Тепловая защита двигателя

Из-за чего отказывает электродвигатель?

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Выбор электродвигателей

5.3.9. Электрические и механические параметры электродвигателей (номинальные мощность, напряжение, частота вращения, относительная продолжительность рабочего периода, пусковой, минимальный, максимальный моменты, пределы регулирования частоты вращения и т. п.) должны соответствовать параметрам приводимых ими механизмов во всех режимах их работы в данной установке.

5.3.10. Для механизмов, сохранение которых в работе после кратковременных перерывов питания или понижения напряжения, обусловленных отключением КЗ, действием АПВ или АВР, необходимо по технологическим условиям и допустимо по условиям техники безопасности, должен быть обеспечен самозапуск их электродвигателей.

Применять для механизмов с самозапуском электродвигатели и трансформаторы большей мощности, чем это требуется для их нормальной длительной работы, как правило, не требуется.

5.3.11. Для привода механизмов, не требующих регулирования частоты вращения, независимо от их мощности рекомендуется применять электродвигатели синхронные или асинхронные с короткозамкнутым ротором.

Для привода механизмов, имеющих тяжелые условия пуска или работы либо требующих изменения частоты вращения, следует применять электродвигатели с наиболее простыми и экономичными методами пуска или регулирования частоты вращения, возможными в данной установке.

5.3.12. Синхронные электродвигатели, как правило, должны иметь устройства форсировки возбуждения или компаундирования.

5.3.13. Синхронные электродвигатели в случаях, когда они по своей мощности могут обеспечить регулирование напряжения или режима реактивной мощности в данном узле нагрузки, должны иметь АРВ согласно 3.3.39.

5.3.14. Электродвигатели постоянного тока допускается применять только в тех случаях, когда электродвигатели переменного тока не обеспечивают требуемых характеристик механизма или неэкономичны.

5.3.15. Электродвигатели, устанавливаемые в помещениях с нормальной средой, как правило, должны иметь исполнение IP00 или IP20.

5.3.16. Электродвигатели, устанавливаемые на открытом воздухе, должны иметь исполнение не менее IP44 или специальное, соответствующее условиям их работы (например, для открытых химических установок, для особо низких температур).

5.3.17. Электродвигатели, устанавливаемые в помещениях, где возможно оседание на их обмотках пыли и других веществ, нарушающих естественное охлаждение, должны иметь исполнение не менее IP44 или продуваемое с подводом чистого воздуха. Корпус продуваемого электродвигателя, воздуховоды и все сопряжения и стыки должны быть тщательно уплотнены для предотвращения присоса воздуха в систему вентиляции.

При продуваемом исполнении электродвигателя рекомендуется предусматривать задвижки для предотвращения всаса окружающего воздуха при останове электродвигателя. Подогрев наружного (холодного) воздуха не требуется.

5.3.18. Электродвигатели, устанавливаемые в местах сырых или особо сырых, должны иметь исполнение не менее IP43 и изоляцию, рассчитанную на действие влаги и пыли (со специальной обмазкой, влагостойкую и т. п.).

5.3.19. Электродвигатели, устанавливаемые в местах с химически активными парами или газами, должны иметь исполнение не менее IP44 или продуваемое с подводом чистого воздуха при соблюдении требований, приведенных в 5.3.17. Допускается также применение электродвигателей исполнения не менее IP33, но с химически стойкой изоляцией и с закрытием открытых неизолированных токоведущих частей колпаками или другим способом.

5.3.20. Для электродвигателей, устанавливаемых в помещениях с температурой воздуха более плюс 40 °С, должны выполняться мероприятия, исключающие возможность их недопустимого нагрева (например, принудительная вентиляция с подводом охлаждающею воздуха, наружный обдув и т. п.).

5.3.21. При замкнутой принудительной системе вентиляции электродвигателей следует предусматривать приборы контроля температуры воздуха и охлаждающей воды.

5.3.22. Электродвигатели, снабженные заложенными в обмотки или магнитопроводы термоиндикаторами, должны иметь выводы от последних на специальные щитки, обеспечивающие удобство проведения периодических измерений. Щитовые измерительные приборы для этого, как правило, не должны предусматриваться.

Как избежать 3 ошибок при подборе и установке транзистора

При подборе транзистора биполярного следует обращать внимания на параметр h21. H21 – это коэффициент усиления тока коллектора по отношению к току базы. Если величина этого параметра у транзистора 30, то аналог подбирать следует такой, чтобы номинал h21 был не меньше чем 30.

Чтобы определить какую структуру транзистора n-p-n или p-n-p применить в схеме, воспользуйтесь этим простым правилом: если управляющий сигнал, приходящий на базу, отриц. то ставится p-n-p типа, если положительный – n-p-n. Учтите, что сигнал базы должен быть одинаковой полярности с напряжением питания!

Реле обладает высоким показателем ЭДС самоиндукции, величиной в несколько десятков вольт, при разрыве цепи. Поэтому следует защищать коллекторный переход запараллеленым диодом. Диод ставится противоположно полярности источника питания: катодом к плюсу, анодом к минусу.

Видео реле задержки времени на 12 в

Защита асинхронного двигателя от перегрузок

Поскольку наибольшее применение получил асинхронный двигатель, на его примере будем рассматривать, как двигатель защитить от перегрузки и перегрева.

Для них возможно пять типов аварий:

  • обрыв в обмотке статора фазы (ОФ). Возникает ситуация в 50% аварий;
  • затормаживание ротора, возникающее в 25% случаев (ЗР);
  • понижение сопротивления в обмотке (ПС);
  • плохое охлаждение мотора (НО).

При возникновении любой из перечисленных видов аварий, существует угроза поломки двигателя, поскольку происходит его перегрузка. Если не установлена защита, ток возрастает на протяжении длительного времени. Но может произойти его резкий его рост при коротком замыкании. Исходя из возможного повреждения, подбирается защита электродвигателя от перегрузок.

Защита асинхронного двигателя от перегрузок

Поскольку наибольшее применение получил асинхронный двигатель, на его примере будем рассматривать, как двигатель защитить от перегрузки и перегрева.

Для них возможно пять типов аварий:

  • обрыв в обмотке статора фазы (ОФ). Возникает ситуация в 50% аварий;
  • затормаживание ротора, возникающее в 25% случаев (ЗР);
  • понижение сопротивления в обмотке (ПС);
  • плохое охлаждение мотора (НО).

При возникновении любой из перечисленных видов аварий, существует угроза поломки двигателя, поскольку происходит его перегрузка. Если не установлена защита, ток возрастает на протяжении длительного времени. Но может произойти его резкий его рост при коротком замыкании. Исходя из возможного повреждения, подбирается защита электродвигателя от перегрузок.

Электродвигатели с защитой TP 211

Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.

Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.

Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

Короткие замыкания и защита от перегрузок

Простейшая защита от замыканий содержит только плавкие предохранители. Они применяются в диапазоне мощностей двигателей до 100 кВт. Однако при их использование возможно перегорание не всех трёх предохранителей. Поэтому движок может искусственно оказаться с одной или двумя отключенными фазными обмотками. В зависимости от назначения электропривода существуют разные критерии выбора предохранителей.

Если у привода нагрузка вентиляторного типа, для которой характерен лёгкий пуск, номинальный ток плавкой вставки выбирается не менее 40% от величины пускового тока. Этот критерий применим для металлорежущих станков, вентиляторов, насосов и т.п. у которых переходный процесс длится от двух до пяти секунд. Если время переходного процесса более длительное от десяти до двадцати секунд номинальный ток плавкой вставки должен быть не менее 50% от величины пускового тока. Этот критерий применим для приводов с валом заторможенных нагрузкой. К ним можно отнести дробилки, центрифуги, шаровые мельницы.

Если имеется группа из нескольких электродвигателей, предохранители ставятся на каждый из них и на распределительный щит. На нём в каждой фазе устанавливается предохранитель с номинальным током равным сумме номинальных токов предохранителей всех движков. Если величина пускового тока не известна, а мощность Р асинхронного двигателя менее 100 кВт, можно выбрать приблизительное значение номинального тока I предохранителя таким способом:

  • при напряжении 500 Вольт I=4,5Р;
  • при напряжении 380 Вольт I=6Р;
  • при напряжении 220 Вольт I=10,5Р.

Для более точного срабатывания и для всего диапазона мощностей асинхронных двигателей применяются схемы защиты с реле. Такие схемы позволяют учесть токи пуска и торможения и не реагировать на них. Срабатывание реле приводит к выключению магнитного пускателя и обесточиванию двигателя. Эти так называемые «максимальные» реле в зависимости от конструкции имеют катушку, рассчитанную на токи от десятых долей Ампера до сотен Ампер, а так же контакты, отключающие ток в катушке магнитного пускателя.

Погрешность их срабатывания обычно не превышает десяти процентов. Возврат в исходное состояние конструктивно наиболее часто сделан вручную. Типовая схема защиты показана на изображении. РМ – обозначения максимальных реле, Л – обозначение магнитного пускателя.

Максимальные реле также применяются и для защиты от перегрузки. Но при этом в схему вводится реле времени, которое позволяет сделать настройку её без учёта пусковых токов.

Универсальные блоки защиты

Они срабатывают в таких случаях:

  • Проблемы с напряжением, характеризующиеся скачками в сети, обрывами фаз, нарушением чередования либо слипания фаз, перекосом фазного или линейного напряжения;
  • Механической перегруженности;
  • Отсутствие крутящего момента для вала ЭД;
  • Опасных эксплуатационной характеристике изоляции корпуса;
  • Если произошло замыкание на землю.

Хотя защита от понижения напряжения, может быть, организована и другими способами мы рассмотрели основные из них. Теперь у вас есть представление о том зачем необходимо защищать электродвигатель, и как это осуществляется с помощью различных способов.

Причины перегрева двигателя

Нагрев может быть спровоцирован самыми разными факторами. Чаще всего виной тому:

  • Эксплуатация в недопустимом режиме. Устройство не должно долгое время работать при повышенной нагрузке, а также подвергаться механическим воздействиям (удары, резкие толчки, вибрация) – от этого нарушается целостность.
  • Коррозия, вызванная резкими и частыми перепадами температур и повышенной влажностью. Уменьшение зазора между элементами из-за ржавчины приводит к тому, что электродвигатель не набирает обороты и греется.
  • Несоблюдение правил хранения, монтажа и транспортировки. Следует четко следовать инструкциям, приведенным в паспорте.
  • Повреждение изоляции обмотки. Оно может произойти при попадании под корпус инородных частиц или при небрежной транспортировке. Последствия бывают разные – локальные короткие замыкания, деформация вала, неравномерное вращение ротора, и как итог – перегрев.
  • Эксплуатация при повышенном или пониженном напряжении в сети. Пытаясь найти ответ на вопрос: почему греется электродвигатель 3-хфазный, проверьте проводку и состояние розеток.
  • Засорение вентиляционных каналов. Чтобы этого избежать, достаточно регулярно проводить техосмотр и чистку двигателя.
  • Постоянная слишком высокая/низкая температура в помещении, где функционирует двигатель.
  • Разрушение подшипника. Признаки данной неисправности – неподвижность или плохое прокручивание ротора при включении устройства, полное заклинивание ротора и статора и нагрев корпуса.

Что делать, если паспортные данные не известны?

Для этого случая рекомендуем использовать токовые клещи или мультиметр С266, конструкция которого также включает токоизмерительные клещи. С помощью данных приборов нужно определить ток мотора в работе, измерив его на фазах.

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.

Кстати, недавно мы рассмотрели принцип действия и устройство тепловых реле, с чем настоятельно рекомендуем вам ознакомиться!

В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.

Напоследок рекомендуем просмотреть полезное видео по теме:

Надеемся, прочитав нашу статью, вам стало понятно, как выбрать тепловое реле для двигателя по номинальному току, а также мощности самого электродвигателя. Как вы видите, условия выбора аппарата не сложные, т.к. можно без формул и сложных вычислений подобрать подходящий номинал, используя таблицу!

Советуем также прочитать:

Как выбрать защиту электродвигателя от перегрузки

Защита электродвигателя от перегрузки может осуществляться с помощью различных устройств. К ним относятся:

  • плавкие предохранители с выключателем;
  • реле защиты;
  • тепловые реле;
  • цифровые реле.

Наиболее простой метод — применение плавких предохранителей, которые срабатывают при возникновении КЗ в схеме питания двигателя. Их недостатком является чувствительность к большим пусковым токам двигателя и необходимость установки новых предохранителей после срабатывания.

Плавкий предохранительный выключатель — это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе

Токовое реле защиты может выдерживать временные токовые перегрузки, возникающие при пуске двигателя, и срабатывает при опасном длительном увеличении тока потребления двигателя. После устранения перегрузки реле может вручную или автоматически подключать цепь питания.

Тепловые реле используются в основном внутри двигателя. Такое реле может представлять собой биметаллический датчик или терморезистор и устанавливаться на корпусе двигателя или непосредственно на статоре. При слишком высокой температуре двигателя реле срабатывает и обесточивает цепь питания.

Наиболее продвинутым является использование новейших систем защиты с применением цифровых методов обработки информации. Такие системы наряду с защитой двигателя от перегрузки выполняют дополнительные функции — ограничивают число переключений двигателя, с помощью датчиков оценивают температуру статора и подшипников ротора, определяют сопротивление изоляции устройства. Они могут быть использованы также для диагностики неисправностей системы.

Выбор того или иного метода защиты двигателя зависит от условий и режимов его работы, а также от ценности системы, в которой используется устройство.

Конструкции и типы синхронного электродвигателя с постоянными магнитами

Синхронный электродвигатель с постоянными магнитами, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть.

Синхронный электродвигатель со встроенными постоянными магнитами

Обычно ротор располагается внутри статора электродвигателя, также существуют конструкции с внешним ротором — электродвигатели обращенного типа.

Конструкции синхронного двигателя с постоянными магнитами: слева — стандартная, справа обращенная.

Ротор состоит из постоянных магнитов. В качестве постоянных магнитов используются материалы с высокой коэрцитивной силой.

  • По конструкции ротора синхронные двигатели делятся на:
  • электродвигатели с явно выраженными полюсами;
  • электродвигатели с неявно выраженными полюсами.

Электродвигатель с неявно выраженными полюсами имеет равную индуктивность по продольной и поперечной осям Ld = Lq, тогда как у электродвигателя с явно выраженными полюсами поперечная индуктивность не равна продольной Lq ≠ Ld.

Сечение роторов с разным отношением Ld/Lq. Черным обозначены магниты. На рисунке д, е представлены аксиально-расслоенные роторы, на рисунке в и з изображены роторы с барьерами.

  • Также по конструкции ротора СДПМ делятся на:
  • синхронный двигатель c поверхностной установкой постоянных магнитов(англ. SPMSM — surface permanent magnet synchronous motor);
  • синхронный двигатель со встроенными (инкорпорированными) магнитами(англ. IPMSM — interior permanent magnet synchronous motor).

Ротор синхронного двигателя c поверхностной установкой постоянных магнитов

Ротор синхронного двигателя со встроенными магнитами

Статор состоит из корпуса и сердечника с обмоткой. Наиболее распространены конструкции с двух- и трехфазной обмоткой.

  • В зависимости от конструкции статора синхронный двигатель с постоянными магнитами бывает:
  • с распределенной обмоткой;
  • с сосредоточенной обмоткой.

Статор электродвигателя с распределенной обмоткой

Статор электродвигателя с сосредоточенной обмоткой

Распределенной называют такую обмотку, у которой число пазов на полюс и фазу Q = 2, 3,…., k.

Сосредоточенной называют такую обмотку, у которой число пазов на полюс и фазу Q = 1. При этом пазы расположены равномерно по окружности статора. Две катушки, образующие обмотку, можно соединить как последовательно, так и параллельно. Основной недостаток таких обмоток — невозможность влияния на форму кривой ЭДС .

Схема трехфазной распределенной обмотки

Схема трехфазной сосредоточенной обмотки

Форма обратной ЭДС электродвигателя может быть: трапецеидальная; синусоидальная.

Форма кривой ЭДС в проводнике определяется кривой распределения магнитной индукции в зазоре по окружности статора.

Известно, что магнитная индукция в зазоре под явно выраженным полюсом ротора имеет трапециидальную форму. Такую же форму имеет и наводимая в проводнике ЭДС. Если необходимо создать синусоидальную ЭДС, то полюсным наконечникам придают такую форму, при которой кривая распределения индукции была бы близка к синусоидальной. Этому способствуют скосы полюсных наконечников ротора .

Основные и дополнительные функции УПП

Современные софт-стартеры – многофункциональные электротехнические устройства. Основное их предназначение – снижение пусковых токов и смягчение динамических ударов при старте двигателя. Кроме того, УПП обеспечивают:

  • Пуск с номинальным моментом. При этом при старте на электродвигатель подается максимальное напряжение, после чего включаются тиристоры. Разгон до номинальной частоты осуществляется плавно. Софт-стартеры такой конструкции применяют для механизмов со значительной пусковой нагрузкой.
  • Динамическое торможение. УПП с данной функцией обеспечивают остановку привода без выбега. Их устанавливают в приводе инерционного технологического оборудования: тяговых вентиляторов, подъемниках и т.д.
  • Пуск в функции тока и напряжения. УПП такой конструкции позволяют задавать предельное значение пускового тока. Устройства применяются при низкой мощности сети, а также в приводе оборудования с низким стартовым моментом.
  • Защиту электродвигателя. Софт-стартеры обеспечивают остановку привода при обрыве фаз, перегрузках, превышении времени разгона, а также при возникновении других аномальных и аварийных режимов. УПП не имеют защиты от коротких замыканий и включаются через предохранители или автоматы.
  • Интеграцию в САР и системы телемеханики. Софт-стартеры с процессорными блоками управления и устройствами поддержки протоколов связи с удаленным оборудованием контроля легко встраиваются в многоуровневые системы автоматизации технических процессов.
  • Регулировку частоты вращения вала. УПП с такой функцией не заменяют частотные преобразователи. Такой режим допустим при непродолжительной настройке оборудования.

Выбор функционала софт-стартера зависит от требований к электроприводу и осуществляется на основании технико-экономической целесообразности.

Как выбрать защиту электродвигателя от перегрузки

Защита электродвигателя от перегрузки может осуществляться с помощью различных устройств. К ним относятся:

  • плавкие предохранители с выключателем;
  • реле защиты;
  • тепловые реле;
  • цифровые реле.

Наиболее простой метод — применение плавких предохранителей, которые срабатывают при возникновении КЗ в схеме питания двигателя. Их недостатком является чувствительность к большим пусковым токам двигателя и необходимость установки новых предохранителей после срабатывания.

Плавкий предохранительный выключатель — это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе

Токовое реле защиты может выдерживать временные токовые перегрузки, возникающие при пуске двигателя, и срабатывает при опасном длительном увеличении тока потребления двигателя. После устранения перегрузки реле может вручную или автоматически подключать цепь питания.

Тепловые реле используются в основном внутри двигателя. Такое реле может представлять собой биметаллический датчик или терморезистор и устанавливаться на корпусе двигателя или непосредственно на статоре. При слишком высокой температуре двигателя реле срабатывает и обесточивает цепь питания.

Наиболее продвинутым является использование новейших систем защиты с применением цифровых методов обработки информации. Такие системы наряду с защитой двигателя от перегрузки выполняют дополнительные функции — ограничивают число переключений двигателя, с помощью датчиков оценивают температуру статора и подшипников ротора, определяют сопротивление изоляции устройства. Они могут быть использованы также для диагностики неисправностей системы.

Выбор того или иного метода защиты двигателя зависит от условий и режимов его работы, а также от ценности системы, в которой используется устройство.

ОСНОВНЫЕ ТИПЫ ЗАЩИТ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ ДО 1000 В

Токовая отсечка.

Из всех аварийных режимов наиболее опасным является междуфазное короткое замыкание. Данный вид повреждения требует немедленного отключения асинхронного двигателя выключателем от питающей сети.

В соответствии с действующими правилами, асинхронные двигатели до 1000 В должны защищаться от коротких замыканий плавкими предохранителями или электромагнитными и тепловыми расцепителями автоматических выключателей.

Как обычно, правила отстают от фактических реалий. На вновь вводимых объектах асинхронные электрические машины комплектуются выносными многофункциональными блоками автоматической релейной защиты электродвигателя на базе микроконтроллеров, воздействующими на отключение выключателя.

Основной сути это не меняет. Автоматические защитные устройства от междуфазных коротких замыканий реагируют на сверхтоки и не имеют выдержки времени отключения выключателя. Такие устройства по-прежнему называют токовыми отсечками, защитные реле срабатывают при КЗ в обмотке статора либо на выводах асинхронного двигателя.

Контроль протекающего электротока осуществляется посредством традиционных токовых преобразователей – трансформаторов тока (ТТ) или более современных датчиков электротока.

Зоной действия защищающего устройства является участок электросети, расположенный после ТТ или датчика. Обычно кроме самого асинхронного двигателя в защищаемой зоне находится и питающий кабель.

Параметры срабатывания токовой отсечки должны быть надёжно отстроены от пусковых токов. С другой стороны, автоматическое защитное устройство должно обладать достаточной чувствительностью при межвитковых замыканиях в любой части обмотки статора асинхронной машины.

Перегрузка.

Данный вид ненормального режима возникает при неисправностях или перегрузке исполнительного механизма. Перегрузка двигателя также может происходить по причине его недостаточной мощности. Режим перегрузки характеризуется повышенным уровнем токового потребления с относительно небольшой кратностью по сравнению с номинальным значением.

Токовая уставка автоматической защиты электродвигателя от перегрузки меньше значения пусковых токовых параметров, поэтому должна быть осуществлена отстройка от режима запуска путём искусственной задержки времени срабатывания и отключения автоматического выключателя.

Защищённость электромашины от перегрузки может быть реализована с применением следующих устройств:

  • теплового расцепителя автоматического выключателя защиты электродвигателя;
  • выносного защитного комплекта с токовым реле и реле времени, воздействующего на отключение выключателя при перегрузке;
  • блока комплексной защитной автоматики двигателя на микроконтроллере, при срабатывании воздействующего на расцепитель выключателя.

В случае применения автоматического выключателя требуется просто подобрать подходящий по номинальному току и характеристике автомат. Тепловой расцепитель выключателя защиты электродвигателя обеспечивает интегральную зависимость времени отключения выключателя от величины токовой перегрузки.

Защитный автоматический релейный комплект с выносными электромагнитными реле настраивается на фиксированные ток и время срабатывания защиты.

В этом варианте, в отличие от теплового расцепителя, токовые и временные параметры между собой не связаны. Выходные реле выносных комплектов релейной защиты должны воздействовать на независимый (не тепловой) расцепитель автоматического выключателя.

Как создается защита для электродвигателя?

Постепенно рассмотрим основные устройства защиты электродвигателей и особенности их эксплуатации. Но сейчас расскажем об трех уровнях защиты:

  • Внешняя версия защиты для предохранения от короткого замыкания. Обычно относится к разным видам либо представлена в виде реле. Они обладают официальным статусом и обязательны к установке согласно нормам безопасности на территории РФ.
  • Внешняя версия защиты электродвигателей от перегрузки помогает предотвратить опасные повреждения либо критические сбои в процессе работы.
  • Встроенный тип защиты спасет в случае заметного перегрева. И это защитит от критических повреждений либо сбоев в процессе эксплуатации. В этом случае обязательны выключатели внешнего типа иногда применяется реле для перезагрузки.

Защита асинхронного двигателя от перегрузок

Поскольку наибольшее применение получил асинхронный двигатель, на его примере будем рассматривать, как двигатель защитить от перегрузки и перегрева.

Для них возможно пять типов аварий:

  • обрыв в обмотке статора фазы (ОФ). Возникает ситуация в 50% аварий;
  • затормаживание ротора, возникающее в 25% случаев (ЗР);
  • понижение сопротивления в обмотке (ПС);
  • плохое охлаждение мотора (НО).

При возникновении любой из перечисленных видов аварий, существует угроза поломки двигателя, поскольку происходит его перегрузка. Если не установлена защита, ток возрастает на протяжении длительного времени. Но может произойти его резкий его рост при коротком замыкании. Исходя из возможного повреждения, подбирается защита электродвигателя от перегрузок.

Схема защиты электродвигателя при подключении его через магнитный пускатель с катушкой 380В и тепловым реле (нереверсивная схема подключения)

Схема состоит: из QF — автоматического выключателя;KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск). Рассмотрим работу схемы в динамике.

Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя. КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя. При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку. Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

Обозначение TP для электродвигателя с PTC

Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.

Соединение

На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.

Электродвигатели с защитой TP 111

Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.

Электродвигатели с защитой TP 211

Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.

Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.

Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

Понижение напряжения и пропадание фазы

Полностью нагруженный асинхронный двигатель, работающий при пониженном напряжении, быстро нагревается. Если в нём есть встроенный тепловой сенсор, сработает тепловая защита. Если такового нет, необходима защита от понижения напряжения. Для этих целей служат реле, которые срабатывают при снижении напряжения и подают сигнал на отключение движка. На схеме ниже это РН.

Восстановление исходного состояния защиты обычно выполняется вручную или автоматически, но с задержкой во времени для каждого двигателя при их группе. Иначе одновременный групповой запуск после восстановления опять-таки может вызвать повторное понижение напряжения в сети и новое отключение.

Специальная защита от пропадания фазы, то есть от работы только на двух фазах ПУЭ предусматривает только в таких приводах, где возможны неприемлемые по своей тяжести последствия. Экономически целесообразно не изготовление и установка такой защиты, а ликвидация причин, приводящих к такому режиму работы.

Самыми последними техническими решениями в построении защиты электродвигателей являются автоматические выключатели с воздушным гашением дуги. Некоторые модели совмещают в себе возможности рубильника, контактора, максимального и теплового реле и выполняют соответствующие защитные функции. В таком автомате контакты размыкаются мощной взведенной пружиной. Освобождение её происходит в зависимости от типа исполнительного элемента — электромагнитного или теплового.