Принцип работы частотного преобразователя и критерии его выбора для потребителя

Для чего нужен преобразователь частоты?

ПЧ – самое совершенное электронное устройство, через которое можно крутить асинхронный двигатель. Вот основные функции преобразователя частоты:

  • Пуск/Стоп двигателя,
  • Плавный разгон/замедление (торможение),
  • Изменение рабочей скорости от 0 до 100% и выше номинала,
  • Защита двигателя (их несколько – по току, температуре и др.),
  • Реверс,
  • Несколько вариантов управления (дискретное, аналоговое, по программе – от кнопок, реле, потенциометров, датчиков, контроллера, и т.д.).

Преобразователь частоты имеет несколько названий, которые используются на равных условиях:

  • преобразователь частоты (ПЧ) – официальное название, его использует большинство производителей в своей документации,
  • частотный преобразователь (ЧП),
  • частотник – можно считать жаргоном, но в разговоре употребляется наиболее часто,
  • инвертор,
  • Inverter, Frequency Converter (FC), Variable Frequency Drive (VFD) – на английском.

Все эти названия могут использоваться в других сферах, поэтому иногда нужно уточнять. Что касается темы статьи, наша сфера – подключение преобразователя частоты для трехфазных асинхронных двигателей.

Конечно, асинхронный двигатель можно не только через ПЧ, для этого есть несколько различных устройств. По подключению двигателей у меня много статей, вот основные:

  • Схемы подключения трехфазного электродвигателя
  • Схемы подключения магнитного пускателя
  • Подключение двухскоростного асинхронного двигателя
  • Схемы подключения двигателя “Звездой” и “Треугольником”
  • Реле для управления двигателем по схеме “Звезда-Треугольник”
  • Мягкий пускатель (софтстартер) – устройство и применение
  • Устройство плавного пуска (УПП) электродвигателя. Пример применения
  • Описание работы схем на реле и контакторах

Основные характеристики, необходимые для программирования

Каждой характеристике присвоен свой буквенно-цифровой код, который зависит от производителя и конкретной модели частотника. Для программирования необходимо рассчитать и ввести следующие основные параметры:

  • Режим эксплуатации электродвигателя (усредненное число включений, отключений, реверсов электрической машины в заданный промежуток времени).
  • Требуемое время разгона и динамического торможения электродвигателя.
  • Наибольшую рабочую частоту электрической машины.
  • Максимальное значение тока в % от номинального.
  • Условия пуска двигателя при подаче напряжения в сети.
  • Алгоритм автоматического регулирования, который положен в основу функционирования САР.
  • Режим сброса ошибок, вызывающих остановку электродвигателя.

В процессе программирования также задается назначение аналоговых и дискретных выходов и выходов преобразователей частоты. Входы ЧП бывают 2-х типов:

  • Дискретные входы. Служат для подключения реле, кнопочных станций и других двухпозиционных устройств. При задании их конфигурации можно присвоить каждой кнопке определенное значение частоты ЧП.
  • Аналоговые входы с уровнем сигнала 0-10В и 4-20 мА. Первые используют для подключения потенциометров, предназначенных для бесступенчатой регулировки частоты. Рекомендуемое их сопротивление составляет 1 кОМ или более. Токовые входы предназначены для датчиков скорости, положения вала, технологических параметров. По ним осуществляется управление электроприводом по событиям.

Перечень вводимых параметров зависит от модели и назначения преобразователя частоты, алгоритма регулирования, особенностей промышленного оборудования. При программировании следует учесть, что некоторые характеристики невозможно изменять при работающем электроприводе.

Как подключить частотный преобразователь

Для подключения частотного преобразователя к оборудованию, прежде всего необходимо убедиться в том, что характеристики такого прибора подходят для работы с конкретным электродвигателем

Также важно, чтобы напряжение питающей сети позволяло использовать данный частотный преобразователь

При установке и подключении ЧП необходимо, чтобы условия эксплуатации соответствовали классу защищённости от влаги и пыли, а также были выдержаны все расстояния от движущихся частей машин и механизмов, от людских проходов и электрооборудования и аппаратуры.

Схема подключения ПЧ

Частотные преобразователи бывают как для трехфазных сетей, так и для однофазных. При этом к однофазной сети также можно подключать и трехфазный частотный преобразователь по схеме «треугольник», который дополнительно оснащен специальным конденсаторным блоком (при этом значительно падает мощность и понижается КПД устройства). Подключение же трехфазного преобразователя в соответствующей сети производится по схеме «звезда».

Управление частотным преобразователем может осуществляться с использованием контакторов, встроенных в различные релейные схемы, микропроцессорных контроллеров и компьютерного оборудования, а также вручную. Поэтому при подключении автоматизированных систем требуется участие специалистов по наладке такого оборудования.

Принцип подключения частотных преобразователей в целом одинаковый, но может несколько отличаться для разных моделей. Поэтому правильным решением будет перед подключением изучить инструкцию, сопоставить характеристики устройств и убедиться в том, что устройство подключается по схеме, предложенной производителем.

Для трехфазного электродвигателя

Для трехфазного электродвигателя принцип подключения следующий: к клеммным колодкам на выходе трехфазного частотного преобразователя подключаются фазные проводники к каждому выводу, а на вход подключаются фазы питающего напряжения. В данном случае всегда реализуется схема подключения «звезда» в двигателе. При подключении трехфазного двигателя через частотный преобразователь к однофазной сети применяют схему «треугольник».

Для однофазного электродвигателя

Для однофазного электродвигателя необходимо подключить фазный и нулевой проводник к преобразователю частоты, а обмотки двигателя подключаются к соответствующим клеммам на выходе частотного преобразователя. Например, обмотка L1 будет подключаться к клемме А преобразователя, обмотка L2 к клемме B, а общий провод к клемме C. Если применяется конденсаторный двигатель, то от частотного преобразователя фаза подключается к двигателю, а конденсатор обеспечивает сдвиг фаз.

Во всех случаях, при подключении частотных преобразователей и электродвигателей, всегда следует применять устройства защиты: автоматические выключатели и УЗО, рассчитанные на высокие пусковые токи, а также обязательно подключать заземляющий проводник к корпусам устройств

Также важно обратить внимание на сечение проводников электрокабеля, которым будет производится подключение – сечение должно соответствовать параметрам подключаемого частотного преобразователя и нагрузки

Watch this video on YouTube

Что такое частотный преобразователь, основные виды и какой принцип работы

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

В чём отличия схем подключения обмоток электродвигателя звездой и треугольником

Схема работы устройства плавного пуска, его назначение и конструкция

Устройство, виды и принцип действия асинхронных электродвигателей

Как подключить однофазный электродвигатель — схема с конденсатором

Способы подключения мотора

А теперь давайте рассмотрим несколько способов подключений:

  • конденсаторный способ;
  • частотный способ;
  • фазовое управление с помощью симистора;

Какой из способов лучше всего? Знаете, всё зависит от задачи, которую нужно решить… А так на вкус и цвет, сами знаете…

Если вы мало знакомы с преобразователем частоты, можете ознакомиться в статье «Чего вы не знаете о преобразователе частоты?»

Конденсаторный способ подключений

Бюджетное подключение трехфазных моторов к однофазной сети. Просто цепляем конденсатор последовательно в цепи обмотки и превращаем аппарат из трехфазного в однофазный. Вот схема:

Сп — пусковой конденсатор, а Ср — рабочий конденсатор. Как подбирать ёмкость в этом случае я расписывать не буду. В просторах интернета есть полно информации по этому поводу.

Фазовое управление с помощью симистора

Это один из самый старых способов управления. Две обмотки двигателя подключаются параллельно, одна из них с конденсатором. К точкам обмоток соединяем симисторный регулятор. Их актуальность, по-моему мнению, ещё не пропала. Лучше всего использовать для не тяжёлых нагрузок (вентиляторы, насосы).

На выходе устройства формируется напряжение сетевой частоты 50 Гц и настраивается среднеквадратичное число. Таким образом мы меняем время открытого состояния симистора за период следования напряжения. Единственный недостаток: момент на валу падает относительно снижения напряжения. Вот вам пример Autonics SPK1:

Входы для регулировки скорости универсальные. Сюда можно подключить и потенциометр 1 кОм, и датчик с токовым сигналом 4-20 мА, и напряжение 0-5 В.

Частотный способ

О популярности преобразователя частоты нет смысла говорить. Так как это устройство давно известно всем. Частотный способ является основным в нашем 21 веке. Скорость регулируется с помощью ШИМ-модуляции. Достаточно сложный девайс, требующий отдельной статьи. По входному напряжению существуют как и 380 В, так и 220В. Но что же получается по выходу?

На рынке есть готовые варианты и на однофазный, и на трёхфазный электродвигатель. Просто нужно подобрать схемное решение.

Но, бывают случаи когда ПЧ с однофазным выходом не по карману. Или у вас на полке лежит трёхфазный ПЧ. Давайте рассмотрим вариант подключения мотора к преобразователю частоты.

Принцип работы частотного преобразователя

В основу работы прибора заложено правило вычисления угловой скорости вращения вала электродвигателя, в которое входит такой параметр, как частота питающей сети. И поэтому, если изменять частоту питания обмоток, будет изменяться и скорость вращения ротора двигателя в прямой зависимости. Но при этом мощность аппарата будет падать. Для того, чтобы сохранить КПД устройства на неизменном уровне, вместе с частотой питания нужно также изменять и величину подаваемого на обмотки напряжения.

От метода, при помощи которого решается задача одновременного регулирования частоты и напряжения на выходе преобразователя, эти приборы и получили свое второе название – “инверторы”. В устройстве происходит инвертирование мощными электронными элементами входного переменного напряжения в постоянное, с регулируемой величиной напряжения и частотой импульсов на выходе. Управление выходным сигналом осуществляется при помощи широтно-импульсного регулирования выходным каскадом на полупроводниковых элементах. Таким образом, на электродвигатель по каждой из фаз поступают пачки импульсов изменяемой частоты и напряжения.

Маркировка и схема подключения к электросети и нагрузке

Частотные инверторы любой фирмы обязательно маркируются табличками с указанием основных характеристик:

  • Максимальня мощность подключаемого электродвигателя,
  • Напряжение питающей сети,
  • Количество фаз (трехфазный/однофазный).

Подключение прибора к электрической сети может производиться по схеме, изображенной на рисунке

К питающей трехфазной сети подключение производится через автоматический выключатель, рассчитанный на ток потребления нагрузки, и магнитный пускатель. Включение в сеть производится через клеммы RST, подсоединение электродвигателя – к клеммам UVW. Имеется также возможность дистанционного управления работой при помощи линии связи с компъютером.

Основная масса выпускаемых промышленностью частотников предназначена для работы в трехфазных сетях переменного тока, однако существуют и частотные преобразователи для однофазных двигателей.

Настройка и управление

Описание возможностей и настройку основных параметров покажем на примере распространенного инверторного  преобразователя Mitsubishi D700.

На лицевой панели прибора находится кнопочная панель управления с цифровым дисплеем, позволяющие производить соответствующие настройки.

Ввод данных по основным параметрам работы и защиты производится путем входа в режим программирования через кнопку PU/EXT, затем кнопкой SET выбирается необходимый параметр и редактируется его значение.

Узнать больше об управлении частотным преобразователем Mitsubishi можно из инструкции на инвертор (СКАЧАТЬ) с. В ней также приведены схемы подключения и расшифровка кодов ошибок, выводимых на экран в случае срабатывания защиты преобразователя.

Принцип работы однофазной асинхронной машины

При однофазном питании асинхронника в нем вместо вращающегося магнитного поля возникает пульсирующее, которое можно разложить на два магнитных поля, которые будут вращаться в разные стороны с одинаковой частотой и амплитудой. При остановленном роторе электродвигателя данные поля создадут моменты одинаковой величины, но различного знака. В итоге результирующий пусковой момент будет равен нулю, что не позволит двигателю запустится. По своим свойствам однофазный электродвигатель похож на трехфазный, который работает при сильном искажении симметрии напряжений:

на рисунке а) показана схема асинхронной однофазной машины, а на б) векторная диаграмма

Литература

A. Winter and A. Thiede, A New Generation of On-site Test Systems for power Transformers, International Symposium on Electrical Insulation 2008, Vancouver, Canada, 2008. W. Hauschild; A. Thiede; T. Leibfried; F. Martin, Static frequency converter for high voltage test of power transformer, Stuttgarter Hochspannungssymposium 2006, Stuttgart, Germany, 2006. W. Hauschild u.a., the technique of AC on-site testing of HV cables by frequency-tuned resonant test system, Cigre Report 33-304, 2002. IEC 60060-1: 2011: High-voltage test techniques, Part 1: General definitions and test requirements. IEC 60060-2: 2010: High-Voltage Test Techniques Part 2: Measuring systems. IEC 60060-3: 2006: High-voltage test technique. Part 3: Definitions and requirements for on-site testing. IEC 60076-1, Power transformers – Part 1: General, 1997-06. IEC 60076-3, Power Transformer, Part 3: Insulation levels, dielectric tests and external clearances in air, 2000-03. A. Winter and A. Thiede, New Technologies for On-Site Testing of Large Power Transformers, VII международной научно-технической конференции «Силовые трансформаторы и системы диагностики», Moscow, 2010.

Павел ХОТАРЕВ, технический директор ООО «РИТ» Статья размещена в журнале «Электротехнический рынок», №4 (58)

Принцип работы частотного преобразователя

Электронный преобразователь состоит из нескольких основных компонентов: выпрямителя, фильтра, микропроцессора и инвертора.

Выпрямитель имеет связку из диодов или тиристоров, которые выпрямляют исходный ток на входе в преобразователь. Диодные ПЧ характеризуются полным отсутствием пульсаций, являются недорогими, но при этом надежными приборами. Преобразователи на основе тиристоров создают возможность для протекания тока в обоих направлениях и позволяют возвращать электрическую энергию в сеть при торможении двигателя.

Фильтр используется в тиристорных устройствах для снижения или исключения пульсаций напряжения. Сглаживание производится с помощью ёмкостных или индуктивно-ёмкостных фильтров.

Микропроцессор – является управляющим и анализирующим звеном преобразователя. Он принимает и обрабатывает сигналы с датчиков, что позволяет регулировать выходной сигнал с преобразователя частоты встроенным ПИД-регулятором. Также данный компонент системы записывает и хранит данные о событиях, регистрирует и защищает аппарат от перегрузок, короткого замыкания, анализирует режим работы и отключает устройство при аварийной работе.

Инвертор напряжения и тока используется для управления электрическими машинами, то есть для плавного регулирования частоты тока. Такое устройство выдает на выходе «чистый синус», что позволяет использовать его во многих сферах промышленности.

Watch this video on YouTube

Принцип работы электронного частотного преобразователя (инвертора) заключается в следующих этапах работы:

  1. Входной синусоидальный переменный однофазный или трехфазный ток выпрямляется диодным мостом или тиристорами;
  2. При помощи специальных фильтров (конденсаторов) происходит фильтрация сигнала для снижения или исключения пульсаций напряжения;
  3. Напряжение преобразуется в трехфазную волну с определенными параметрами с помощью микросхемы и транзисторного моста;
  4. На выходе из инвертора прямоугольные импульсы преобразовываются в синусоидальное напряжение с заданными параметрами.

Автоматизация насоса с разгоном и автоподдержкой давления

Мотор подключается к клеммам частотника. При нажатии кнопки «пуск» реле срабатывает, подключает частотник, дает возможность плавной работы по заданной программе. В аварийном положении частотника или мотора цепь замыкается, включает реле, которое отключает выход частотника. Снова включить схему защита позволит только при устранении поломки и нажатии сброса блокировки.

Датчик давления соединен с входом частотника, создавая обратную связь в уравновешивании давления. Работа стабилизации контролируется регулятором частотника. Нужное давление устанавливается потенциометром с помощью пульта частотника. При аварии горят индикаторные лампы. Шкаф с устройством управления подогревается специальными нагревателями, которые включаются от термореле. От коротких замыканий защищает автоматический выключатель.

Автоматизация водоснабжения считается в техническом развитии важнейшим аспектом. Это нашло свою актуальность не только на крупных станциях водоснабжения. Насосы с приборами автоматики создают комфортную работу отдельных водопроводов. Для организации такого водопровода необходимо рассчитать скважинный насос, подобрать по результатам расчета преобразователь частоты.

Целесообразность использования

Использование регулируемого электропривода в различных технологических операциях имеет собственный ряд преимуществ. Прежде всего, стоит отметить значительное энергосбережение, за счет регулировки определенных технологических параметров. Для каждого типа устройства либо целой системы, существуют собственные характерные параметры, регулируя которые можно добиться значительных результатов.

Наиболее внушительный экономический эффект можно заполучить применяя преобразователь частоты на объектах, где производится транспортировка различных объёмов жидкости. Но на данный момент, такой способ не заполучил распространения, а регулировка производится традиционными регулирующими клапанами или задвижками. В таком случае поток вещества при дросселировании, будет сдерживаться задвижкой или клапаном, не совершая при этом полезной работы. В случае же, задействования регулируемого электропривода для насоса, станет возможным задавать оптимальные значения для давления и расхода. Это позволит снизить энергозатраты и потери непосредственно самого транспортируемого вещества.

Значительная часть нынешних статических преобразователей частоты, базируется на схеме двойного преобразования. В состав входят такие детали: звенья постоянного тока, системы управления, силового импульсного инвертора. Звено постоянного тока включает в свой состав неуправляемый выпрямитель и фильтр. Переменное напряжение преобразуется в напряжение постоянного тока.

Трехфазный силовой импульсный инвертор сконструирован из транзисторных ключей в количестве 6 штук. Каждая из обмоток электродвигателя присоединяется ключом соответственно к полагающемуся выводу выпрямителя. Инвертор, в свою очередь, производит преобразование выпрямленного ранее напряжения непосредственно в трехфазное переменное напряжение, обладающее необходимой частотой и амплитудой.

Принцип действия частотного преобразователя

Принцип действия частотного преобразователя базируется на особенностях работы асинхронного электродвигателя. В электрическом двигателе такого типа частота вращения магнитного поля (величина n1) зависит от частоты напряжения питающей сети. В случае, когда питание обмотки статора выполняется трехфазным напряжением, имеющим частоту f, генерируется вращающееся магнитное поле, скорость вращения которого определяется по нижеприведенной формуле:

, где

р – это число пар статорных полюсов.

Переход от скорости вращения поля ω1, которая измеряется в радианах, к частоте вращения n1 (об/мин), выполняется согласно формуле:

, где

60 – это коэффициент пересчета размерности.

Если подставить в это уравнение скорость вращения поля ω1, получим следующее равенство:

Отсюда несложно заключить, что показатель частоты вращения ротора асинхронного электродвигателя зависит от частоты напряжения питающей сети. Именно эта зависимость и отображает всю суть метода частотного регулирования. Частотный преобразователь для электродвигателя изменяет частоту напряжения питания на входе и, как следствие, регулирует частоту вращения ротора. Подчеркнем, что выходная частота в современных частотниках изменяется в широком диапазоне, а, значит, эта величина может быть как ниже, так и выше частоты питающей сети.

Частотник для электродвигателя, принцип работы силовой части которого лег в основу нижеприведенной классификации, соответствует следующим параметрам:

  • Преобразователи с явно выраженным промежуточным звеном постоянного тока.
  • Преобразователи с непосредственной связью (промежуточное звено постоянного тока отсутствует).

По историческим меркам первыми появились частотные преобразователи с непосредственной связью. В этих агрегатах силовая часть представляет собой управляемый выпрямитель, выполненный на тиристорах. Управляющий узел в порядке очереди отпирает группы тиристоров, тем самым формируя выходной сигнал. Сегодня этот метод преобразования в новых разработках не используется.

Как работает преобразователь этого класса? Здесь используется двойное преобразование электроэнергии: входное синусоидальное напряжение (величины L1, L2, L3 на рисунке) с постоянной амплитудой/частотой выпрямляется в выпрямительном блоке (BR), фильтруется и сглаживается в блоке фильтрации (ВF), как результат, — получаем постоянное напряжение. Представленный узел носит название – звено постоянного тока.

решение задач формирования синусоидального переменного напряжения с регулируемой частотой отвечает блок преобразования (BD). Роль электронных ключей, формирующих выходной сигнал, выполняют биполярные транзисторы с изолированным затвором IGВТ. Процесс управления вышеперечисленными блоками происходит согласно заблаговременно запрограммированному алгоритму микропроцессорным модулем или логическим блоком (BL).

Схема ниже показывает, что частотные преобразователи могут быть запитаны от внешнего звена постоянного тока. При этом защита частотника выполняется посредством быстродействующих предохранителей

Важно отметить, что использовать контакторы для питания от звена постоянного тока не рекомендуется. Дело в том, что при контакторной коммутации возникает повышенный зарядный ток и предохранители могут выгореть

Выпрямительный блок

В зависимости от того, какое назначение у преобразователя частоты, используются различные выпрямительные каскады. А вариант питания может быть либо от трехфазной сети, либо от однофазной. Но на выходе ПЧ в любом случае находится трехфазное переменное напряжение. Но чтоб проводить управление током, необходимо его сначала выпрямить. Все дело в том, что управлять переменным достаточно сложно – необходимо применять крупные реостаты, что не очень удобно. Тем более, сейчас время микроэлектроники и автоматики, применять устаревшие технологии не просто неразумно, но и очень невыгодно.

Для выпрямления переменного трехфазного тока используется электронное устройство, состоящее из шести полупроводниковых диодов. Включаются они по мостовой схеме, получается так, что каждая пара диодов служит для выпрямления одной фазы. На выходе блока выпрямителя появляется постоянное напряжение, его величина равна тому, которое течет на вход. На данном этапе все преобразования закончены, никакого управления этим блоком не производится. В случае если производится питание от однофазной сети, достаточно выпрямительного каскада даже из одного диода. Но эффективнее использовать мостовую схему из четырех.

Выбор частотника

Управления может осуществляться двумя способами: векторным и скалярным. Векторное управление предоставляет возможность точной регулировки. Принцип работы скалярного управления заключается в поддержании одного соотношения между напряжением и частотой на выходе, заданного пользователем. Скалярное управление не подходит для сложных устройств и используется на более простых устройствах вроде вентилятора.
Чем выше указанная в характеристиках мощность, тем выше универсальность преобразователя. Это означает, что это обеспечит взаимозаменяемость

К тому же обслуживание такого устройства будет проще.

Непременно следует обратить внимание на указанный диапазон напряжения сети. Он должен быть максимально широким, что обеспечит безопасность при перепадах его норм. И нельзя не упомянуть тот факт, что повышение намного опаснее, чем понижение

При повышении могут взорваться сетевые конденсаторы.
Указанная частота обязательно должна соответствовать всем производственным потребностям. На диапазон регулирования скорости привода указывает нижний предел. При надобности в более широком следует прибегнуть к векторному управлению. Практическое применение предусматривает применение таких частот, как: от 10 до 60 Гц. Редко, но встречаются и до 100 Гц.
Осуществление управление предусматривает использование различных входов и выходов. Чем их больше, тем, конечно же, лучше. Но нужно брать вниманию, что при большем количестве входов и выходов, значительно увеличивается стоимость частотного преобразователя, а также усложняется его настройка.
Внимание также следует обратить и на шину управления подключаемого оборудования. Она должна совпадать с возможностью схемы частотника по количеству входов и выходов. Также не стоит забывать о том, что лучше иметь в наличии небольшой запах для возможной модернизации

И нельзя не упомянуть тот факт, что повышение намного опаснее, чем понижение. При повышении могут взорваться сетевые конденсаторы.
Указанная частота обязательно должна соответствовать всем производственным потребностям. На диапазон регулирования скорости привода указывает нижний предел. При надобности в более широком следует прибегнуть к векторному управлению. Практическое применение предусматривает применение таких частот, как: от 10 до 60 Гц. Редко, но встречаются и до 100 Гц.
Осуществление управление предусматривает использование различных входов и выходов. Чем их больше, тем, конечно же, лучше

Но нужно брать вниманию, что при большем количестве входов и выходов, значительно увеличивается стоимость частотного преобразователя, а также усложняется его настройка.
Внимание также следует обратить и на шину управления подключаемого оборудования. Она должна совпадать с возможностью схемы частотника по количеству входов и выходов

Также не стоит забывать о том, что лучше иметь в наличии небольшой запах для возможной модернизации.

Не стоит забывать и о перегрузочных возможностях устройства. Рекомендуется выбирать частотный преобразователь, обладающий мощность, которая будет на 15 % больше мощности используемого двигателя. Настоятельно рекомендуется прочесть инструкции, прилагающуюся к частотнику в комплекте. Производители непременно указывают в документации к устройству все его основные параметры

В том случае, если важны пиковые нагрузки, то следует обратить при выборе устройства внимание на реальные показатели тока и величины, указанные в качестве пиковых. В этом случае нужно выбрать преобразователь с показателями пикового тока, которые будут на 10% выше, чем указанные в документации.

Первый пуск

  • Перед подачей напряжения на частотный преобразователь необходимо убедиться, что на устройстве отключена подача команд на двигатель, а запуск электрической машины никому не повредит.
  • При включении питания должны заработать встроенные в частотник вентиляторы охлаждения и загореться дисплей. На нем должно отображаться состояние “выключено” или “OFF”.
  • Далее требуется восстановить заводские настройки частотного регулятора. Для этого используется ввод соответствующей команды или нажатие клавиши Reset. Некоторые модели преобразователей затем следует перезагрузить.
  • Далее вводят все характеристики двигателя, фильтров и других вспомогательных элементов привода и осуществляют программирование частоты вращения, параметров регулирования и другие настройки. Некоторые модели частотников определяют фактические характеристики электродвигателей автоматически.
  • Далее осуществляется пробный пуск привода в ручном режиме. При этом проверяют правильность направления вращения вала и работу двигателя во всем интервале регулируемых скоростей. При необходимости вносят корректировки в предварительные настройки.
  • После чего производят окончательную настройку частотных преобразователей под регулируемый параметр и условия технологического процесса. Настройка преобразователей осуществляется с панели управления или с ПК. Эти операции должен производить специалист по автоматизации.
  • ·Далее опробуют привод в тестовом режиме и вносят изменения в настройки, после чего проверяют корректность работы привода еще раз.

Функционал, схема подключения, порядок настройки разных типов и моделей частотных регуляторов могут существенно различаться. При выполнении монтажа и программирования частотников необходимо строго следовать общим правилам по монтажу электротехнического оборудования, инструкции и алгоритму настроек, рекомендованному производителем. Вносить изменения в ПО (программное обеспечение) и схемы подключения категорически запрещено.

Внимание! Фактические характеристики электродвигателей, долго находившихся в эксплуатации или побывавших в капитальном ремонте, могут отличаться от паспортных данных. Для частотно-регулируемого привода рекомендуется использовать новые электрические машины или частотные преобразователи, определяющие фактические параметры электродвигателей автоматически