Получение высокого напряжения 40 кв постоянного тока

Содержание

Основной элемент конструкции

Электроэрозионный станок имеет искровой генератор, который выступает в качестве конденсатора. Для обработки следует использовать накопительный элемент большой емкости. Принцип обработки заключается в накоплении энергии в течение длительного времени, а затем ее выброс в течение короткого промежутка времени. По этому принципу работает также устройство лазерной установки: уменьшение промежутка времени выброса энергии приводит к увеличению плотности тока, а значит существенно повышается температура.

Электрическая схема электроискровой установки

Принцип работы генератора, который установлен на электроэрозионный станок, заключается в следующем:

  1. диодный мост проводит выпрямление промышленного тока напряжением 220 или 380 Вольт;
  2. установленная лампа ограничивает тока короткого замыкания и защиты диодного моста;
  3. чем выше показатель нагрузки, тем быстрее проходит зарядка электроискрового станка;
  4. после того как зарядка закончится, лампа погаснет;
  5. зарядив установленный накопитель можно поднести электрод к обрабатываемой заготовке;
  6. после того как проводится размыкание цепи, конденсатор снова начинает заряжаться;
  7. время зарядки установленного накопительного элемента зависит от его емкости. Как правило, временной промежуток от 0,5 до 1 секунды;
  8. на момент разряда сила тока достигает несколько тысяч ампер;
  9. провод от конденсатора к электроду должен иметь большое поперечное сечение, около 10 квадратных миллиметров. При этом провод должен быть изготовлен исключительно из меди.

Частота генерации при подводе электрода электроискрового станка составляет 1 Гц.

Преимущества самодельного генератора

Самодельный генератор выигрывает у покупного более доступной стоимостью. Безусловно финансовая сторона важна, но устройство, сделанное своими руками – это прибор только с необходимыми и заявленными требованиями.

Стоит учесть, что выбранная конструкция непосредственно сказывается на КПД. Так в асинхронных генераторах потери КПД не превышают 5%. Лаконичность конструкции его корпуса с защитой мотора от влаги, грязи снижает потребность в частом техническом обслуживании. Асинхронный генератор более устойчив против скачков напряжения за счет выпрямителя на выходе, что предотвращает поломки подключенного оборудования.

Самодельный генератор работает вне зависимости от удаленности ЛЭП, обеспечивая электроэнергией в любых условиях. Он преобразует энергию, используя доступный вид топлива

Такое устройство эффективно питает сварочные аппараты, лампы накаливания, компьютерную и мобильную технику с чувствительностью к перепадам напряжения. Имеет хорошую производительность и моторесурс.

Прибор – хорошая альтернатива обычным источникам электропитания, выручает при аварийном отключении электричества, экономит средства. Мобилен, малогабаритен, с простой конструкцией, легко поддается ремонту – можно своими силами заменить вышедшие из строя детали, узлы.

Кроме прочего, самоделка обладает небольшими размерами, поэтому с легкостью устанавливается даже в небольших помещениях.

Разместить самодельный генератор можно в небольшом помещении, за счет компактной конструкции прибор не требует много места для своей установки

В зависимости от от используемого типа топлива генератор требует лишь соблюдения мер предосторожности в процессе использования. В процессе эксплуатации самодельного генератора необходимо соблюдать технику безопасности: следить за электрическими кабелями, не допускать их перекручивания, не трогать оголенные провода руками и т.п

В процессе эксплуатации самодельного генератора необходимо соблюдать технику безопасности: следить за электрическими кабелями, не допускать их перекручивания, не трогать оголенные провода руками и т.п

Инструкция по намотке

Сердечник нужно обмотать скотчем (5 слоев), вложить в желоб провод с рассчитанным диаметром, намотать по всей длине рассчитанное для первичной намотки количество витков. Оба конца обмотки выводятся на одну сторону и изолируются винилкой.

Далее наматывается 4-5 слоев скотча, конструкция помещается в корпус одноразового шприца длиной 3 см. На шприц наматывается 2 ряда скотча и рассчитанное для вторички количество витков, ширина обмотки примерно 1,5 см. Каждый слой нужно заизолировать скотчем или двумя слоями фторопластовой ленты. Концы второй обмотки выводятся на обе стороны. В результате с одного конца получается три вывода, со второго – один.

Генератор свободной энергии Тесла

Известного всему миру физика в учебниках по предмету упоминают крайне редко. Хотя его открытие переменного тока сейчас использует всё человечество. У него более 800 зарегистрированных патентов на изобретения. Вся энергетика прошлого века и сегодняшних дней основана на его творческом потенциале. Несмотря на это, часть его работ была скрыта от широкой общественности.

Он участвовал в разработках современного электромагнитного оружия, будучи директором проекта «Радуга». Известный филадельфийский эксперимент, телепортировавший большой корабль с экипажем на немыслимое расстояние – его рук дело. В 1900 году физик из Сербии внезапно разбогател. Он продал часть своих изобретений за 15 миллионов долларов. Сумма в те времена была просто огромна. Кто приобрёл секреты Теслы, остаётся тайной. После его смерти все дневники, которые могли содержать и проданные изобретения, пропали бесследно. Великий изобретатель так и не открыл миру, как устроен и работает генератор свободной энергии. Но, возможно, на планете есть люди, обладающие этой тайной.

Блокинг-генератор: виды, принцип работы

Блокинг-генератор – это релаксационный генератор импульсов, выполняется он на базе усилительного элемента (например, транзистора) с сильной трансформаторной обратной связью. Чаще всего используют положительную обратную связь.

Преимущества и недостатки

Достоинством таких генераторов считается относительная простота, возможность подсоединения нагрузки через трансформатор

Форма генерируемых импульсов приближается к прямоугольной, скважность достигает десятков тысяч, длительность – сотен микросекунд. Предельная частота повторений импульсов достигает нескольких сотен кГц

Емкость колебательных контуров у таких устройств небольшая, обуславливается межвитковыми емкостями и, конечно же, емкостью монтажа. Благодаря этим качествам блокинг-генератор нашел широкое применение в производстве: в устройствах автоматики, регулирования и промышленной электроники.

Недостатком этих генераторов является зависимость частоты от изменения напряжения питания. Стабильность частоты ниже, чем у мультивибратора, составляет всего 5-10 процентов.

Блокинг-генератор, собранный по схеме с положительной сеткой или с резонансным контуром, который настроен на частоту повтора импульсов, с фиксирующим диодом, имеет довольно высокую стабильность колебаний. Нестабильность частоты в таких схемах менее одного процента.

Существует множество схем реализации таких генераторов: ламповые транзисторные с базовым смещением, транзисторные с эмиттерной связью, с положительной сеткой, с усиленным каскадом, на полевых транзисторах и другие.

На фото изображен блокинг-генератор на полевом транзисторе.

Наибольшую популярность получили устройства на обычных транзисторах. В таких устройствах обычно используют импульсные трансформаторы. Генератор может работать в заторможенном режиме, он легко синхронизируется внешним сигналом.

Блокинг-генератор, принцип работы

Работа схемы разделяется на несколько этапов. Этап первый: происходит отпирание транзистора при поступлении импульса на эмиттер. Прибор начинает работать. Когда на базу транзистора поступает отпирающий ток, он вызывает накопление заряда, а также возрастание коллекторного тока. Через резистор положительная обратная связь, осуществляемая обмотками импульсного трансформатора, возбуждает лавинообразный процесс нарастания базового, коллекторного токов и тока нагрузки. При этом уменьшается разность потенциалов между эмиттером и коллектором транзистора, когда она достигнет нуля, прибор переходит в состояние насыщения. Этап второй: пренебрегая сопротивлением первичной обмотки, считаем, что на обмотку подано постоянное напряжение питания. В результате на остальных обмотках трансформатора напряжение также неизменно. Характер изменения токов схемы определяется свойством цепей, которые включены последовательно с вторичными обмотками, а также со свойствами сердечника трансформатора. Например, при активной нагрузке ток будет постоянным. Ток на базе транзистора постоянный, но начинает уменьшаться при заряде конденсатора. Коллекторный ток определяется суммой тока намагничивания и переходных токов обмоток.

Ток намагничивания возрастает, характер роста определяется петлей гистерезиса материала сердечника. Вследствие этого увеличивается и ток коллектора. Это приводит к тому, что транзистор выходит из состояния насыщения, сформирована вершина импульса. Коллекторный ток снова становится зависимым от величины базового заряда, а базовый ток при этом начинает лавинообразно уменьшаться. Транзистор запирается, формируется срез импульса. При запирании прибора блокинг-генератор начинает восстанавливаться в исходное состояние.

Список компонентов:

Остальные компоненты вопросов думаю не вызывают.

Файл печатной платы: ir2153.lay6

В качестве генератора используется распространённая микросхема IR2153, для работы которой требуются всего несколько деталей в обвязке: времязадающая RC цепочка и конденсатор с диодом для верхнего ключа.

Транзисторы при сборке необходимо установить на небольшие радиаторы, я этого делать не стал т.к. плата нужна лишь для демонстрации. Так же не рекомендую включать устройство без запаянного электролитического конденсатора, может получится ситуация когда через ключи потечет сквозной ток.

Номиналы времязадающей цепи с помощью подстроечного резистора позволяют микросхеме работать в диапазоне частот примерно от 7 до 146kHz. В процессе настройки включать высоковольтный генератор желательно через амперметр для контроля тока, при этом желательно что бы блок питания выдавал не менее 3-х ампер при 12 вольт.

Подстроечным резистором можно пройтись по всему диапазону частот для нахождения резонансных участков, при этом для получения 20 киловольт искровой разряд не должен превышать буквально 1.5 см, а ток потребления при этом должен быть около 0.6-0.8А.

Если добиться таких результатов не удается то есть два варианта. Первый из них «поиграть витками», увеличивая или уменьшая их количество, второй – заменить резонансный конденсатор с 470 на 330 или 220 нанофарад. У меня все заработало сразу после сборки, но как говориться – если вдруг.

Перед намоткой первичной обмотки на ТДКС феррит следует изолировать изолентой или скотчем, мотать следует эмальпроводом 0.6-0.8мм, или (что лучше) сразу двумя-тремя проводами 0.6 параллельно. Провода от трансформатора до платы желательно не более 10 сантиметров.

Не следует забывать что во вторичной обмотке ТДКС как правило находится диод, поэтому умножитель напряжения к нему не подключишь.

Для использования в электростатической коптильне параллельно выходам необходимо поставить конденсатор

30kV 470pf – 2.2n и выходной токоограничительный резистор.

Детали для сборки схемы

Микросхема — любой таймер серии КР1006ВИ1. Для катушки — трансформатор с отношением сопротивления обмоток 8 Ом :1 кОм

Первое, на что необходимо обратить внимание при выборе трансформатора — это размер, так как количество энергии, которое они могут обрабатывать, пропорционально их размерам. Например размером с большую монету даст нам больше энергии, чем небольшой трансформатор

Первое, что необходимо сделать для его перемотки, это удалить ферритовый сердечник для доступа к самой катушке

В большинстве трансформаторов две части склеиваются клеем, просто держите трансформатор плоскогубцами над зажигалкой, только осторожно, чтоб не расплавить пластик. После минуты клей должен расплавиться и надо разломить его на две части сердечника

Учитывайте, что феррит очень хрупкий и трескается довольно легко. Для намотки вторичной катушки использовался эмалированный медный провод 0,15 мм. Намотка почти до заполнения, чтоб потом хватило ещё на один слой более толстого провода 0,3 мм — это будет первичка. Она должна иметь несколько десятков витков, около 100.

Почему здесь установлен оптрон — он обеспечит полную гальваническую развязку от схемы, с ним не будет электрического контакта между кнопкой замыкания питания, микросхемой и высоковольтной частью. Если случайно пробьёт высокое напряжение по питанию, то вы будете в безопасности.

Сделать оптрон очень легко, любой ИК-светодиод и ИК-датчик вставьте в термоусадочную трубку, как показано на картинке. В крайнем случае, если не хочется усложнять дело, уберите все эти элементы и подавайте питание замкнув К-Э транзистора 2N2222.

Обратите внимание на два выключателя в схеме, так сделано потому, что каждая рука должна быть задействована чтобы активировать генератор — это будет безопасно, уменьшает риск случайного включения. Также при работе устройства вы не должны прикасаться к чему-либо еще, кроме кнопок

При сборке умножителя напряжения не забудьте оставить достаточный зазор между элементами. Обрежьте все торчащие выводы, поскольку они могут привести к коронным разрядам, которые сильно снижают эффективность.

Рекомендуем изолировать все оголенные контакты умножителя с термоклеем или другим аналогичным изоляционным материалом и, после этого, обернуть в термоусадочную трубку или изоленту. Это не только уменьшит риск случайных ударов, но и повысит эффективность схемы путем уменьшения потерь через воздух. Также для страховки добавили кусок пенопласта между умножителем и генератором.

Потребляемый ток должен быть примерно 0,5-1 ампер. Если больше — значит схема плохо настроена.

Циклический таймер:

  • Время подачи высокого напряжения: 5-60 секунд;
  • Время паузы: 5 секунд – 5 минут;
  • Шаг регулировки: 1 секунда.

Работа с настройками блока происходит в режиме реального времени, т.е. изменять параметры установки времени работы, времени паузы и мощности можно прямо в процессе работы.

Блок имеет защиту от переплюсовки и гарантированно выдерживает кратковременное короткое замыкание на выходе (был отзыв что блок проработал в режиме КЗ около десяти минут до того как это было обнаружено, но повторять такие опыты я бы не рекомендовал).

OLED дисплей имеет приличную яркость и большие углы обзора, что позволяет отображать на нем время работы, время паузы, текущую мощность, режим и шкалу «прогресс бар» по которой можно определить когда сменится режим

Особое внимание было уделено удобству управления блоком для чего используется энкодер. С его помощью можно максимально быстро изменить любую из доступных настроек, при этом поддерживается режим ускорения – вращаем энкодер быстро, цифры меняются быстро, просто вращаем – цифры идут с точностью до единицы

Соответственно, любой параметр может быть изменен в течении нескольких секунд, а при долгом нажатии (1 сек) все настройки сохраняются в энергонезависимую память и при следующем включении блока будут автоматически загружены.

По моей просьбе Олег снял небольшой ролик демонстрирующий работу блока, единственный нюанс на который бы хотел обратить внимание – экран на солнце видно прекрасно, в этом же ролике видимо играет роль особенность камеры

Принцип высоковольтного копчения

Для образования статического поля в данном ВВ блоке используется ШИМ модуляция катушки зажигания автомобиля с последующим повышением выходного напряжения на умножителе. ШИМ или в английском PWM (Pulse-Width Modulation) широтно-импульсная модуляция — способ используемый для контроля величины напряжения и тока. Принцип действия ШИМ состоит в изменении ширины импульса постоянной амплитуды при постоянной частоте.

Но при ШИМ управлении образованием искры на катушке зажигания (далее катушка), есть один нюанс. Дело в том, что когда ШИМ начинает подавать импульсы на катушку, импульсы вначале очень короткие и энергия вырабатываемая катушкой мала. График ниже.

Постепенно импульсы становятся шире, катушка получает больше тока и напряжения, вследствие чего энергия вырабатываемая катушкой растет и достигает своего пика при модуляции ШИМ 50Х50.

А вот потом, наступает не очень приятное для нас обстоятельство, ширина импульсов становится все больше и наступает спад мощности вырабатываемой катушкой. Поэтому для нормальной работы катушки, нам приемлемо только первая часть работы блока ШИМ (до заполнения 50%). Это отследить просто – положив на стол высоковольтный разрядник (например как у меня), вращая ручку блока ШИМ слева направо смотрим когда искра будет иметь максимальную мощность (длину). Ставим метку на панели напротив риски ручки регулировки и запоминаем показания ампервольтметра. Все, за эти значения не выходим. Время копчения в дальнейшем подбираем по мощности до этих значений. Например у меня максимальная мощность искры при 2 ампера, но для электрокопчения копчения за три часа пока горит картридж с опилками, я ставлю 1 ампер. При такой силе тока копчение в моей небольшой фанерной коптилке получается в самый раз.

Схема силовой части первого высоковольтного генератора:

Микроконтроллер генерирует циклический сигнал с периодом ~414-420ms, в течении которого частота меняется от ~167 до 277kHz.

Второй модуль по всей видимости является предыдущей версией первого, и кроме отличия в деталях имеет другие параметры по частоте:

Здесь сигнал имеет циклический период ~23ms, частота меняется от ~67 до 380kHz.

Выходной трансформатор имеет первичную обмотку 24uH и вторичную 465mH (измерения проводились на частоте 1kHz).

Проверка самодельным киловольтметром из наборного резистора в 500МОм и микроамперметра на 100uA показала, что первый модуль через штатный умножитель даёт ~14 киловольт при токе потребления 1.15А, второй, через умножитель первого, даёт 10.2 киловольта при среднем токе 260mA, т.к. первый высоковольтный генератор из-за неудачной конструкции умножителя пробивало по воздуху, для измерения пришлось поместить его в стакан с маслом.

Оба теста проходили при напряжении питания 12 вольт. Несмотря на заявленную продолжительность работы 24 часа, трансформатор преобразователя в процессе работы сильно нагревается, и больше одной-двух минут включать его не стоит, причем следует понимать что тепловизор не отображает реальный нагрев сердечника т.к. он находится под слоем компауда. В реальности трансформатор первой версии блока обжигает пальцы уже после двух минут непрерывной работы.

Шаг 6: Прокладываем проводку

Убедившись, что схема работает правильно подключим МОП — транзисторы параллельно, (чтобы сделать это соединим все «стоки» и «источники» кабелями «для большой силы тока», добавив 10 Ом на каждый вывод и соединим их вместе.

Примечание: Если вы добавили 10 Ом резистор на каждый вывод, удалите 10 Ом резистор на плате.

Закрепим разъем сетевого кабеля и выключателя на короб, подключим их (очень важно использовать термоусадочные трубки для защиты соединений)

ВНИМАНИЕ: Кнопка предпочтительнее переключателя! В случае аварии кнопка отпружинит обратно и разорвет цепь. НИКОГДА не используйте переключатель в качестве разрывателя цепи

После того, как управляющая схема была собрана, можно приступить к подключению БП.

Схема блока

Все это собираем по следующей схеме — должно получиться вот так:

С блока питания я корпус снял, так удобнее монтировать в корпус ВВ блока (но менее безопасно)

Обратите внимание на маркировку диодов, у них на одном конце имеются полоски обозначающие катод. Для того что бы при работе ВВ блока не прошивало высокое напряжение, все выводы конденсаторов и диодов заливаем клеем из клеевого пистолета

Помимо изоляции, это придаст еще и жесткость конструкции умножителя.

Умножитель паяется так:

После этого все монтируем в корпусе:

Ну и результат. Под вольтамперметром написана максимальная эффективная мощность ВВ блока.

Самостоятельное изготовление

Существует два типа коптилен с электростатическим контуром, которые возможно изготовить в домашних условиях своими руками:

  • на старом телевизионном трансформаторе;
  • на старом двухтактном двигателе или же катушке зажигания.

Различаются они между собой только теми блоками, посредством которых коптильня генерирует поле, а сам корпус и внешний вид могут быть одинаковыми.

Схемы и чертежи

Чтобы сделать коптильню, необходимо четко понимать, как именно должен выглядеть и из чего состоит конечный результат работы. На общей схеме электростатической коптильни можно обнаружить все необходимые элементы, в частности и сам духовой шкаф, корпус которого может быть выполнен как из металла, так и из дерева или даже плотного пластика. Рядом с ним должен быть прикреплен генератор напряжения.

Подбор материалов и комплектующих

Напряжение в коптильной установке должно варьироваться в пределах 20-30 кВт, для чего используется высоковольтный генератор. Он также может быть изготовлен самостоятельно.

  • Из катушки зажигания и машинного коммутатора. Блок высокого напряжения, собранный с помощью катушки и аккумулятора, представляет собой простую схему с источником питания и ключом. Задающий импульсы генератор должен быть с частотой 1-2 кГц, а напряжение всей цепи – 12 В, что потребует около 1-2 А.
  • Из строчного трансформатора. Как и в первой схеме, здесь импульсы, поступающие от генератора, управляют транзистором. В итоге получается 20-25 кВт постоянного напряжения. И первый, и второй вариант схемы предполагают наличие генераторов, функционирующих на определенных частотах. В первом случае нужна частота 1000-2000 Гц, а во втором – 14000-16000 Гц. Лучше все же использовать генератор из развертки телевизора, так как он больше ускоряет движение частиц дыма, и процесс завершается раньше.

После выбора источника напряжения, необходимо перейти к изготовлению парогенератора. Самым лучшим корпусом для него послужит чугунная жаровня или нержавеющая кастрюля с толстыми стенками и дном. На дно тары насыпается слой крупы гранита или известняка в 2-3 см и укладывается нагреватель.

Отверстие, просверленное в крышке, закрывающей генератор, оборудуется штуцером и гибким пластиковым или металлическим гофрированным шлангом. Второй конец такого шланга присоединяют к охладителю дыма. Этот охладитель изготавливают из небольшой емкости для воды медной трубки длиной не менее 150 см. Медь сворачивают спиралью так, чтобы она помещалась в емкость, и к ее выводам присоединяют шланги от генератора дыма и вентилятора.

Инструкции по сборке

Самодельный коптильный шкаф лучше всего изготавливать из дерева или металла, но в последнем случае сложнее оборудовать изоляцию, да и стоит такой вариант дороже.

Собирается он размерами 70х50х100 см с дверью на петлях, которая должна очень плотно примыкать и не оставлять щелей. Анод (положительно заряженный электрод) выполняют из оцинкованной жести. Такую жесть снабжают остриями, которые направлены в сторону продукта – это создаст большую напряженность поля. Острия делаются с помощью надреза уголком и отгиба. Вместо жести, также можно приспособить металлическую ячеистую решетку.

Чтобы подготовить готовую коптильню к работе, необходимо расположить в скороварке или жаровне щепу и включить нагреватель. В коптильный шкаф загружают сало или рыбу и включают вентилятор. Как только дым начинает поступать в бесперебойном режиме, дверцу шкафа можно закрыть и включить генератор. После завершения процесса копчения генератор нужно отключить и подождать две минуту, чтобы он остался без напряжения. Прежде чем трогать шкаф, отключают парогенератор и вентилятор, устройство разгружается, и только после этого производится влажная уборка всех запачкавшихся поверхностей.

Водяной генератор на 220 В: как сделать в домашних условиях?

Для отопления частных домов применяют разные методы. Они отличаются друг от друга передачей тепла и видом энергоносителя. В процессе использования водяного отопления применяются разные виды котлов в зависимости от типа топлива:

  • Твердотопливные — в этом случае применяют для работы твердое топливо.
  • Электрические — в таких котлах тепло преобразуется с помощью преобразования электричества.
  • Газовые — в таких котлах теплоотдача происходит в момент сгорания газа.

Водяной генератор представляет собой емкость с водой, в которой находятся электроды для преобразования воды в кислород и водород. Чтобы сделать самостоятельно водяной генератор, потребуются:

  • лист нержавеющей стали;
  • пластина из оргстекла;
  • трубки из резины для подвода воды и отвода газа;
  • листы резины;
  • источник напряжения, который должен обеспечивать поступление тока в 5–8 А.

Чтобы собрать водяной генератор, необходимо:

  • Сначала нарезать нержавеющие пластины на прямоугольные листы.
  • Уголки на них срезать, чтобы в дальнейшем стянуть устройство болтами.
  • В каждой пластине просверлить отверстие в 5 мм на расстоянии 3 см от низа пластины для поступления и отвода воды.
  • Кроме того, к пластинам следует припаять провод, чтобы присоединить его к источнику питания.

Прежде чем собрать генератор из резины, сначала нарезают кольца с диаметром 200 × 190 мм. Готовят две пластины из оргстекла с размерами 200 × 200 мм, при этом нужно заранее просверлить в них отверстия по всем сторонам под болты М8.

Собирать водяной генератор начинают так: сначала кладут первую пластину, затем резиновое кольцо, промазанное герметиком, и так далее по такой же схеме. После этого всю конструкцию стягивают болтами и пластинами из оргстекла.

В последних нужно просверлить отверстия: в одной пластине внизу, чтобы проходила жидкость, в другой — наверху для отвода газа. Туда следует вставить штуцер. На эти штуцера нужно одеть полихлорвиниловые трубки.

Из достоинств данного вида отопления выделяют следующие:

  • экологический тип отопления, ведь при сгорании водорода в кислороде появляется вода в виде пара, при этом нет выбросов вредных веществ в атмосферу;
  • можно не переделывая подключить генератор к уже существующей системе водяного отопления;
  • установка работает без шума, поэтому ей не требуется какое-то специальное помещение.

К недостаткам водяного генератора относятся:

  • Водород имеет большую температуру горения, поэтому простой котел может быстро сломаться.
  • Во время работы с газом Брауна необходимо быть осторожным, так как он взрывоопасный.
  • При работе водяного генератора необходимо применение дистиллированной воды.

Напряжение или разность потенциалов?

Надо заметить, что напряжение и разность потенциалов — это одно и то же. По сути, это сила, которая способна заставить электрические заряды двигаться потоком. Не имеет значения, куда будет направлено это движение.

Разность потенциалов — просто другое выражение для напряжения. Оно нагляднее и, может быть, понятнее, но сути дела не меняет. Поэтому главный вопрос состоит в том, откуда берется напряжение, и от чего оно зависит.

В том, что касается домашней сети 220 Вольт, ответ простой. На гидростанции поток воды вращает ротор генератора. Энергия вращения трансформируется в силу напряжения. Атомная электростанция вначале превращает воду в пар. Он и крутит турбину. В бензоэлектростанции ротор вращает сила сгорающего бензина. Есть и другие источники, но суть всегда одна и та же: энергия превращается в напряжение.

Самое время задаться вопросом о зависимости напряжения от частоты. Но мы еще не знаем, откуда берется частота.

Кто вы, мистер Тесла?

Тесла — это новая цивилизация. Ученый был невыгоден правящей элите, невыгоден и сейчас. Он настолько опередил свое время, что до сих пор его изобретения и эксперименты не всегда находят объяснение с точки зрения современнейшей науки. Он заставлял светиться ночное небо над всем Нью-Йорком, над Атлантическим океаном и над Антарктидой, он превращал ночь в белый день, в это время волосы и кончики пальцев у прохожих светились необычным плазменным светом, из-под копыт лошадей высекались метровые искры.

Теслу боялись, он мог запросто поставить крест на монополии по продаже энергии, а если бы захотел, то мог бы сдвинуть с трона всех Рокфеллеров и Ротшильдов вместе взятых. Но он упрямо продолжал эксперименты, до тех пор, пока не погиб при таинственных обстоятельствах, а его архивы были выкрадены и местонахождение их до сих пор неизвестно.

Принцип работы электрогенератора

Работа генераторов реализуется по принципу электромагнитной индукции, когда в замкнутой рамке происходит наводка тока за счет пересечения ее вращающимся магнитным полем. Магнитное поле создают обмотки либо постоянные магниты.

Когда из коллектора электродвижущая сила достигает замкнутого контура и узлов щетки, то ротор начинает вращаться сообща с магнитным потоком. Так создается напряжение в подпружиненных щетках, прижатых к коллекторам пластинчатого вида.

Далее электроток передается к выходным клеммам, проходит в сеть, распространяется по генератору.

Используют генераторы переменного и постоянного тока. Электрогенератор переменного тока малогабаритен, не образовывает вихревые токи, при этом имеет возможность функционировать в экстремальных температурах. Аппарат с постоянным током не требует тщательного контроля, обладает значительным числом ресурсов.

Конструкционно генератор включает в себя: щетки со щеткодержателями, коллектор, якорную обмотку, якорь, стартер, кольца контактные, обмотку стартера, ротор, корпус, вентилятор, привод и станину

Генератор переменного тока может быть как синхронным, так и асинхронным. Первый – с постоянным электрическим магнитом и количеством вращений статора равных роторным, формирующим магнитное поле. Преимуществами такого генератора называют стабильно высокое напряжение, к недостаткам относят перегрузку по токам из-за завышенной нагрузки на регулятор, повышающий ток обмотки ротора.

Конструкция асинхронного генератора: короткозамкнутый ротор, статор. Когда вращается ротор генератор индуцирует ток, а магнитное поле выдает напряжение синусоидального типа.

Сделать или купить?

Желание иметь в своем пользовании электрогенератор омрачается одной неприятностью – это высокая стоимость агрегата. Как ни крути, но самые маломощные модели имеют достаточно заоблачную стоимость – от 15 000 рублей и выше. Именно этот факт наталкивает на мысль о собственноручном создании генератора. Однако, сам процесс может быть затруднительным, если:

  • нет навыка в работе с инструментом и схемами;
  • нет опыта в создании подобных приборов;
  • не имеется в наличии необходимых деталей и запчастей.

Если же все это и огромное желание присутствуют, то можно попробовать собрать генератор, руководствуясь указаниями по сборке и приложенной схемой.

Не секрет, что покупной электрогенератор будет обладать более расширенным перечнем возможностей и функций, в то время как самоделка способна подводить и давать сбои в самые неподходящие моменты. Поэтому, покупать или делать своими руками – вопрос сугубо индивидуальный, требующий ответственного подхода.

При использовании высоковольтного генератора для копчения:

  1. Не стоит брать руками сразу два оголённых высоковольтных провода: это действие может Вас сильно огорчить.
  2. По одному брать провода тоже не стоит: при неплотном контакте можно получить ВЧ ожог.
  3. Высоковольтные провода должны находиться на расстоянии от любых других проводов, и устройств типа телевизора, компьютера и т.п. (Во избежание).
  4. Не стоит «искрить» (допускать расстояние менее 3-4 см между оголёнными высоковольтными проводами), это действие вызывает сильные помехи и наводки, есть ничтожная (но не нулевая) вероятность того, что что-то из включенной поблизости электроники выйдет из строя.
  5. В качестве высоковольтных нельзя применять обычные силовые провода — обязательно будут утечки т.к. их изоляция не рассчитана на такое напряжение.
  6. Не допускать неизолированных мест до входа в коптильную камеру, с них будут утечки – а это плохо.
  7. Избегать короткого замыкания между ВВ проводами. Блок выдерживает КЗ, но следует понимать что есть вероятность выхода из строя при долговременной работе.
  8. К примеру, камера заполнилась дымом. Включилось высокое напряжение но дым не рассеивается, соответственно проверить нет ли в камере короткого замыкания, которое, в частности, может обеспечить и сам продукт при соприкосновении с излучателями.
  9. Если в процессе работы дым стал рассеиваться «хуже», протереть изоляторы. Загрязненные изоляторы приводят к утечкам, которые отбирает полезную мощность.
  10. Не желательно надолго включать блок с никуда не подключенными ВВ проводами. Так называемый «холостой режим» работы для блока неприятен.
  11. По факту получения обязательно возникнет желание побаловаться и проверить блок, делать это лучше так: взять любую плоскую железку и подключить к ней синий провод, красный провод разместить на расстоянии ~8-10 см от плоскости железки, кончик провода согнуть что бы он смотрел на нее. Взять бумажку, например обычный листок А4 согнутый вдвое, включить блок установив мощность на 30-40, прислонить бумажку к железке, подергать ее вверх, обрадоваться результату.
  12. В коптильной камере синий провод должен быть подключен к излучателям, красный — к продукту. Магия.
  13. При работе блока в коптильной камере размером не больше холодильника, нет смысла устанавливать мощность выше ~40-50%, выигрыш по времени составит ~5-10 секунд на цикл а качество продукта будет хуже.

Сергей, к примеру, более десяти лет занимается копчением электростатикой и при первом опыте с моим блоком получил вот такой результат:

Таким образом следует понимать, что настройки мощности, времени работы и времени паузы зависят от многих факторов и должны быть подобраны индивидуально.