Резонансная частота: формула

Содержание

Резонанс в реальных цепях

Для изучения описанных процессов надо собрать контур из соответствующих компонентов. Придется подготовить генератор с изменяющейся частотой выходного сигнала, осциллограф и другие измерительные инструменты. Чтобы получить достоверные результаты без лишних трудностей, пользуются специализированным программным обеспечением.

Теория и практика

В левой части рисунка размещены схема и амплитуда сигнала на выходе при подключении к выводам конденсатора параллельного контура. В правой – снимок экрана измерительной аппаратуры. Несложно убедиться в идентичности колебаний.

К сведению. С помощью ПО выполняют десятки экспериментов быстро и точно в обычных домашних условиях. Этот способ значительно упрощает создание электрических схем с оптимальными параметрами.

Резонанс напряжений

Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.

Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.

При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.

Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:

U=I/X

Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.

Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:

Период колебаний определяется по формуле Томпсона:

Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:

Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:

K=Q

А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.

Uк=Uвх*Q

При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:

Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.

Коэффициент мощности будет равен:

cosФ=1

Эта формула показывает, что потери происходят за счет активной мощности:

S=P/Cosф

Резонанс в линейных системах с одной степенью свободы

К этой группе можно причислить рассмотренные последовательные и параллельные электрические схемы. Механический пример – пружина с грузом, который способен перемещаться только по вертикальной прямой. Исключены порывы ветра, вибрации, другие «паразитные» внешние воздействия. В подобных условиях можно применять типовые формулы для систем линейного типа.

Отмеченная выше добротность является определяющим фактором для избирательности по частоте. Сужение ширины резонансного диапазона помогает улучшить характеристики приемных и передающих устройств. Кроме экономного расходования электроэнергии, при правильном расчете схемы существенно улучшается помехозащищенность.

Положительные и отрицательные стороны резонанса

Высотные мачты и башни, небоскрёбы, мосты и смотровые площадки должны выдерживать возрастание амплитуды своих колебаний в результате внешних воздействий.

У явления резонанса есть плюсы:

  • резонаторы на струнных инструментах усиливают гармонику, выполняя усиление стоячих волн;
  • колебательный контур радиоприёмных устройств, при настройке на передающую станцию, усиливает принятый сигнал по амплитуде.

Разрушающие свойства этого явления используются при работе перфоратора – во время вибрации при сверлении бетонная стена вступает в резонанс с рабочим инструментом, и происходит разрушение бетона в точке применения.

Плюсы и минусы резонанса

Резонанс в линейных колебательных системах с несколькими степенями свободы

Такие расчеты понадобятся при конструировании двух последовательных контуров с индуктивной связью. В этом случае переменные колебательные процессы оказывают взаимное влияние. Фактически речь идет о распределенной системе.

Кроме схемотехники, в подобных ситуациях отдельно изучают коэффициент связи (Кс). При работе с трансформатором его вычисляют делением напряжений на первичной (вторичной) катушке, соответственно. Следует учесть реактивные характеристики, которые преобладают в рабочем диапазоне частот.

Узнав, что такое резонанс напряжений и токов, можно самостоятельно реализовать различные проекты. Тщательная предварительная подготовка необходима для создания схемы с хорошими эксплуатационными параметрами. Начинают с чертежей и расчетной части. Теоретические изыскания дополняют изготовлением макета и практическими испытаниями. Ускоряют подготовку конструкторской документации, а также выполняют эксперименты с применением программного обеспечения. В наиболее сложных ситуациях обращаются к опытным специалистам.

Резонанс в линейных колебательных системах с несколькими степенями свободы

Такие расчеты понадобятся при конструировании двух последовательных контуров с индуктивной связью. В этом случае переменные колебательные процессы оказывают взаимное влияние. Фактически речь идет о распределенной системе.

Кроме схемотехники, в подобных ситуациях отдельно изучают коэффициент связи (Кс). При работе с трансформатором его вычисляют делением напряжений на первичной (вторичной) катушке, соответственно. Следует учесть реактивные характеристики, которые преобладают в рабочем диапазоне частот.

Узнав, что такое резонанс напряжений и токов, можно самостоятельно реализовать различные проекты. Тщательная предварительная подготовка необходима для создания схемы с хорошими эксплуатационными параметрами. Начинают с чертежей и расчетной части. Теоретические изыскания дополняют изготовлением макета и практическими испытаниями. Ускоряют подготовку конструкторской документации, а также выполняют эксперименты с применением программного обеспечения. В наиболее сложных ситуациях обращаются к опытным специалистам.

Резонанс в распределённых колебательных системах, нелинейные процессы

Разделение автоматических выключателей по время токовым характеристикам

Общим понятием для всех явлений данной категории можно назвать действенную связь с окружающей средой. В механических системах влияние на амплитуду фазовых характеристик процесса оказывает определенное положение в пространстве. В колебательном контуре радиоприемника, кроме собственного затухания, приходится учитывать реальный электромагнитный фон. При определенных условиях с высоким значением добротности допустимо образование стоячих волн.

Если пружина создана с различным распределением плотности витков, типовые формулы не действуют. Стандартные расчеты подразумевают равномерные упругость и деформации каждой части. Для уточнения нелинейности применяют корректирующие коэффициенты, сложные многоэтапные схемы вычислений.

Аналогичные особенности учитывают при использовании диодов или других радиотехнических компонентов с переменными амплитудно-частотными характеристиками. Если катушку индуктивности намотать на сердечнике из ферромагнитного материала, также придется учитывать нелинейность выходных параметров. Ее не получится описать элементарным уравнением закона Ома.

В нелинейных контурах при определенном спектральном распределении внешних воздействий присутствуют гармонические колебания. Кроме совпадения частот, значение имеет их амплитуда. В зависимости от настроек, они способны выполнять полезные и вредные функции. Определенные условия вызывают искажение формы базового сигнала.

Резонанс в линейных системах с одной степенью свободы

К этой группе можно причислить рассмотренные последовательные и параллельные электрические схемы. Механический пример – пружина с грузом, который способен перемещаться только по вертикальной прямой. Исключены порывы ветра, вибрации, другие «паразитные» внешние воздействия. В подобных условиях можно применять типовые формулы для систем линейного типа.

Отмеченная выше добротность является определяющим фактором для избирательности по частоте. Сужение ширины резонансного диапазона помогает улучшить характеристики приемных и передающих устройств. Кроме экономного расходования электроэнергии, при правильном расчете схемы существенно улучшается помехозащищенность.

Польза и вред резонанса

Изложенные сведения применяют для решения разных прикладных задач. Выяснив, что такое резонанс в физике, можно с помощью малых внешних сил развивать большую полезную мощность. Точный расчет предотвратит вредные воздействия, ухудшающие функциональное состояние механических аппаратов и электротехнических схем.

Положительный эффект

Изложенные принципы объясняют применение резонанса для обработки сигналов. Точный расчет компонентов и коэффициента связи контуров поможет создать эффективный фильтр, пропускающий электромагнитные колебания в определенном частотном диапазоне.

Последовательный контур можно использовать для повышения напряжения, если сеть питания неспособна поддерживать необходимый уровень. Правильно подобранный конденсатор обеспечит плавное включение привода, что продлит срок службы оборудования и снизит нагрузку на электростанцию.

К сведению. Хорошо известно применение резонанса в технике измельчения твердых горных пород. Аналогичный результат (ускорение процесса) получают при оснащении дрели ударно-возвратным механизмом.

Отрицательное воздействие

Резонанс разрушает прочные конструкции, функциональные узлы, механизмы. При ошибках в расчетах это явление ухудшает работоспособность электрических схем. Особо сильные воздействия провоцируют аварийные ситуации.

В качестве примера можно привести резонансные частоты, которые учитывают при создании санитарных, технических и производственных нормативов:

  • стоящий, сидящий и лежащий человек: 4-13 (16-26), 4-7 и 2,5-3 Гц, соответственно;
  • голова: 18-35 Гц;
  • грудная клетка: 2,5-4 Гц;
  • брюшная полость: 6-9 Гц.

При совпадении частоты вибраций (от инструмента, работающего оборудования) ухудшается состояние нервной системы, провоцируются паталогические изменения в организме.

Резонанс напряжений, условие возникновения

Явление резонанса электрических напряжений наблюдается в цепи последовательного колебательного контура, состоящего из емкости (конденсатора), индуктивности и резистора (сопротивления). Для обеспечения энергетической подпитки колебательного контура в последовательную цепь включается также источник электродвижущей силы Е. Источник вырабатывает переменное напряжение с частотой W. При резонансе ток, циркулирующий в последовательной цепи, должен совпадать по фазе с э.д.с. Е. Это обеспечивается, если общее сопротивление схемы Z = R+J(WL – 1/WС) будет лишь активным, т.е. Z=R. Равенство:

(L – 1/WС) = 0 (1),

является математическим условием резонанса в колебательном контуре. При этом величина тока в цепи составит I = E/R. Если преобразовать равенство (1), то получим:

WL = 1/WС.

В этом выражении W — является резонансной частотой контура.

Важно то, что в процессе резонанса напряжение на индуктивности равно напряжению на конденсаторе и составляет:

UL = U = WL * I = WLE/R

Общая сумма энергий в индуктивности и емкости (магнитного и электрического полей) постоянна. Это объясняется тем, что между этими полями происходит колебательный обмен энергиями. Суммарное ее количество в любой момент неизменно. При этом обмена энергией между ее источником Е и цепью не происходит. Вместо этого имеет место непрерывное преобразование одного вида энергии в другой.

Для колебательных контуров применятся термин добротность, которая показывает, как соотносятся напряжение на реактивном элемента (емкость или индуктивность) и входное напряжение контура. Добротность вычисляется по формуле:

Q = WL/R

Для идеальной последовательной цепи с нулевым активным сопротивлением возникновение резонанса сопровождается незатухающими колебаниями. На практике затухание колебаний компенсируется подпиткой контура от генератора колебаний с частотой резонанса.

Явление колебательного резонанса широко используется в радиоэлектронике. В частности, входная цепь любого радиоприемника представляет собой регулируемый колебательный контур. Его резонансная частота, изменяемая с помощью регулировки емкости конденсатора, совпадает с частотой сигнала радиостанции, которую необходимо принять.

В электроэнергетике возникновение резонанса напряжений вследствие сопутствующих ему перенапряжений чревато нежелательными последствиями. Например, в случае подключения к генератору или промежуточному трансформатору длинной кабельной линии (являющейся колебательным контуром с распределенной емкостью и индуктивностью), не соединенной на приемном конце с нагрузкой (это называется режимом холостого хода), весь контур может оказаться в резонансом состоянии. В такой ситуации напряжения, возникающие на некоторых участках цепи, могут оказаться выше расчетных. Это может грозить пробоем изоляции кабеля и выходом его из строя. Такая ситуация предотвращается применением вспомогательной нагрузки.

Электроника

В электрических цепях резонансом называется такой режим пассивной цепи, содержащий катушки индуктивности и конденсаторы, при котором ее входное реактивное сопротивление или ее входная реактивная проводимость равны нулю. При резонансе ток на входе цепи, если он отличен от нуля, совпадает по фазе с напряжением.

В электрических цепях резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.

Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.

Электрическое устройство, состоящее из ёмкости и индуктивности, называется колебательным контуром. Элементы колебательного контура могут быть включены как последовательно (тогда возникает резонанс напряжений), так и параллельно (резонанс токов). При достижении резонанса, импеданс последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства. Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.

Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения

ωL=1ωC⇒ω=1LC{\displaystyle \omega L={\frac {1}{\omega C}}\Rightarrow \omega ={\frac {1}{\sqrt {LC}}}},

где ω=2πf{\displaystyle \omega =2\pi f} ; f — резонансная частота в герцах; L — индуктивность в генри; C — ёмкость в фарадах

Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания, то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы.. В электронных устройствах также применяются различные электромеханические резонансные системы.

В электронных устройствах также применяются различные электромеханические резонансные системы.

Подробнее по этой теме см. Кварцевый резонатор.
Подробнее по этой теме см. Электромеханический фильтр.

Какие последствия резонанса напряжений

Если в электрической системе с ёмкостью, индуктивностью и сопротивлением не учитывать воздействие этого явления, то работа устройств может быть нестабильной. Если этот эффект носит паразитический характер, то от него следует обязательно избавляться. Увеличение напряжения вследствие возникновения резонансного явления в цепи переменного напряжения может привести к выходу элементов из строя.

Важно! При возникновении этого явления могут быть разрушены конденсаторы из-за превышения реактивной мощности. При перегреве вследствие резонанса напряжений электротехника может не только выйти из строя, но и загореться. При перегреве вследствие резонанса напряжений электротехника может не только выйти из строя, но и загореться

При перегреве вследствие резонанса напряжений электротехника может не только выйти из строя, но и загореться.

Возгорание электрической подстанции

На крупных производственных объектах такое явление может привести к аварии с человеческими жертвами. Если высоковольтные линии электропередач находятся слишком близко, то эффект электрического резонанса может возникать и в системах этого типа.

Шунтирующие генераторы ЛЭП

Чтобы защитить ЛЭП от негативного воздействия этого явления применяются шунтирующие генераторы, которые устанавливаются через каждые 300 – 400 км.

Положительные и отрицательные стороны резонанса

Увеличение колебаний в два раза и более, по сравнению с исходным допуском технического задания, способно привести к разрушению конструкции. Однако это же проявление в другой ситуации выполняет полезные функции. Плюсы и минусы резонанса удобно изучать на конкретных примерах.

Резонансный преобразователь

Для преобразования импульсного сигнала в синусоидальный можно применить представленный на рисунках инвертор. Принцип работы заключается в периодическом накоплении-возврате энергии с применением реактивных компонентов. При корректном выборе элементов колебательный контур выполняет функции фильтра. Трансформатор – это дополнительная индуктивность в цепи, поэтому основную катушку можно сделать меньше. Количеством витков обмоток устанавливают необходимое напряжение на выходе.

Определенный резон имеет создание системы отопления с помощью электроэнергии, созданной солнечными батареями. Эти «бесплатные» генераторы по мере совершенствования производственных технологий становятся дешевле. Эффективный индукционный нагреватель можно собрать самостоятельно. Некоторые схемы по КПД не уступают фабричным аналогам.

Нагреватель воды

Следующие примеры резонанса демонстрируют отрицательные стороны явления:

  • чрезмерное увеличение амплитуды колебаний элементов подвески транспортных средств;
  • вредный и неприятный звук, который формируется на резонансных частотах технологическим оборудованием;
  • возникновение помех в акустических, оптических и радио трактах.

Задача из ЕГЭ по физике про резонанс в цепи переменного тока

При под­клю­че­нии трех не­из­вест­ных эле­мен­тов A, B и C элек­три­че­ской цепи к вы­хо­ду ге­не­ра­то­ра пе­ре­мен­но­го тока с из­ме­ня­е­мой ча­сто­той гар­мо­ни­че­ских ко­ле­ба­ний при не­из­мен­ной ам­пли­ту­де ко­ле­ба­ний на­пря­же­ния, об­на­ру­же­ны следующие зависимости действующих значений силы тока от ча­сто­ты: Установите соответствие между буквой графика и соответствующим элементом из списка, который был подключен:

1) активное сопротивление 2) кон­ден­са­то­р 3) ка­туш­ка 4) RLC-контур

C
A
  • Правильный ответ для графика A — 1 (активное сопротивление), поскольку из представленных в списке элементов лишь активное сопротивление не имеет зависимости от частоты в цепи переменного тока.
  • Правильный ответ для графика B — 2 (катушка), поскольку индуктивное сопротивление катушки возрастает пропорционально частоте переменного тока. Тогда действующее значение силы переменного тока уменьшается обратно пропорционально частоте.
  • Правильный ответ для графика B — 4 (RLC-контур), так как на кривой зависимости действующего значения силы переменного тока от частоты имеется ярко выраженный резонансный максимум, что является характерным признаком RLC-контура.

Материал подготовлен репетитором по физике на Юго-Западной, сергеем Валерьевичем

Последовательный колебательный контур обозначение на схеме

Последовательный колебательный контур – это цепь, состоящая их катушки индуктивности и конденсатора, которые соединяются последовательно.

На схемах идеальный последовательный колебательный контур обозначается вот так:

L – индуктивность, Гн

Реальный последовательный колебательный контур

Реальный колебательный контур имеет сопротивление потерь катушки и конденсатора. Это суммарное суммарное сопротивление потерь обозначается буквой R. В результате, реальный последовательный колебательный контур будет иметь такой вид:

L – собственно сама индуктивность катушки

С – собственно сама емкость конденсатора

В словаре Д.Н. Ушакова

РЕЗОНА́НС, резонанса, мн. нет, ·муж. (от ·лат. resonans – дающий отзвук).1. Ответное звучание одного из двух тел, настроенных в унисон (физ.).2. Способность увеличивать силу и длительность звука, свойственная помещениям, внутренняя поверхность которых может отражать звуковые волны. В концертном зале хороший резонанс. В комнате плохой резонанс.3. Возбуждение колебания тела, вызываемое колебаниями другого тела той же частоты и передаваемое находящейся между ними упругой средой (мех.).4. Соотношение между самоиндукцией и емкостью в цепи переменного тока, вызывающее максимальные электромагнитные колебания данной частоты (физ., радио).5. перен. Отзвук, отголосок (·книж. ).

Резонанс токов

Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.

Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:

В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:

  1. Частота питания аналогична резонансной у контура.
  2. Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.

Шпаргалки по электротехнике и электронике — Понятие о резонанс токов

Sunday, 24 January 2016 04:20

administrator

Cмотрите так же…
Шпаргалки по электротехнике и электронике
Закон Ома для замкнутой цепи и для участка цепи
Законы Кирхгофа для цепи постоянного тока
Расчет простых цепей при различных схемах соединения потребителей
Понятие о сложной электрической цепи
Мощность, работа и потери КПД электрических цепей
Синусоидальный ток и его основные параметры
Способы представления синусоидального тока
Резисторное сопротивление в цепи синусоидального тока
Конденсатор в цепи синусоидального тока
Индуктивность в электрической цепи
Закон электромагнитной индукции
Индуктивность в цепи синусоидального тока
Взаимоиндуктивность в магнитосвязанных цепях
Законы Кирхгофа для цепей синусоидального тока
Закон Ома и сопротивления цепи синусоидального тока с последовательным соединением элементов R, L,C
Понятие о резонансе напряжений
Резонанс напряжений и его признаки
Закон Ома и проводимость цепи синусоидального тока с параллельным соединением ветвей R-L, L-C
Понятие о резонанс токов
Мгновенная мощь цепи синусоидального тока
Активная, реактивная и полная мощность цепей синусоидального тока
Коэффициент мощности и его экономическое значение
Получение трехфазной системы ЭДС и способы представления
Соединения обмоток трехфазных генераторов
Соединения приемников в трехфазных цепях
Мощность трехфазных цепей
Трансформаторы
Работа трансформаторов в различных режимах
Потери и КПД трансформаторов
Устройство, схемы и группы соединения обмоток трехфазных трансформаторов
Назначение, схема и работа автотрансформатора
Назначение, схема и работа импульсного трансформатора
Машины постоянного тока
Асинхронные электродвигатели
Синхронные электродвигатели
Пускорегулирующая аппаратура
Выбор типа и мощности электродвигателя
Провода и кабели, выбор сечения проводов
Защитное заземление
Электронно-дырочный переход
Диоды, тиристоры
Транзисторы
Основные логические операции и их реализация
Триггеры
Однофазные неуправляемые выпрямители
Трехфазные выпрямители: нулевой, мостовой
Фильтры(C, L, LC, RC), коэффициент пульсаций
Однофазные и трехфазные управляемые выпрямители
All Pages

Page 20 of 49

Понятие о резонанс токов. Условия его возникновения и способы осуществления

Резонанс токов — резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.

Условие резонанса токов: , .

В1 – реактивная проводимость первой ветви,

В2 – реактивная проводимость второй ветви.

Способ возбуждения колебаний в электрическом контуре, заключающийся в генерации колебаний, за счет регулирования сигнала, управляющего возбуждением колебаний.

Резонанс токов и его признаки

Режим, при котором в цепи, содержащей параллельные ветви с индуктивными и емкостными элементами, ток неразветвленного участка цепи совпадает по фазе с напряжением (φ=0), называют резонансом токов.

Признаки резонанса токов:

Реактивные составляющие токов ветвей равны IPC = IPL и находятся в противофазе в случае, когда напряжение на входе чисто активное;

Токи ветвей превышают общий ток цепи, который имеет минимальное значение и совпадают по фазе.

Last Updated on Sunday, 24 January 2016 04:34

Физическое определение и привязка к объектам

Резонанс, согласно определению, можно понять как достаточно простой процесс:

  • существует тело, находящееся в состоянии покоя или колеблющееся с определенной частотой и амплитудой;
  • на него действует внешняя сила с собственной частотой;
  • в случае, когда частота внешнего воздействия совпадает с собственной частотой рассматриваемого тела, возникает постепенное или резкое возрастание амплитуды колебаний.

Однако, на практике явление рассматривается в виде гораздо более сложной системы. В частности, тело может быть представлено не как единый объект, а сложная структура. Резонанс возникает при совпадении частоты внешней силы с так называемой суммарной эффективной колебательной частотой системы.

Резонанс, если рассматривать его с позиций физического определения, непременно должен приводить к разрушению объекта. Однако, на практике существует понятие добротности колебательной системы. В зависимости от ее значения, резонанс может приводить к различным эффектам:

  • при низкой добротности система не способна в большой мере сохранять поступающие извне колебания. Поэтому наблюдается постепенное повышение амплитуды собственных колебаний до того уровня, когда сопротивление материалов или соединений не приводит к стабильному состоянию;
  • высокая, близкая к единице добротность – самая опасная среда, в которой резонанс приводит, зачастую, к необратимым последствиям. Среди них может быть как механическое разрушение объектов, так и выделение большого количества тепла на уровнях, которые могут привести к возгоранию.

Также, резонанс возникает не только при действии внешней силы колебательного характера. Степень и характер реакции системы, в большой степени, отвечает за последствия действия направленных извне сил. Поэтому резонанс может возникнуть в самых разных случаях.

Амплитуда резонанса

В КК при подаче переменного напряжения от внешнего источника наблюдаются два вида резонанса и резкое увеличение двух видов амплитуды: амплитуды тока и амплитуды напряжения.

Амплитуда тока

Амплитуда тока резко возрастает при резонансе напряжений в последовательном контуре (последовательный резонанс). Источник переменной ЭДС включён в цепь, где нагрузкой служат последовательно включённые элементы L и С.

В этом случае в цепь входят сопротивления: активное r и реактивное x, равное:

x = xL – xC.

Так как для внутренних колебаний xL и xC равны, то для тока, поступающего от генератора, при резонансе (когда частоты совпадают) эти значения тоже одинаковы. Поэтому x = 0. В итоге полное сопротивление цепи будет состоять только из небольшого активного сопротивления. Ток при этом получается максимальным.

Схема (а) и резонансные кривые (б) для резонанса напряжений

Амплитуда напряжения

Резонанс токов (параллельный резонанс) является условием резкого возрастания амплитуды напряжения. Источник ЭДС подключается вне контура и нагружен параллельно соединёнными элементами L и С. В этом случае на эффект резонанса влияет внутреннее сопротивление генератора. Амплитуда напряжения на контуре максимальна при малом отличии напряжения контура от напряжения генератора. Это возможно при малом Ri.

Внимание! Изменение частоты генератора меняет ток, а амплитуда напряжения на контуре не отстаёт по величине от напряжения на генераторе. Если, U = Е – I*Ri, где Е – ЭДС, I – ток, то при малом Ri U = Е. Схема (а) и резонансные кривые (б) для резонанса токов

Схема (а) и резонансные кривые (б) для резонанса токов

Формула для определения расчётной резонансной частоты для разных колебательных систем различается по входящим в неё параметрам. Несмотря на все различия, суть остаётся неизменной: эффект резонанса наступает тогда, когда частота внутренних колебаний системы и внешних воздействий становятся равны друг другу.

Параметры и электрические величины при резонансе

Теперь давайте по порядку выведем значения параметров и электрических величин при резонансе параллельной цепи RLC.

Резонансная частота

Мы знаем, что резонансная частота f r

— это частота, на которой возникает резонанс. В параллельной RLC цепи резонанс возникает, когда мнимый член допуска Y равен нулю. т.е. значение frac1XC− frac1XL должно быть равно нулю

Rightarrow frac1XC= frac1XL

RightarrowXL=XC

Вышеуказанное условие резонанса такое же, как и в последовательной цепи RLC. Таким образом, резонансная частота f r

будет одинаковой как в последовательной RLC-цепи, так и в параллельной RLC-схеме.

Следовательно, резонансная частота f r

параллельной RLC-схемы равна

fr= frac12 pi sqrtLC

Куда,

  • L — индуктивность индуктора.
  • С — емкость конденсатора.

Резонансная частота f r

параллельной цепи RLC зависит только от индуктивностиL и емкостиC. Но это не зависит от сопротивленияR.

впуск

Мы получили допуск Y

параллельной цепи RLC как

Y= frac1R+j lgroup frac1XC− frac1XL rgroup

Замените XL=XC в приведенном выше уравнении.

Y= frac1R+j lgroup frac1XC− frac1XC rgroup

RightarrowY= frac1R+j(0)

RightarrowY= frac1R

При резонансе вход

Y параллельной цепи RLC равен обратной величине сопротивления R. т.е. mathbf mathitY= frac1R

Напряжение на каждом элементе

Замените frac1XC− frac1XL=0 в уравнении 1

I=V

RightarrowI= fracVR

RightarrowV=IR

Следовательно, напряжение

на всех элементах параллельной цепи RLC при резонансе равноV = IR .

При резонансе допуск параллельной цепи RLC достигает минимального значения. Следовательно, максимальное напряжение

присутствует на каждом элементе этой цепи в резонансе.

Ток, протекающий через резистор

Ток, протекающий через резистор

IR= fracVR

Подставим значение V

в приведенное выше уравнение.

IR= fracIRR

RightarrowIR=I

Следовательно, ток, протекающий через резистор

в резонансе, составляет mathbf mathitIR=I.

Ток, протекающий через индуктор

Ток, протекающий через индуктор

IL= fracVjXL

Подставим значение V

в приведенное выше уравнение.

IL= fracIRjXL

RightarrowIL=−j lgroup fracRXL rgroupI

RightarrowIL=−jQI

Следовательно, ток, протекающий через индуктор

в резонансе, равен IL=−jQI.

Итак, величина

тока, протекающего через индуктор в резонансе, будет

$$ | I_L | = QI $$

Где Q — фактор качества,

а его значение равно fracRXL