтрали в сетях 6—35 кБ с использованием принципов Smart Grid. Новости электротехники, 2012, № 5, с. 42—47.
13. Манилов А., Барна А. ОЗЗ в сетях 6—10 кв с комбинированным заземлением нейтрали. Способ обеспечения чувствительности защит. Новости электротехники, 2012, № 5, с. 42—47.

Cообщение об ошибке

Функции

В идеальной ситуации ноль должен выполнять функции проводника, обеспечивая замыкание электрической цепи. Но фактически нередко напряжение по фазам значительно отличается.

Также читайте: Назначение диэлектрических перчаток в электроустановках

При возрастании мощности в одной из фаз происходит снижение силы тока и смещение нуля, с образованием напряжения смещения. Данная характеристика прямо пропорциональна разнице фазного напряжения. В результате отдельным потребителям подаётся напряжение с повышенным, а другим – с пониженным вольтажом.

Назначение нулевого провода состоит в выравнивании напряжения между фазами, чтобы потребителям подавался ток со стандартными характеристиками.

Если для одной фазы вольтаж возрастает, избыток через ноль на подстанции переходит на другую фазу, выравнивая показатели.

Достоинства и недостатки

Для планирования подключений, расхода материалов во время строительства, проектирования, затрат на обслуживание в процессе эксплуатации обязательно учитываются все за и против.

Изолированная от земли нулевая точка обладает такими преимуществами в эксплуатации:

  • Обеспечивает больший уровень безопасности системы, чем когда нейтраль заземлена, так как при однофазных кз отсутствует цепь для протекания электрического тока.
  • Высокая степень надежности – благодаря уменьшению числа действующих элементов, существенно понижается вероятность возможных повреждений во время работы, снижается количество возможных аварий и поломок.
  • Требует меньших затрат на этапе монтажа линий электропередач для изолированного нулевого вывода. Так как электрическая энергия передается лишь по трем проводам, это позволяет существенно снизить себестоимость ЛЭП.
  • Независимость питания для однофазных нагрузок – даже в случае обрыва одной из фаз, электроснабжение по другим продолжится в штатном режиме.


Рис. 4. При обрыве одной фазы остальные обеспечивают питание Отсутствуют перекосы и нарастание токовой нагрузки.

Но, несмотря на существенные превосходства над методом электроснабжения с заземленной нейтралью, такой вариант имеет и ряд недостатков.

Среди которых наиболее важными являются:

  • Представляет опасность для человека и трехфазных нагрузок при однофазных обрывах и замыканиях в высоковольтных сетях.
  • Слишком малые величины токов замыкания, чем когда используется глухозаземленная нейтраль, что существенно усложняет своевременное выявление и локализацию повреждения.
  • Отсутствует визуальный эффект при замыкании – так как нет контакта с нейтралью источника момент касания токоведущих частей и земли не приводит к образованию искр или дуги.
  • Изоляция всего оборудования должна рассчитываться на значение межфазного напряжения, а из-за отсутствия нулевого защитного проводника фазного, как такового вообще нет.
  • Снижается срок службы изоляции между фазами – особенно актуально для кабельно-проводниковой продукции, подсоединяемой к трехфазным обмоткам. При этом характер и место повреждения в кабеле всегда носит случайный характер, предусмотреть наиболее подверженные места попросту невозможно.

Как видите из вышеперечисленного, система с незаземленной нейтралью имеет значительно больше недостатков, чем преимуществ. Из-за чего ее постоянно вытесняет тип питания с заземлением нейтрали, но до сих пор существует ряд отраслей, где недостаток изолированной нулевой точки сведен к минимуму.

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.


Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Классификация сетей с глухозаземлённой нейтралью

Современная система электроснабжения имеет стандартную маркировку где помимо рабочего нулевого проводника присутствует и защитный, что и даёт определение степени защищённости.

  • L — фазный проводник;
  • N — рабочий ноль;
  • РЕ — защитный нулевой проводник;
  • РЕN — рабочий и нулевой проводник выполнены одним проводом.

Существуют несколько подсистем в цепях с источником энергии, имеющим глухозаземлённую нейтраль:

  • TN-C. При данной системе нулевой и защитный проводник с подстанции организован одним проводником, возле приёмника однофазной цепи его корпус (или другие элементы, подлежащие заземлению) соединяют с данным совмещенным проводником – это называется зануление. Это устаревшая система, применялась в старых домах при СССР, сейчас для бытовых потребителей не используется, так как небезопасная. Такая система имеет существенный недостаток, так как в случае обрыва РЕN проводника на пути от питающего трансформатора до приемника электроэнергии, на зануленных корпусах оборудования появляется опасный потенциал. Используется только для защиты промышленных потребителей (об этом говорится ниже в следующем разделе).
  • TN-S. Имеет больший процент безопасности во время аварийных ситуаций. Это достигается путём разделения защитного и рабочего проводников по всей длине питающей линии, от трансформатора до распределительного электрощита (до конечного потребителя). Однако за счёт того, что приходится применять кабельную продукцию имеющую пять жил, что сильно увеличивает стоимость прокладки и бюджет на организацию электроснабжения к потребителю, применяется данная система не всегда.
  • TN-C-S. Данная система заземления является наиболее распространенной в наше время. При данной системе нулевой и защитный проводник на всей длине линии объединены в один совмещенный проводник PEN. При входе в здание данный проводник разделяется на защитный PE и нулевой N, которые дальше распределяются по потребителям (квартирам). При данной системе в случае отгорания PEN проводника до точки разделения на заземленных корпусах электроприборов появится опасный потенциал. Для предотвращения этого на всей длине линии и при входе в здание делаются повторные заземления PEN проводника и предъявляются повышенные требования к механической защите данного проводника.
  • ТТ. Данная система заземления практикуется в том случае, если линия системы TN-C-S находится в неудовлетворительном техническом состоянии и не обеспечивается достаточной безопасности предусмотренного в ней защитного заземления. Данная система заземления предусматривает монтаж индивидуального контура заземления у потребителя, при этом PEN проводник электрической сети используется только в качестве нулевого провода N.