Тиристорные коммутаторы нагрузки (10 схем)

Основные характеристики

При выборе тиристоров обращают внимание на определенные параметры:

  1. Напряжение включения позволяет перевести полупроводниковый прибор в рабочее состояние.
  2. Временной интервал задержки запуска и остановки изделия.
  3. Уровень обратного тока при максимальном значении обратного напряжения.
  4. Показатель общей рассеивающей мощности.
  5. Прямое напряжение при предельном токе анода.
  6. Пиковый ток электрода, обеспечивающего управление.
  7. Обратное напряжение в закрытом состоянии.
  8. Максимальный открытый ток в открытом положении.

При выборе тиристора не следует забывать о предназначении прибора. На это непосредственное влияние оказывает временной интервал перехода в открытое или закрытое состояние. Как правило, период включения является более коротким, чем промежуток выключения.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Тиристорное управление двигателем постоянного тока

В приводах главного движения и подачи инструмента металлорежущих станков широко используются двигатели постоянного тока с независимым возбуждением, которые способны обеспечивать регулирование скорости вращения в широких пределах. Такой двигатель (рис. 2.36, а) состоит из статора, на полюсах которого намотаны обмотки возбуждения (ОВ), и ротора, называемого якорем.

Ток возбуждения Iв, проходя по ОВ под действием напряжения Uв, создает магнитный поток Ф. К якорю через щетки подводится напряжение якоря Uя, создающее ток якоря Iя. Протекая по виткам обмотки якоря, ток Iя, взаимодействуя с потоком Ф, создает вращающий момент Мвр

где K — коэффициент, зависящий от конструкции двигателя (размеров числа витков обмоток и т.п.).

Рис.2.36. Схема подключения двигателя постоянного тока (а); график, поясняющий принципы управления скоростью вращения двигателя (б)

При вращении двигателя в обмотке якоря наводится ЭДС Ея, направленная согласно правилу Ленца встречно приложенному напряжению Uя и пропорциональная числу оборотов вала двигателя n:

где с — коэффициент, зависящий от конструкции двигателя.

Для цепи якоря при равномерном вращении вала по второму закону Кирхгофа можно записать равенство

где Rя — активное сопротивление обмотки якоря, включая сопротивление контакта щетки—коллектор (в двигателях коллектором называют набор контактных площадок, через которые с щеток подается напряжение в обмотку вращающегося якоря).

Подставив в это равенство выражение Ея и значение тока Iя, полученное из выражения для вращающего момента, получим

откуда число оборотов двигателя равно

Рис. 2.37. Схема тиристорного регулятора скоростью вращения двигателя

Из полученной формулы очевидны два способа (две зоны) управления скоростью вращения двигателя (рис. 2.36, б). В зоне I скорость изменяют от 0 до номинального значения nном, увеличивая напряжение Uя при неизменном значении магнитного потока Ф, а значит, и неизменном напряжении возбуждения Uв. При достижении напряжением Uя номинального значения дальнейшее его увеличение невозможно, так как может привести к пробою изоляции. В то же время для быстрого перемещения, например, инструмента на холостом ходу или ускоренного вращения шпинделя необходимо увеличить скорость вращения двигателя в три — пять раз выше nном. Для этого используют зону II, в которой при неизменном напряжении Uяном уменьшают значение магнитного потока Ф с помощью соответствующего понижения Uв, а значит, и тока возбуждения Iв. Заметим, однако, что в зоне II приходится мириться с соответствующим понижением и вращающего момента двигателя, т. е. нагружать двигатель меньшим моментом сопротивления, который он должен преодолевать своим вращающим моментом. Действительно, как это следует из формулы для Mвр, при уменьшении потока Ф вращающий момент снижается, а скомпенсировать его увеличением тока Iя нельзя, так как это приведет к перегреву двигателя.

В выпускаемых промышленностью тиристорных преобразователях регулирование скорости вращения в зоне I осуществляется применением двух управляемых мощных (до нескольких десятков киловатт) трехфазных выпрямителей (на рис. 2.37 они обведены пунктиром).

Один из трехфазных выпрямителей обеспечивает правое направление вращения двигателя, а другой — левое, изменяя полярность Uя на противоположное. Естественно, что эти выпрямители должны работать раздельно во избежание короткого замыкания между ними, что и обеспечивает схема управления выпрямителями, разрешая включение одного из них лишь через несколько миллисекунд после отключения другого. Схемы управления тиристорами выполнены по принципу, рассмотренному в параграфе 2.9 и на рис. 2.33.

Для управления скоростью вращения в зоне II используется однофазная мостовая схема тиристорного выпрямителя, обеспечивающая питание обмотки возбуждения ОВ. Схема позволяет лишь уменьшать значение тока возбуждения Iв, сохраняя его полярность. Схема управления тиристорами мостовой схемы также выполнена по принципу, рассмотренному в параграфе 2.9 и на рис. 2.33.

Симисторы: принцип работы, проверка и включение, схемы

К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.

Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

  • Невысокая стоимость.

  • По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

  • Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

  • Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

  • Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

  • Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка.

Величина резистораR1 от 50 до 470 ом, величина конденсатораC1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

  • Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

  • В импульсном режиме напряжение точно такое же.

  • Максимальный ток в открытом состоянии – 5А.

  • Максимальный ток в импульсном режиме – 10А.

  • Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

  • Наименьший импульсный ток – 160 мА.

  • Открывающее напряжение при токе 300 мА – 2,5 V.

  • Открывающее напряжение при токе 160 мА – 5 V.

  • Время включения – 10 мкс.

  • Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот

Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.)

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.

Оптосимистор MOC3023

Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как “не подключается”.

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

Разновидности регуляторов мощности

Для разных целей используются различные регуляторы мощности.

Тиристорный прибор управления

Конструкция устройства довольно простая. Обычно тиристоры применяются в маломощных приборах. Тиристорный терморегулятор состоит из биполярных транзисторов, самого тиристора, конденсатора и нескольких резисторов.

Тиристорный транзисторный регулятор

Транзисторы образуют импульсный сигнал, когда конденсаторное напряжение уравнивается с рабочим, они открываются. Электросигнал передается на вывод тиристора, после чего происходит разрядка конденсатора и запирание ключа. Вся последовательность действий повторяется циклически.

Обратите внимание! Величина задержки обратно пропорциональна мощности, которая поступает в нагрузку

Симисторный преобразователь мощности

Симистор — подвид тиристора, в котором несколько больше переходов p-n, из-за чего его принцип работы несколько иной. Но часто симистор считают отдельным видом стабилизатора мощности. Конструкция представляет собой 2 тиристора, подключенных параллельно и имеющих общее управление.

К сведению! Отсюда и происходит название «симистор» — «симметричные тиристоры». Иногда он еще называется ТРИАК (TRIAC).

Схема 2 параллельно подключенных тиристоров (слева) и симистора (справа)

На схеме видно, что у симистора вместо анода и катода указаны обозначения Т1 и Т2. Все потому, что понятия «катод» и «анод» в данном случае не имеют смысла, так как электроток может выходить через оба вывода.

Симисторные универсальные регуляторы имеют ряд плюсов, в их числе небольшая цена, долгий срок службы и отсутствие подвижных контактов, которые могут быть источниками помех. Но есть и недостатки: подверженность помехам и шумам, отсутствие поддержки высоких частот переключения.

Важно! Их не применяют в мощных промышленных установках, вместо этого там используют тиристоры или IGBT транзисторы

Фазовый способ трансформации

Фазовая трансформация происходит в так называемых диммерах. Используются такие приборы, к примеру, для изменения интенсивности освещения галогенных ламп или лампочек накаливания. Электросхема обычно воплощается на специальных микроконтроллерах, в которых используется своя интегрированная электросхема снижения напряжения. Благодаря своей конструкции диммеры могут плавно снижать мощность.

Светодиодный диммер

Из минусов таких устройств высокая чувствительность к помехам, высокий коэффициент пульсаций и маленький коэффициент мощности сигнала на выходе. Чтобы стабилизировать диммер, используются сдвоенные тиристоры.

Принцип действия тиристора

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без.

Покопавшись нашел импортные симисторы BTA К основным параметрам, характеризующим регуляторы электрической энергии, относят: плавность регулировки; рабочую и пиковую подводимую мощность; диапазон входного рабочего сигнала; КПД. Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ?

Значение тока, который может протекать через анод-катод. У мощных приборов оно достигает сотен ампер. Он позволяет коммутировать ток 25 А.

После переключения и полной проводки , падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения. Он располагается как последовательно, так и параллельно подключённой нагрузке. При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тиристоры выполняются в различных корпусах.

См. также: Подключение участка к электричеству vfnthbfk

Область использования тиристорных устройств

На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности

Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Схема собиралась не раз, работает без наладки и других проблем.

Главным отличием является более широкий спектр напряжений. В результате получается генератор прямоугольных импульсов. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Схемы на тиристорах Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. В результате на выходе 11 DD1.

Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока. Другое их название — диммеры. Полный технический расклад тиристора.

С вывода 1 микросхемы DD2. Один управляющий и два, через которые протекает ток. Симистор (тиристор) вместо реле.

С использованием современной элементной базы

Старые радиодетали хороши тем, что они «дубовые» в смысле надежности эксплуатации. Но они уже действительно старые. У многих временной ресурс на пределе и служат они далеко не так долго, как «свежие». Это первая проблема. И вторая — их все сложнее найти. Хорошо что есть уже много схем регуляторов паяльников на новой элементной базе. Некоторые из них простые, другие посложнее, используются различные виды современных радиодеталей.

Схема регулятора для паяльника без помех на микросхеме

Этот вариант простым не назовешь, но зато он не выдает в сеть помех. С наличием большого количества электроники в каждом доме это может быть важным. Если вы паяете лишь от случая к случаю — можно и не обращать на это внимания. Но вот если вы часто сидите с паяльником, помехи могут доставлять серьезные неудобства.

Регулировать данная схема может нагрузку до 2 кВт, обеспечивает плавное изменение от 0 до максимума.

Самодельный регулятор паяльника без помех

По элементной базе. Микросхема К561ЛА7 может быть заменена на К176ЛА7. Переменный резистор R1 — любой из группы А. Остальные резисторы — лучше МЛТ, конденсаторы C1, C3 — керамические. Диоды в схеме использованы КД503А, можно заменить КД514А и КД522А. ТАкже есть вариант замены транзистора КТ361В — на КТ326В или КТ361А.

На базе фазовых регуляторов мощности PR1500S

В этой схеме использован фазовый регулятор мощности. Кроме него, в регуляторе используется лишь пара деталей, так что времени на сборку надо минимум, ошибиться практически невозможно.

Регулятор температуры жала паяльника своими руками

Нужен будет только переменный резистор, можно с выключателем — тогда не надо будет паяльник вытаскивать из сети. Для устранения помех нужен будет конденсатор на 100 пФ, на 630 В, лучше специальный плёночный для фильтров. Единственное, с чем может возникнуть сложность — намотка дросселя, его параметры есть в таблице.

Параметры для намотки дросселя

Нужно будет кольцо из феррита с наружным диаметром 20 мм. Чем больше проницаемость феррита тем лучше. Данный фазовый регулятор может регулировать нагрузку до 1,5 кВт, так что выбирать можно любой их столбиков. Можно сделать с запасом, мало ли что потом захотите регулировать. Проволока естественно, медная лакированная, специально для намотки дросселей.

То, что получилось после сборки

При сборке для дросселя и фазового регулятора лучше сделать теплоотвод. Особенно он пригодится при работе с большими нагрузками. Для паяльника можно и обойтись, но мало ли что потом подключите и лучше собрать сразу с запасом прочности.

На оптосимисторе МОС204х/306х/308х

Схема обкатанная много раз и работает отлично без каких-либо проблем. Использовать желательно оптические симисторы указанных марок, так как они открываются в случае перехода напряжения через ноль

Состояние светодиода при этом неважно. Все другие работают по другому принципу, потому схему надо будет переделывать под них. Также в схеме присутствует биполярный таймер 555 серии. Найти его не проблема, цена нормальная

Найти его не проблема, цена нормальная.

Регулятор мощности паяльника на оптосимисторах

Все компоненты подобраны миниатюрных габаритов, чтобы в готовом виде плата вошла в корпус от зарядки мобильника. Номинал резистора R5 зависит от типа используемого светодиода. На красном падение напряжения 1,6-2 В, на зелёном 1,9-4 В, на жёлтом 2,1-2,2 В, на синем 2,5-3,7 В. Соответственно резистор подбирается в зависимости от фактических параметров.

С ШИМ-контроллером

Современная элементная база очень обширна, а одни и те же задачи можно решать по разному. Например, для регулятора мощности использовать ШИМ-контроллер. Для этой схемы подойдёт любая модель, работающая на частоте 0,5-1 Гц. Коммутирующий элемент полевой транзистор, его можно найти на старых материнских платах или купить. Его тип не указан, но подойдет любой n-канальный транзистор с напряжением не менее 12 В, током — 6 А и мощностью — 60 Вт.

Регулятор паяльника на ШИМ контроллере и полевом транзисторе

Светодиод VD3 необязательная часть схемы, но он мигает с разной частотой в зависимости от нагрева. Когда приноровишься, удобно ориентироваться и не надо смотреть на ручку регулятора. Но вообще, его из схемы можно безболезненно выкинуть

Обратите внимание: шины питания от микросхемы идут параллельно проводами, это минимизирует влияние более мощной нагрузки

Тестирование элемента

Существует несколько способов проверки симистора на работоспособность. Для самого простого понадобится только лишь мультиметр, а для более сложных измерений — автономный источник питания или тестовая схема.

С помощью тестера проверка происходит с использованием знаний, основанных на принципе работы симистора. Диагностика мультиметром не сможет определить все характеристики элемента, но вполне достаточной будет для первичного тестирования работоспособности.

Простую проверку можно осуществить, используя лампочку и элемент питания. Для этого одна клемма батарейки подключается на управляющие и рабочие выводы симистора, а вторая — на цоколь лампочки. Вывод элемента соединяется с центральным контактом осветителя. В этом случае переход должен быть открыт, тогда лампочка загорится.

Проверка тестером

Для проведения тестов подойдёт прибор любого типа действия, но при этом необходимо, чтобы значения выдаваемого им тока хватило для переключения элемента. Поэтому более предпочтительным будет использование аналогового прибора. Например, чтобы проверить тестером BTB12-800CW, понадобится обеспечить ток порядка 30 мА, а для BTB16-700BW этот показатель должен быть равен 15 мА.

Также понадобится обратить внимание на состояние батарейки, стоящей в тестере. В цифровом устройстве на экране не должен высвечиваться значок замены батарейки, а в аналоговом при закорачивании щупов друг на друга стрелка должна указывать на ноль. Суть измерения сводится к проверкам переходов прибора

Для этого тестер переключается в режим прозвонки сопротивлений на самый маленький диапазон. Выполнять проверку лучше всего в следующей последовательности:

Суть измерения сводится к проверкам переходов прибора. Для этого тестер переключается в режим прозвонки сопротивлений на самый маленький диапазон. Выполнять проверку лучше всего в следующей последовательности:

  1. Измерительные щупы подключаются к силовым выводам симистора T1 и T2. Если радиоэлемент исправен, то мультиметр должен показать бесконечно большое сопротивление.
  2. Меняется полярность приложенного сигнала на рабочих выводах. Для этого измерительные щупы переставляются. Сопротивление также должно быть большим.
  3. Кратковременно соединяется рабочий вывод T1 или T2 и управляющий электрод G.
  4. Снова измеряется сопротивление перехода между T1 и T2. В одну сторону оно должно измениться. Так, для BTB12-800CW оно составит около 50 Ом.
  5. Изменяется полярность. При этом импеданс перехода должен быть большим, что соответствует отсутствию обратного пробоя.

Использование схемы

Существует множество различных схем, использующихся радиолюбителями для тестирования работоспособности триака. Но лучше применять универсальную схему, способную проверить любой элемент тиристорного семейства, например, BTB16-700BW. Она не нуждается в настройке и работает сразу после сборки. Для того чтобы её собрать, понадобятся следующие элементы:

  1. Резисторы R1—R4 470 Ом, R4—R5 1 кОм.
  2. Конденсаторы С1 и С2 — 100 мкФ х 6,5 В.
  3. Диоды VD1, VD2, VD5 и VD6 — 2N4148; VD2 и VD3 — АЛ307.

В качестве источника питания можно использовать батарейку типа КРОНА.

Суть измерений сводится к следующим действиям: переключатель S3 переставляется в верхнее положение, в результате на устройство подаётся питание. После этого кратковременным нажатием на кнопку S2 подаётся ток на управляющий вывод элемента.

Если BTB16-700BW рабочий, то его переход должен открыться, о чём просигнализирует светодиод VD3. Затем переключатель устанавливается в среднее положение, светодиод должен погаснуть. На следующем этапе S3 переключается в нижнее положение, и нажимается кнопка S2. Результатом этих действий будет загорание светодиода VD4. Такое поведение симистора позволит со стопроцентной уверенностью заявить о его работоспособности.

Проверить симистор не так уж и сложно, особенно если использовать тестер, хотя лучше собрать специальную схему. Но при этом стоит отметить, что из-за высокой чувствительности триаков к току переключения в качестве мультиметров лучше применять стрелочные приборы.

Тиристорный коммутатор с двумя кнопками

Тиристорное устройство управления нагрузкой (рис. 5) может быть использовано для включения и выключения нагрузки любой из нескольких последовательно включенных кнопок, работающих на разрыв цепи. Принцип действия тиристорного коммутатора заключается в следующем.

При включении устройства напряжение, подаваемое на управляющий электрод тиристора, недостаточно для его включения. Тиристор, и, соответственно, нагрузка отключены. При нажатии на любую из кнопок SB1 — SBn (и удержании ее нажатой) конденсатор С1 заряжается через резистор R1 от источника питания. Цепь управления тиристора и сам тиристор при этом отключены.

Рис. 5. Схема простого тиристорного коммутатора нагрузки с двумя кнопками.

После отпускания кнопки и восстановления цепи питания тиристора накопленная конденсатором С1 энергия оказывается приложенной к управляющему электроду тиристора. В результате разряда конденсатора через управляющий электрод тиристор включается, подсоединяя тем самым нагрузку к цепи питания.

Для отключения тиристора (и нагрузки) кратковременно нажимают на любую из кнопок SB1 — SBn. При этом конденсатор С1 не успевает зарядиться. В то же время цепь питания тиристора размыкается, тиристор запирается.

Величина резистора R2 зависит от напряжения питания устройства: при напряжении 15 В его сопротивление — 10 кОм при 9 В — 3,3 кОм при 5 6-1,2 кОм.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Бытовые электроприборы в наших домах подключаются к одной из фаз трехфазного переменного тока напряжением 220 В и частотой 50 Гц. Часто бывает необходимо регулировать мощность и напряжение на входе.

Простейший регулятор мощности можно сделать на трансформаторе.

Разновидности тиристоров

Тиристор отличается от биполярного транзистора наличием большего количества p-n переходов:

  1. Типичный тиристор p-n переходов содержит три. Структуры с дырочной, электронной проводимостью чередуются на манер зебры. Можно встретить понятие n-p-n-p тиристор. Присутствует или отсутствует управляющий электрод. В последнем случае получаем динистор. Работает по приложенному меж катодом и анодом напряжением: при некотором пороговом значении открывается, начинается спад, ход электронам отсекается. Что касается тиристоров с электродами, управление производится в любом из двух срединных p-n переходов – стороны коллектора, либо эмиттера. Коренное отличие изделий от транзистора в неизменности режим после пропадания управляющего импульса. Тиристор остается открытым, пока ток не упадет ниже фиксированного уровня. Обычно называют током удержания. Позволяет строить экономичные схемы. Объясняет популярность тиристоров.
  2. Симисторы отличаются количеством p-n переходов, становится больше минимум на один. Способны пропускать ток в обоих направлениях.

Сборка устройства

Все стандартные действия сборки не будем описывать, отметим лишь основные моменты. Транзистор надо размещать на теплоотвод. Почему? Потому что схема линейная и при больших токах транзистор будет сильно нагреваться. Из чего изготовить радиатор? Его можно сделать из обычного алюминиевого уголка и закрепить непосредственно на вентилятор блока питания. И, несмотря на то, что по размерам радиатор достаточно небольшой, благодаря интенсивному обдуву он прекрасно справится со своей задачей.

К радиатору прикручивается через термопасту транзистор, в этой схеме он используется полевой, N-канальный IRFZ44 с максимальным током 49 А. Так как радиатор изолирован от основной платы и корпуса, то транзистор приворачивается напрямую без изоляционных прокладок.

Плату стабилизатора через латунную стойку закрепляется на этот же алюминиевый уголок. Для регулировки выходного тока используется переменный резистор на 5 кОМ. Провода, чтобы не болтались, фиксируются пластиковыми стяжками.

В результате, должна получиться следующая схема подключения данного стабилизатора для зарядного устройства.

Блок питания может быть абсолютно любым, как компьютерным блоком питания, так и обычным трансформатором. Шнур для подключения в розетку используется обычный компьютерный.

Всё готово. Можно теперь использовать такой регулируемый стабилизатор напряжения для зарядного устройства. Надо отметить схема простая и недорогая: одновременно выполняет функции стабилизатора и зарядного устройства.