Виды маркировок и обозначение радиоэлементов на схеме

Содержание

Различные варианты

Драгоценные металлы (включая, золото и серебро) в импортных конденсаторах содержатся в различных комбинациях. Так как стоимость золота стабильно высокая и оно является наиболее популярным способом вложения средств, нужно знать, где производится прием устройств или можно приобрести компоненты, чтобы выплавить драгоценный металл для дальнейшего использования, оценки или продажи.

Продать конденсаторы

По количеству золота, серебра или сочетаний этих компонентов, выпущенные во времена СССР и импортные, равны по стоимости. Среди них специалисты по приемке и оценки выделяют керамические конденсаторы. Основная ценность конденсаторов содержится на его контактах, выводах. Здесь сосредоточено до 90% металлов от общего их количества в компоненте технического прибора.

Полупроводниковые диоды

Полупроводниковые диоды являются одним из наиболее распространенных подклассов полупроводниковых приборов. Их отличает разнообразие основополагающих физических принципов, разнообразие используемых полупроводниковых материалов, многообразие конструктивных и технологических реализаций. Полупроводниковые диоды по функциональному назначению могут быть разделены на:

  1. Выпрямительные (включая столбы, мосты, матрицы), импульсные, стабилитроны, варикапы, управляемые вентили (тиристоры, симметричные тиристоры – симисторы, динисторы);
  2. СВЧ-диоды: детекторные, смесительные, параметрические, pin-диоды, лавинопролетные, туннельные, диоды Ганна;
  3. Оптоэлектронные: фотодиоды, светодиоды, ИК-излучатели, лазерные диоды на основе гетероструктур;
  4. Магнитодиоды.

Слаболегированные полупроводники используются для изготовления маломощных диодов, а сильнолегированные – для изготовления мощных и импульсивных диодов.

Основное значение для работы полупроводниковых диодов имеет электронно-дырочный переход, который для краткости называется р-n переходом.

Варикапы

Нелинейные конденсаторы, основанные на использование свойств электронно-дырочного p-n-перехода, относятся к варикапам. Варикап используется при приложении p-n-переходу обратного напряжения. Ширина p-n-перехода, а значит и его емкость, зависит от величины приложенного к p-n-переходу напряжения. Емкость такого конденсатора определяется при помощи выражения

В этом выражении – емкость при нулевом запирающем напряжении, S и l – площадь и толщина p-n-перехода, ε – диэлектрическая постоянная, ε = 8,85 · 10-12 Ф/М, εr – относительная диэлектрическая постоянная; φк – контактный потенциал (для германия 0,3..0,4 B и 0,7..0,8 B для кремния); |u| – модуль обратного напряжения, приложенного к p-n-переходу; n = 2 для резких переходов; n = 3 для главных переходов.

График зависимости С(u) показан на рисунке

Максимальное значение емкости варикап имеет при нулевом напряжении. При увеличении обратного смещения емкость варикапа уменьшается. Основным параметрами варикапа являются:

  • С – емкость при обратном напряжение 2 – 5 В;
  • КC = Cmax/Cmin — коэффициент перекрытия по емкости.

Обычно C = 10 — 500 пФ, КC = 5 — 20. Варикапы применяются в системах дистанционного управления, для автоматической подстройки частоты, в параметрических усилителях с малым уровнем собственных шумов.

Фотодиоды

В фотодиодах на основе p-n-переходов используется эффект разделения на границе электронно-дырочного перехода созданных оптическим излучением неосновных неравновесных носителей. Схематически фотодиод изображен на рисунке:

При попадании кванта света с энергией hγ в полосе собственного поглощения в полупроводнике возникает пара неравновесных носителей – электрон и дырка. При регистрации электрического сигнала необходимо зарегистрировать изменение концентраций носителя. Как правило, используется принцип регистрации неосновных носителей заряда.

При разомкнутой внешней цепи (SA разомкнут, R = ∞) для случая, когда внешнее напряжение отсутствует, ток через внешнюю цепь не протекает. В этом случае напряжение на выводах фотодиода будет максимальным. Эту величину VG называют напряжением холостого хода Vxx. Напряжение Vxx(фото ЭДС) можно также определить непосредственно, подключая к выводам фотодиода вольтметр, но внутреннее сопротивление вольтметра должно быть много больше сопротивления p-n–перехода. В режиме короткого замыкания (SA замкнут) напряжение на выводах фотодиода VG = 0. Ток короткого замыкания Iкз во внешней цепи равен фототоку Iф

Iкз = Iф

На рисунке показано семейство ВАХ фотодиода как при отрицательной, так и при положительной полярности фотодиода.

При положительных напряжениях VG ток фотодиода быстро возрастает (пропускное направление) с увеличением напряжения. При освещении же общий прямой ток через диод уменьшается, так как фототок направлен противоположно току от внешнего источника.

ВАХ p-n-перехода, располагаясь во 2 квадранте (VG > 0, I < 0), показывает, что фотодиод можно использовать как источник тока. На этом базируется принцип работы солнечных батарей на основе p-n-переходов (режим фотогенератора). Световая характеристика представляет собой зависимость величины фототока Iф от светового потока Ф, падающего на фотодиод. Сюда же относится и зависимость Vxx от величины светового потока. Количество электронно-дырочных пар, образующихся в фотодиоде при освещении, пропорционально количеству фотонов, падающих на фотодиод. Поэтому фототок будет пропорционален величине светового потока:

Iф = кФ,

где К — коэффициент пропорциональности, зависящий от параметров фотодиода.

При обратном смещении фотодиода ток во внешней цепи пропорционально световому потоку и не зависит от напряжения VG (режим фото-преобразователя). Фотодиоды являются быстродействующими приборами и работают на частотах 107- 1010 Гц. Фотодиоды широко применяются в оптопарах «cветодиод-фотодиод»

Маркировка частоты

Некоторые интегральные схемы имеют суффикс, который указывает на тактовую частоту устройства. Эта система используется совместно с памятью и некоторыми другими компьютерными чипами, такими как микроконтроллеры и микропроцессоры. В большинстве случаев дополнительные цифры на самом деле являются расширением основной части маркировки, а не суффиксом, так как в маркировке суффикс будет присутствовать и, как говорилось выше, скорее всего будет обозначать тип корпуса.

Некоторые микроконтроллеры PIC, например, имеют в обозначении что-то вроде « -20», добавленное к базовому типу номера. Дополнительная маркировка указывает максимальную тактовую частоту (в мегагерцах) для чипа. Вы можете вполне безопасно использовать элемент с более высокой тактовой частотой, чем тот, который указан в списке компонентов. Однако, более быстрые версии, как правило, значительно дороже, чем медленные.

Отечественные радиодетали

Чемпионы по содержанию золота – радиодетали, которые были изготовлены в СССР до 1986 года.

Больше всего таких драгоценностей было в космической и военной технике, в измерительных и вычислительных приборах, датчиках и других устройствах, к работе которых предъявлялись повышенные требования по точности и надежности.

Крайне редко, по остаточному принципу, радиодетали с большим содержанием золота устанавливали в обычную бытовую электронику: телевизоры, проигрыватели и радиоприемники.

Не стоит разбирать на радиодетали старую советскую измерительную технику, если она рабочая или требует незначительного ремонта. В целом виде она стоит значительно дороже, чем можно выручить за детали.

Большинство советских позолоченных электронных компонентов уже собрали и переплавили, но они все ещё могут вам попасться при разборке старого телевизора бабушки или коробок с радиодеталями, которые принадлежали вашему дедушке. Поэтому необходимо точно знать, какие радиодетали содержат золото, чтобы случайно не выбросить их или не продать за бесценок.

Среди всех радиодеталей, которые выпускала советская промышленность, реле – это самые дорогие и наиболее сложные в определении наличия золота электронные компоненты. Часто нужно точно знать не только тип реле и отличия в паспортной маркировке, но и годы и даже определенные месяцы выпуска.

Это связано с тем, что для изготовления одних и тех же моделей могло использоваться не только золото, но и серебро или палладий с иридием, при этом выбор металла определялся на заводе по его наличию.

В зависимости от типа реле золотом покрывали либо его контакты, либо выводы, либо и то, и другое сразу. Поэтому нельзя откусывать выводы («ноги») при демонтаже, пока точно не известно, где именно в радиодетали находится золото.

Типы реле с особенностями маркировки и датами выпуска, в которых есть золото.

Тип реле Тип маркировки Отличительный признак маркировки Дата выпуска
РЭС-7 любой нет любая
РЭС-9 со слитной маркировкой заканчивается на 213, 215, 216, 217 и 218 до 1982
с раздельной маркировкой начинается на 09, 11, 12, 13 и 14 01.1982 и 12.1989
РЭС-10 со слитной маркировкой заканчивается на 311, 312, 313, 314, 315, 316 и 320 до 1982
с раздельной маркировкой 031-08, 031-09, 031-10, 031-11, 031-12, 031-13, 050-02 01.1982 и 12.1989
РЭС-22 со слитной маркировкой заканчивается на 133 и 200-299 до 1982
с раздельной маркировкой начинается с 023-09, 023-10, 023-11, 023-12, 023-13 до 01.1990
РЭС-34 со слитной маркировкой заканчивается на 378 до 1982
с раздельной маркировкой начинается с 2301 до 1982
РЭС-48 со слитной маркировкой заканчивается на 201-207 до 1989
РП4, РП5, РП7 любая не выбита, а написана белой краской до 1967
любая написана белой краской, обязательно наличие пломбы 1967-1973
РПС-11/5 и РПС-11/7 любая нет до 1973
РПС-18/4, РПС-18/5 и РПС-18/7 любая нет до 02.1992
РПС-20 со слитной маркировкой заканчивается на 756,760,761,762 и 763 до 1982
РПС-32 со слитной маркировкой заканчивается на 201-216 до 1991
РПС-34 со слитной маркировкой заканчивается на 234-236 до 12.1979
ДП-12 со слитной маркировкой заканчивается на 902, 903, 906 до 1974
с раздельной маркировкой начинается с 01 и 03 до 1990

В таблице приведены типы реле, в которых есть значимое количество золота. В зависимости от марки, в каждой радиодетали содержится золото массой от 0,015 до 0,75 грамм. Поэтому стоимость некоторых реле доходит до 1200 рублей за единицу.

Контакты реле РЭС-7 и РЭС-22 полностью покрыты чистейшим золотом 999 пробы толщиной в несколько микрон. За счет этого они невероятно надежны, поэтому радиодетали этих марок, которые не были в использовании или хорошо сохранились, выгоднее продавать не на лом, а мастерам, которые скупают их для использования в электронных схемах.

Сведения, которые содержатся в справочнике драгметаллов

Специалисты, а также субъекты хозяйственной деятельности смогут использовать справочник содержания драгоценных металлов в радиодеталях для получения сведений о массе их конкретного вида в тех или иных компонентах техники. На основе этой информации проводятся следующие действия:

  1. Ведется учет и
    инвентаризация этих металлов, поскольку они включены в основные средства
    предприятия, а также в материально-производственные запасы;
  2. Оценивается ценность
    отходов в конкретном производственном процессе, а также при потреблении;
  3. Контролируется
    экономическая и финансовая безопасность;
  4. Заготовка и переработка
    отходов, в которых есть золото, серебро, платина и другие подобные элементы;
  5. Контролируется и
    предупреждается ненормированное расходование материальных ресурсов;
  6. Ведется надзор
    контролирующими органами за рациональным использованием ценных ресурсов страны.

При списании техники, содержащей драгметаллы, создается комиссия, которая принимает решение на основе данных в рассматриваемом сборнике.

В 2018 году вышло юбилейное издание справочника. Оно
было седьмым. Он собрал наиболее полный перечень всей выпускаемой продукции не
только отечественного, но и зарубежного производителя, которая содержит золото,
серебро, платину и другие ценные металлы. На этот момент сборник состоял из 49
книг, которые разбиты на 16 частей, а именно:

1 Первая часть состоит из 12 книг, посвящена электронным компонентам. Подробнее
2 Вторая часть состоит из 13 книг, посвящена коммутационным устройствам. Подробнее
3 Третья часть состоит из 3 книг, посвящена средствам связи. Подробнее
4 Четвертая часть состоит из 1 книги, посвящена электрооборудованию. Подробнее
5 Пятая часть состоит из 5 книг, посвящена приборам и средствам измерения. Подробнее
6 Шестая часть состоит из 1 книги, посвящена бытовым приборам и электронике. Подробнее
7 Седьмая часть состоит из 2 книг, посвящена промышленному оборудованию. Подробнее
8 Восьмая часть состоит из 1 книги, посвящена оргтехнике. Подробнее
9 Девятая часть состоит из 1 книги, посвящена медицинской технике и оборудованию. Подробнее
10 Десятая часть состоит из 4 книг, посвящена транспортным средствам. Подробнее
11 Одиннадцатая часть состоит из 1 книги, посвящена средствам охраны и безопасности. Подробнее
12 Двенадцатая часть состоит из 1 книги, посвящена катализаторам. Подробнее
13 Тринадцатая часть состоит из 1 книги, посвящена кино-, фото- и рентген материалам. Подробнее
14 Четырнадцатая часть состоит из 1 книги, посвящена оборудованию для предпринимательской деятельности. Подробнее
15 Пятнадцатая часть состоит из 1 книги, посвящена нефтегазовому оборудованию.
16 Шестнадцатая часть состоит из 1 книги, посвящена военной технике, включая вооружение.

Всего в сборнике включено более 300 тысяч наименований разных изделий, при изготовлении которых использовались драгоценные металлы. Сведения получены более, чем из 3,5 тысяч предприятий. Справочник по содержанию драгметаллов в радиодеталях и других устройствах востребован на постсоветском пространстве.

Приборы и оборудование

В точной аппаратуре используют золото, особенно в моделях старых образцов.

Вот несколько примеров устройств и приборов, работающих от питания электроэнергией, с указанием количества драгметалла:

Тип или модель аппаратуры или прибора Ориентировочное количество золота, пригодного к извлечению, в граммах
Осциллограф С 9 — 1 3,439
Программатор 815 21,4845
Миллиомметр Е 6-18/1 0,333
Частотометр ЧЗ-68 8,1
Генератор Г 2-59 11,09334

Драгоценный металл в приборах чаще всего используется для покрытий, но встречаются и детали из этого металла.

 Утилизация приборов после многократного использования – выгодное занятие.

Основные виды и размеры SMD приборов

Корпуса компонентов для микроэлектроники, имеющие одинаковые номинальные значения, могут отличаться друг от друга габаритами. Их габариты определяются прежде всего по типовому размеру каждого. К примеру: резисторы обозначаются типовыми размеры от «0201» до «2512». Данные 4 цифры в маркировке SMD компонента обозначают кодировку, которая указывает длину и ширину прибора в дюймовом измерении. В размещенной таблице, типовые размеры указаны также и в мм.

Маркировка SMD компонентов — резисторы

Прямоугольные чип-резисторы и керамические конденсаторы
Типоразмер L, мм (дюйм) W, мм (дюйм) H, мм (дюйм) A, мм Вт
0201 0.6 (0.02) 0.3 (0.01) 0.23 (0.01) 0.13 1/20
0402 1.0 (0.04) 0.5 (0.01) 0.35 (0.014) 0.25 1/16
0603 1.6 (0.06) 0.8 (0.03) 0.45 (0.018) 0.3 1/10
0805 2.0 (0.08) 1.2 (0.05) 0.4 (0.018) 0.4 1/8
1206 3.2 (0.12) 1.6 (0.06) 0.5 (0.022) 0.5 1/4
1210 5.0 (0.12) 2.5 (0.10) 0.55 (0.022) 0.5 1/2
1218 5.0 (0.12) 2.5 (0.18) 0.55 (0.022) 0.5 1
2010 5.0 (0.20) 2.5 (0.10) 0.55 (0.024) 0.5 3/4
2512 6.35 (0.25) 3.2 (0.12) 0.55 (0.024) 0.5 1
Цилиндрические чип-резисторы и диоды
Типоразмер Ø, мм (дюйм) L, мм (дюйм) Вт
0102 1.1 (0.01) 2.2 (0.02) 1/4
0204 1.4 (0.02) 3.6 (0.04) 1/2
0207 2.2 (0.02) 5.8 (0.07) 1

SMD конденсаторы

Конденсаторы выполненные из керамики по размеру одинаковы с резисторами, что касается танталовых конденсаторов, то они определяются по своей, собственной шкале типовых размеров:

Танталовые конденсаторы
Типоразмер L, мм (дюйм) W, мм (дюйм) T, мм (дюйм) B, мм A, мм
A 3.2 (0.126) 1.6 (0.063) 1.6 (0.063) 1.2 0.8
B 3.5 (0.138) 2.8 (0.110) 1.9 (0.075) 2.2 0.8
C 6.0 (0.236) 3.2 (0.126) 2.5 (0.098) 2.2 1.3
D 7.3 (0.287) 4.3 (0.170) 2.8 (0.110) 2.4 1.3
E 7.3 (0.287) 4.3 (0.170) 4.0 (0.158) 2.4 1.2

Катушки индуктивности и дроссели SMD

Индуктивные катушки могут быть выполнены в различных конфигурациях корпуса, но их значение индицируется также, исходя из типоразмеров. Такой принцип маркировки SMD и расшифровки кодовых обозначений, дает возможность значительно упростить монтаж элементов на плате в автоматическом режиме, а радиолюбителю свободнее ориентироваться.

dr>

Моточные компоненты, такие как катушки, трансформаторы и прочие, которые мы в большинстве случаев изготавливаем собственноручно, могут просто не уместится на плате. Поэтому такие изделия, также выпускаются в компактном исполнении, которые можно установить на плату.

Определить какая именно катушка требуется вашему проекту, лучше всего воспользоваться каталогом и там подобрать требующийся вариант по типовому размеру. Типовые размеры, определяют с использованием кодового обозначения маркированного 4 числами (0805). Где значение «08» определяет длину, а число «05» показывает ширину в дюймовом измерении. Фактические габариты такого SMD компонента составят 0.08х0.05 дюйма.

Диоды и стабилитроны в корпусе SMD

Что касается диодов, то они также выпускаются в корпусах как цилиндрической формы так и в виде многогранника. Типовые размеры у этих компонентов задаются идентично индуктивным катушкам, сопротивлениям и конденсаторам.

Диоды, стабилитроны, конденсаторы, резисторы
Тип корпуса L* (мм) D* (мм) F* (мм) S* (мм) Примечание
DO-213AA (SOD80) 3.5 1.65 048 0.03 JEDEC
DO-213AB (MELF) 5.0 2.52 0.48 0.03 JEDEC
DO-213AC 3.45 1.4 0.42 JEDEC
ERD03LL 1.6 1.0 0.2 0.05 PANASONIC
ER021L 2.0 1.25 0.3 0.07 PANASONIC
ERSM 5.9 2.2 0.6 0.15 PANASONIC, ГОСТ Р1-11
MELF 5.0 2.5 0.5 0.1 CENTS
SOD80 (miniMELF) 3.5 1.6 0.3 0.075 PHILIPS
SOD80C 3.6 1.52 0.3 0.075 PHILIPS
SOD87 3.5 2.05 0.3 0.075 PHILIPS

Транзисторы в корпусе SMD

СМД транзисторы выполнены в корпусах, которые соответствуют их максимальном мощности. Корпуса этих полупроводниковых элементов символично можно разделить на два вида: SOT и DPAK.

Маркировка SMD компонентов

Маркировка электронных приборов в современной технике уже требует профессиональных знаний, и так просто, с кондачка в ней тяжело разобраться, особенно начинающему радиолюбителю. В сравнении с деталями выпускаемыми при Советском Союзе, где маркировка номинального значения и тип прибора наносилась в текстовом варианте, сейчас это просто мета паяльщика. Не надо было держать под рукой кипы справочной литературы, чтобы определить назначение и параметры того или иного прибора.

Однако, технологические процессы в промышленности не стоят на месте и автоматизация производства определяет свои правила. Именно SMD детали в поверхостном монтаже играют главную роль, а роботу нет никакого дела до маркировки деталей заправленных в машину, что туда поместили, то он и припаяет. Маркировка нужна специалисту, который обслуживает этого робота.

Скачать программу для расшифровки обозначения SMD деталей

Полупроводники

Это самая большая часть всех радиоэлементов, так как в число полупроводников входят не только стабилитроны, транзисторы, диоды, но и варикапы, вариконды, тиристоры, симисторы, микросхемы, и т. д. Да, микросхемы – это один кристалл, на котором может находиться великое множество радиоэлементов – и конденсаторов, и сопротивлений, и р-п-переходов.

Как вы знаете, есть проводники (металлы, например), диэлектрики (дерево, пластик, ткани). Могут быть различными обозначения радиодеталей на схеме (треугольник – это, скорее всего, диод или стабилитрон). Но стоит отметить, что треугольником без дополнительных элементов обозначается логическая земля в микропроцессорной технике.

Эти материалы либо проводят ток, либо нет, независимо от того, в каком агрегатном состоянии они находятся. Но существуют и полупроводники, свойства которых меняются в зависимости от конкретных условий. Это такие материалы, как кремний, германий. Кстати, стекло тоже можно отчасти отнести к полупроводникам – в нормальном состоянии оно не проводит ток, но вот при нагреве картина полностью обратная.

Производитель

Большинство электронных компонентов маркируются согласно перечисленным стандартным методам. Но бывают и исключения. (рис.1).

Здесь префикс TIP этого силового транзистора указывает, что он является мощным транзистором в пластиковом корпусе от Texas Instruments. Однако впереди производитель нанёс логотип MOSPEC, поэтому префикс стал вторым элементом маркировки.

Такое часто встречается в маркировке интегральных микросхем, где к стандартной маркировке типа производитель добавляет свою кодировку.

Рис.2. Эта интегральная схема имеет обозначение «LM» в качестве префикса, что указывает на то, что это изделие фирмы National Semiconductor.

Как несколько примеров: префиксы «CA» и «MC» используются соответственно фирмы KCA и Motorola. Из-за того, что один и тоже элемент может выпускаться разными производителями и маркироваться по своему, возникают трудности с идентификацией элементов.

Конечно, наличие на рынке нескольких производителей порождает конкуренцию, что, как следствие, снижает цены на радиоэлементы. Для нас это хорошо. С другой стороны, каждый производитель вносит что-то своё в маркировку элементов, тем самым затрудняет нам их идентификацию.

При просмотре каталога интегральных микросхем, вероятно, лучше всего игнорировать префикс и сосредоточиться на двух других элементах маркировки. Тем более, что часто поставщики компонентов не гарантируют поставку устройств от конкретных производителей. Если вы заказываете (скажем) MC1458CP. но вам прислали СА1458Е. или наоборот, нет повода беспокоиться. Обе микросхемы являются 1458 — двойными операционными усилителями, и нет никакой практической разницы между ними. MC1458CP производится Motorola или Texas Instruments, а СА1458Е – фирмой RCA.

Конденсаторы

Конденсаторы ­– это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две пластины из металла. И в качестве диэлектрического компонента выступает воздух. Сразу вспоминаются уроки физики в школе, когда проходили тему о конденсаторах. В качестве модели выступали две огромные плоские железки круглой формы. Их приближали друг к другу, затем отдаляли. И в каждом положении проводили замеры. Стоит отметить, что вместо воздуха может использоваться слюда, а также любой материал, который не проводит электрический ток. Обозначения радиодеталей на импортных принципиальных схемах отличается от ГОСТов, принятых в нашей стране.

Обратите внимание на то, что через обычные конденсаторы не проходит постоянный ток. С другой же стороны, переменный ток через него проходит без особых трудностей. Учитывая это свойство, устанавливают конденсатор только там, где необходимо отделить переменную составляющую в постоянном токе

Следовательно, можно сделать схему замещения (по теореме Кирхгофа):

Учитывая это свойство, устанавливают конденсатор только там, где необходимо отделить переменную составляющую в постоянном токе. Следовательно, можно сделать схему замещения (по теореме Кирхгофа):

  1. При работе на переменном токе конденсатор замещается отрезком проводника с нулевым сопротивлением.
  2. При работе в цепи постоянного тока конденсатор замещается (нет, не емкостью!) сопротивлением.

Основной характеристикой конденсатора является электрическая емкость. Единица емкости – это Фарад. Она очень большая. На практике, как правило, используются конденсаторы, емкость которых измеряется в микрофарадах, нанофарадах, микрофарадах. На схемах конденсатор обозначается в виде двух параллельных черточек, от которых идут отводы.

Активные и пассивные элементы электрической цепи

Эти же соображения относятся и к многофазным электродвигателям. Если ток изменяется в определённых пределах которые зависят от детали , то нижняя граница всегда равна нулю, и эта составляющая начинает отдавать энергию внешней цепи.

Третья часть состоит из передающих устройств — проводов и других установок, обеспечивающих уровень и качество напряжения. Особенности нанесения разметок на схемы: Для ЭДС источников они указываются произвольно. Каждый активный элемент характеризуется только одним параметром — ЭДС или током на выходных зажимах источников.

А определить мощность можно, умножив ток на напряжение. Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника.

Законы, которые понадобятся при работе с цепями постоянного тока Анализ и расчет будут гораздо эффективнее, если одновременно использовать закон Ома, а также первый и второй законы Кирхгофа. А выключатели или приборы защиты всегда подсоединяются последовательно, т. Трехфазные системы в настоящее время получили наибольшее распространение.

По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается. Вторая — элементами, преобразующими электричество в другие виды энергии.

Параллельное соединение конденсаторов

Если в электрическую цепь были включены источники напряжений, то данный показатель будет равен нулю. Функция зависимости тока, протекающего по двухполюсному компоненту, от напряжения на этом компоненте называется вольт-амперной характеристикой ВАХ. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных.

В ней содержатся условные обозначения элементов, а также способы из соединения. Основные элементы электрической цепи, в зависимости от конструкции и роли в схемах, могут быть классифицированы по разным системам. Во всех практических случаях реальные источники ЭДС или источники питания не являются идеальными, так как обладают внутренним сопротивлением. Различают два типа источников: первичные, когда в электрическую энергию превращается другой вид, и вторичные, которые на входе, и на выходе имеют электрическую энергию в качестве примера можно привести выпрямительное устройство.

Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. Рассмотрим процесс возникновения синусоидальной ЭДС. Так, когда элемент нагревается, то сопротивление начинает возрастать. В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения 1.

КАК ТЕЧЁТ ТОК В СХЕМЕ — Читаем Электрические Схемы 1 часть

Для чего золото в приборах?


использованных материалов и изделий

Важность этого хозяйственного направления открыло для многих масштабы применения золота в  электронике, радиоделе, в изготовлении приборов. Главная причина использования дорогостоящего металла в таких изделиях  — возможность изготовления стойких к коррозии токопроводящих элементов очень маленького размера

Главная причина использования дорогостоящего металла в таких изделиях  — возможность изготовления стойких к коррозии токопроводящих элементов очень маленького размера.

Во многих случаях важно обеспечить именно миниатюрные размеры радиодеталей и их частей. Вот основные формы применения золота в радиодеталях и приборах:

Вот основные формы применения золота в радиодеталях и приборах:

  1. Использование золотой фольги.
  2. Устройство покрытий из золота – напылений, гальванической позолоты.
  3. Изготовление мелких деталей с точными и стабильными свойствами.

Чаще всего использование золота в деталях и изделиях остаётся незаметным при внешнем осмотре и даже разборке.

Видимыми остаются только позолоченные контакты, некоторые цельные детали, проводники.

Опыт рециклинга и знание устройства радиодеталей помогает в возвращении золота в хозяйственный и производственный оборот.

Извлечение золота из радиодеталей основано на нескольких важных факторах:

  1. Большое количество этих изделий, в том числе полностью непригодных к использованию.
  2. Высокая степень чистоты золота в изделиях такого рода.
  3. Возможности извлечения других ценных металлов вместе с золотом.

Знание особенностей содержания и извлечения золота и других ценных компонентов из микросхем и других деталей позволяет обеспечить высокую эффективность рециклинга.

Чем больше возраст золотосодержащей радиодетали, тем большее количество золота может быть из неё извлечено.

Такие решения характерны для военной техники советского времени, когда стоимость деталей не была первостепенным фактором. По мере совершенствования электроники применение золота стало более рациональным, обоснованным.

Радиодетали, содержащие драгметаллы

Золото и серебро в основном содержится в отечественных радиодеталях, в импортных намного меньше. Редкие драгметаллы есть в кинескопе. К примеру, платина. Многие детали делают из сплавов с высоким содержанием ценных компонентов. Покрытия из золота можно узнать по цвету, другие драгметаллы сложнее. Содержания палладия в радиодеталях до 80%. Ценится радиотехнический лом военной техники, осциллографы. Золото нередко скрыто под корпусом, серебро можно найти на контактах переключателей.

Радиолампы

Ценные металлы в радиолампах извлекают путем растворения напыления и позолоты. В некоторых моделях телевизоров, радиотехники содержание золота в радиолампах достигает 9 грамм (ГИ-42Б П3), минимальное в марке 12П17Л.

Микросхемы

Золото – инертный токопроводящий металл. Им делают пайку, покрывают контакты. Большое содержание Аu в м/с К1108ПА15, 1109КТ5. На современных образцах золото заменяют сплавами высокой пробы. Добычу серебра из радиодеталей подобного рода умельцы ставят на поток.

Транзисторы

В транзисторах оборонных заводов золота больше, чем у других производителей, особенно в серии КТ, до 200 мг. Встречаются палладий, платина. Выход драгметаллов зависит от умелой сортировки лома, демонтажа транзисторов.

Реле и разъемы

Для химического извлечения серебра из радиодеталей электроустановок выбирают реле серии РВМ, РЭС. Рециклинг разъемов проводится расплавкой лома драгметаллов.

Резисторы

Драгметаллы ищут в деталях, выпущенных до 80-х годов прошлого века. Продуктивными являются серии ПП и К с изображением ромба. Современные резисторы выпускают из других материалов. Точная информация есть в справочных таблицах, размещенных в общем доступе.

Конденсаторы

Серебро находят в сериях К10, К15, изделиях выпуска прошлого века с желтым корпусом. Они использовались в ламповой радиотехнике, телевизорах с кинескопом. Палладий, платина содержатся в бескорпусных конденсаторах.

https://youtube.com/watch?v=M5HXKQgmot0

Многообразие вариантов

Большинство транзисторов не имеют суффикса в маркировке. Там, где он присутствует, суффикс обычно представляет собой одну букву и указывает на коэффициент усиления или другой какой-то параметр. Обычно буквой «А» маркируются транзисторы с низким коэффициентом усиления, буквой «В» со средним и буквой «С» с высоким коэффициентом усиления. Конкретные значения или диапазон указывается в даташите на элемент.

Поэтому, если на схеме указан транзистор с суффиксом «В», заменить его безопасно можно на транзистор с суффиксом «С». При замене на элемент с суффиксом «А» может не хватить его усиления и устройство откажется работать или будет часто уходить в перегрузку.

Бывают ситуации (к счастью, довольно редкие), когда суффикс указывает на расположение выводов элемента. Для транзисторов это обозначения «L» или «K». Большинство транзисторов имеют одну типовую конфигурацию выводов. Но если ваше устройство не работает по непонятным причинам, проверьте, не попались ли вам транзисторы с такими суффиксами.

С интегральными микросхемами ситуация противоположная. Тут производители часто используют суффикс для обозначения типа корпуса. И если вы при заказе проигнорируете суффикс или укажите неверный, вы рискуете получить микросхему в таком исполнении, которое будет не совместимо с вашим вариантом печатной платы.

Ситуация осложняется тем, что стандартов на суффиксы нет и каждый производитель использует свои типы маркировки. Так что будьте предельно внимательны при заказе микросхем!

Цены на лом палладия

Цены на лом зависят от многих параметров – чистота, количество, наличие пробы, известности марки. Если это чистый элемент, добытый путем аффинажа, есть шанс сбыть его за неплохую цену. В радиодеталях проба палладия обычно пятисотая, и его стоимость редко превышает 500 рублей за грамм.

Пункты приема могут оценивать изделие поштучно, особенно если сохранилась маркировка. А некоторые детали, например конденсаторы, коллекционеры могут купить по стоимости, в разы превышающей стоимость палладия в них. Поэтому прежде чем предпринимать попытки переплавить лом самостоятельно, проконсультируйтесь со специалистами.