Низковольтные преобразователи напряжения для светодиодов

Содержание

Список используемой литературы

  • Ахмед, Сайед Имран Методы проектирования и улучшения конвейерных АЦП , Springer, 2010 ISBN  90-481-8651-X .
  • Bassett, RJ; Taylor, PD (2003), «17. Power Semiconductor Devices», Справочник инженера-электрика , Newnes, стр. 17 / 1–17 / 37, ISBN 0-7506-4637-3
  • Кампардо, Джованни; Микелони, Рино; Новосел, Дэвид СБИС-дизайн энергонезависимых воспоминаний , Springer, 2005 ISBN  3-540-20198-X .
  • Добрый, Дитер; Фезер, Курт (2001), переводчик Я. Нараяна Рао (редактор), Высоковольтные методы испытаний , Newnes, ISBN 0-7506-5183-0
  • Кори, Ральф; Schmidt-Walter, Heinz Taschenbuch der Elektrotechnik: Grundlagen und Elektronik , Deutsch Harri GmbH, 2004 ISBN  3-8171-1734-5 .
  • Liou, Juin J .; Ортис-Конде, Адельмо; Гарсиа-Санчес, Ф. Анализ и разработка полевых МОП-транзисторов , Springer, 1998 ISBN  0-412-14601-0 .
  • Лю, Минлян (2006), Демистификация схем переключаемых конденсаторов , Newnes, ISBN 0-7506-7907-7
  • Маккомб, золотая жила Гордона Гордона МакКомба! , McGraw-Hill Professional, 1990 ISBN  0-8306-3360-X .
  • Mehra, J; Рехенберг, Х. Историческое развитие квантовой теории , Springer, 2001 ISBN  0-387-95179-2 .
  • Миллман, Джейкоб; Халкиас, Christos C. Integrated Electronics , McGraw-Hill Kogakusha, 1972 ISBN  0-07-042315-6 .
  • Пелузо, Винченцо; Steyaert, Michiel; Сансен, Вилли М.К. Разработка низковольтных маломощных КМОП-дельта-сигма аналого- цифровых преобразователей , Springer, 1999 ISBN  0-7923-8417-2 .
  • Райдер, Дж. Д. (1970), Основы электроники и приложения , Pitman Publishing, ISBN 0-273-31491-2
  • Wharton, W .; Ховорт, Д. Принципы приема телевидения , Pitman Publishing, 1971 ISBN  0-273-36103-1 .
  • Юань, Фэй КМОП-схемы для пассивных беспроводных микросистем , Springer, 2010 ISBN  1-4419-7679-5 .
  • Zumbahlen, Hank Linear Circuit Design Handbook , Newnes, 2008 ISBN  0-7506-8703-7 .

Принцип работы

Для того чтобы представить себе как работает умножитель напряжения, рассматривается простейшая схема однополупериодного устройства, показанного на рисунке. Когда начинает действовать отрицательный полупериод напряжения, диод Д1 открывается и через него осуществляется зарядка конденсатора С1. Заряд должен сравняться с амплитудным значением подаваемого напряжения.

При наступлении периода с положительной волной происходит зарядка следующего конденсатора С2 через диод Д2. В этом случае заряд приобретает высокие удвоенные значения по сравнению с поданным напряжением. Далее наступает отрицательный полупериод, в течение которого до удвоенного значения заряжается конденсатор С3. Таким же образом, во время дальнейшей смены полупериода, выполняется зарядка конденсатора С4, вновь с удвоенным значением.

Для того чтобы запустить устройство, требуются полные периоды напряжения в количестве нескольких циклов, создающие напряжения на диодах. Величина напряжения, получаемая на выходе, состоит из суммы напряжений конденсаторов С2 и С4, соединенных последовательно и заряжаемых постоянно. В конечном итоге, образуется величина выходного переменного напряжения, которое в 4 раза превышает значение напряжения на входе. В этом и заключается принцип работы умножителя напряжения.

Самый первый конденсатор С1, полностью заряженный, имеет постоянное значение напряжения. То есть, он выполняет функцию постоянной составляющей Ua, применяемой в расчетах. Следовательно, можно и дальше наращивать потенциал умножителя, подключая дополнительные звенья, сделанные по тому же принципу, поскольку напряжение на диодах в каждом из этих звеньев будет равно сумме входного напряжения и постоянной составляющей. За счет этого получается любой коэффициент умножения с требуемым значением. Напряжение на всех конденсаторах, кроме первого будет равным 2х Ua.

Схемы выпрямителей с умножением напряжения

Схемы с умножением напряжения целесообразно применять для получения достаточно высоких выпрямленных напряжений при малых токах нагрузки. Эти схемы применяют для питания электронно-лучевых трубок, фотоумножителей, в установках для испытания электрической прочности.

Схемы выпрямителей, работающих с умножением напряжения, содержат несколько выпрямителей с емкостным фильтром, выходные напряжения которых суммируются.

4.1. Однофазная несимметричная схема удвоения напряжения

Схема на рис.5 представляет собой два однофазных однополупериодных выпрямителя. Первый выпрямитель VD1, C1 является однополупериодным выпрямителем с параллельно включенным диодом. За счет его работы конденсатор C1 заряжается до амплитудного напряжения U2. На нем образуется постоянное напряжение UC1=U2m. На диоде VD1 образуется пульсирующее напряжение. Максимальное значение напряжения на нем

UVD1,MAX=UC1+U2m .

Это пульсирующее напряжение окончательно выпрямляется и сглаживается обычным выпрямителем с емкостной нагрузкой VD2, C2. В итоге получаем выходное напряжение U0 примерно равное удвоенному значению амплитуды напряжения вторичной обмотки трансформатора.

Рис. 5. Несимметричная схема удвоения напряжения.

Частота пульсации выпрямленного напряжения на нагрузке равна частоте сети.

Обратное напряжение на диодах равно удвоенной амплитуде напряжения вторичной обмотки трансформатора.

Основным недостатком схемы является то, что основная частота пульсации выпрямленного напряжения, равна частоте сети.

Для увеличения кратности выпрямленного напряжения увеличивают число диодов и конденсаторов, включая их аналогично описанной схеме. На рис. 6, а показана схема умножения напряжения, где в целях получения различной кратности умножения напряжения предусмотрены соответствующие варианты подключения нагрузки к схеме (показаны пунктиром), а именно: присоединяя нагрузку к точкам б, в и г схемы, получим умножение напряжения соответственно в 2, 3 и 4 раза. В этой схеме все конденсаторы с нечетными номерами (С1, С3) заряжаются в один полупериод напряжения и2, а с четными номерами (С2, С4) — в другой полупериод.

Чем выше кратность умножения напряжения, тем большими будут пульсации выпрямленного напряжения при одинаковой емкости конденсаторов, так как для зарядного и разрядного токов они включены последовательно.

Рис.6. Несимметричная схема умножения напряжения в 4 раза

Недостатки таких выпрямителей аналогичны недостаткам однополупериодного однофазного выпрямителя с емкостной нагрузкой. Кроме того, они обладают увеличенным внутренним сопротивлением из-за последовательного включения диодов.

4.2. Двухфазные симметричные схемы

Двухфазные симметричные схемы умножения можно; получить соединением нескольких несимметричных схем. На рис.7 показана двухфазная схема выпрямления с умножением напряжения в 6 раз.

Рис. 7. Симметричная схема умножения напряжения

Конденсаторы с нечетными номерами (С1, С3, С5, C1’, С3’, С5’) заряжаются токами соответствующих диодов один раз в период напряжения вторичной обмотки, конденсаторы с четными номерами (С2, С4, С6) — дважды, поэтому частота пульсации выпрямленного напряжения в 2 раза больше частоты сети.

Устройства для накачки лазера

Что такое однофазный выпрямитель, принцип работы, типы и схемы

Удвоитель напряжения для накачки лазера работает при высокой частоте. Модули для устройств используются лишь на конденсаторной основе. Многие модели показывают хорошую проводимость, но при этом номинальное напряжение составляет не более 10 В. В приборах применяются диоды разных типов.

Также стоит отметить, что на рынке представлены модификации с открытыми стабилизаторами. У них нет проблем с пригревом, однако модели не способны обеспечивать высокую частотность. Подключение устройств осуществляется через триоды. Также есть модификации на трансиверах. У них высокий параметр полюсной проводимости. Однако к недостаткам можно отнести быстрый износ конденсаторов, вызванный тепловыми потерями.

Светотехника

Примером использования умножителя напряжения на четыре является схема для бесстартерного запуска ламы дневного света (ЛДС), показанная на рис.5, которая состоит из двух удвоителей напряжения, включенных последовательно по постоянному току и параллельно по переменному.

Рис. 5. Схема умножителя напряжения на четыре для бесстартерного запуска ламы дневного света.

Лампа зажигается без подогрева электродов. Пробой ионизированного промежутка «холодной» ЛДС происходит при достижении напряжения зажигания ЛДС на выходе УН. Поджиг ЛДС происходит практически мгновенно.

Зажженная лампа шунтирует своим низким входным сопротивлением высокое выходное сопротивление УН, конденсаторы которого в связи со своей малой величиной перестают функционировать как источники повышенного напряжения, а диоды начинают работать как обычные вентили.

2-обмоточный дроссель L1 (или два 1 -обмоточных) служит для сглаживания пульсаций выпрямленного напряжения. Падение напряжения питающей сети примерно равномерно распределяется на балластных конденсаторах С1, С2 и ЛДС, которые включены по переменному току последовательно, что соответствует нормальному рабочему режиму ЛДС.

При использовании в этой схеме ЛДС с диаметром цилиндрической части 36 мм зажигаются без каких-либо проблем, ЛДС с диаметром 26 мм зажигаются хуже, поскольку в связи с особенностями их конструкции напряжение зажигания даже новых ламп без подогрева накала может превышать 1200 В.

Последовательный многозвенный однополупериодный выпрямитель

Последовательный многозвенный однополупериодный выпрямитель (рис.3) с умножением напряжения чаще всего применяется при малых (до 10…15 мА) токах нагрузки.

Его схема состоит из однополупериодных выпрямителей — звеньев, в следующем алгоритме — одно звено (диод и конденсатор) — просто од-нополупериодный выпрямитель, состоящий из диода и конденсатора (выпрямителя и фильтра), два звена — умножитель напряжения в два раза, три — в три раза и т.д.

Величины емкости каждого звена в большинстве случаев одинаковы и зависят от частоты питающего УН напряжения и тока потребления .

Рис. 3. Схема многозвенного однополупериодного умножителя напряжения.

Конденсаторные установки крм

Физические процессы увеличения напряжения в многозвенном однополупериодном (рис.3) УН удобно рассматривать при подаче на него переменного синусоидального напряжения. Работает УН следующим образом.

При положительной полуволне напряжения на нижнем выводе вторичной обмотки Т1 через диод VD1 течет ток, заряжая конденсатор С1 до амплитудного значения.

При положительной полуволне питающего напряжения на нижнем выводе вторичной обмотки Т1 к аноду VD2 прикладываются сумма напряжений на вторичной обмотке и напряжение на конденсаторе С1; в результате чего через VD2 проходит ток, потенциал правой обкладки С2 относительно общего провода увеличивается до удвоенного входного напряжения и т.д. Отсюда следует, что чем больше звеньев, тем большее постоянное напряжение (теоретически) можно получить от УН.

Для правильного понимания образования и распределения потенциалов, возникающих на радиоэлементах при работе УН, предположим, что один входной импульс (ВИ) полностью заряжает конденсатор С1 (рис.3) до напряжения +U.

Представим второй положительный импульс, возникающий на верхнем выводе Т1 и поступающий на левую по схеме рис.3 обкладку С1 так же в виде заряженного до напряжения +U конденсатора (Си).

Их совместное соединение (рис.4) примет вид последовательно соединенных конденсаторов. Потенциал на С1 относительно общего провода увеличится до +2U, VD2 откроется, и до +2U зарядится конденсатор С2.

Рис. 4. Схема умножителя напряжения.

При появлении импульса величиной +U на нижнем выводе Т1 и суммировании его аналогичным образом с напряжением +2U на конденсаторе С2, через открывшийся VD3 на C3 появится напряжение +3U и т.д.

Снабберы, способные полностью подавлять пики напряжения

Из приводимых рассуждений можно сделать вывод, что величина напряжения относительно «общего» провода (рис.3) только на С1 будет равна амплитудному значению входного напряжения, т.е. +U, на всех же остальных конденсаторах умножителя напряжение будет ступенчато увеличиваться с шагом +2U.

Однако для правильного выбора рабочего напряжения используемых в УН конденсаторов имеет значение не напряжение на них относительно «общего» провода, а напряжение, приложенное к их собственным выводам. Это напряжение только на С1 равно +U, а для всех остальных оно независимо от ступени умножения равно +2U.

Теперь представим окончание времени действия импульса ВИ, как замыкание конденсатора Си (рис.4) перемычкой (S1). Очевидно, что в результате замыкания потенциал на аноде VD2 понизится до величины +U, а к катоду будет приложен потенциал 2U. Диод VD2 окажется закрытым обратным напряжением 2U-U=U.

Отсюда можно сделать вывод, что к каждому диоду УН относительно собственных электродов приложено обратное напряжение, не больше амплитудного значения импульса напряжения питания. Для выходного же напряжения УН все диоды включены последовательно.

Двухполупериодный удвоитель напряжения

Но более распространён двухполупериодный удвоитель напряжения

. Сразу надо сказать, что как предыдущая схема, так и эта, может быть подключена к сети переменного напряжения напрямую, минуя трансформатор. Это если требуется напряжение, вдвое превышающее сетевое и не требуется гальваническая развязка с сетью. В этом случае серьёзно повышаются требования к соблюдению техники безопасности!

Резистор R0, как обычно, установлен для ограничения импульсов тока в диодах. Его значение сопротивления невелико и, как правило не превышает сотен ом. Резисторы R1 и R2 необязательны. Они установлены параллельно конденсаторам C1 и C2 для того, чтобы обеспечить разряд конденсаторов после отключения от сети и от нагрузки. Также, они обеспечивают выравнивание напряжения на C1 и C2.

Работа удвоителя очень похожа на работу обычного двухполупериодного выпрямителя. Разница в том, что здесь выпрямитель в каждом из полупериодов нагружен на свой конденсатор и заряжает его до амплитудного значения переменного напряжения. Удвоенное выходное напряжение получается путём сложения напряжения на конденсаторах.

В тот момент, когда напряжение в точке А относительно точки B положительно, через диод D1 заряжается конденсатор C1. Его напряжение практически равно амплитуде переменного напряжения вторичной обмотки конденсатора. В следующий полупериод напряжение в точке А отрицательно по отношению к точке B. В этом момент ток идёт через диод D2 и заряжает конденсатор C2 до такого же амплитудного значения. Так как конденсаторы соединены последовательно по отношению к нагрузке, то мы получаем сумму напряжений на этих конденсаторах, т.е. удвоенное напряжение.

Конденсаторы C1 и C2 желательно должны иметь одинаковую ёмкость. Напряжение этих электролитических конденсаторов должно превышать амплитудное значение переменного напряжения. Также должны быть равны и номиналы резисторов R1 и R2.

Умножитель напряжения ⋆ diodov.net

При изготовлении электронных устройств, в частности блоков питания, в некоторых случаях возникает необходимость иметь выпрямленное напряжение большей величины, чем на клеммах вторичной обмотке трансформатора или в розетке 220 В. Например, после выпрямления сетевого напряжения 220 В на фильтрующем конденсаторе при очень малой нагрузке можно получить максимум амплитудное значение переменного напряжения 311 В. Следовательно конденсатор зарядится до указанного значения. Однако применяя умножитель напряжения можно повысить его до 1000 В и более.

Удвоитель напряжения

Схема умножителя напряжения может выполняться в нескольких вариантах, одна принцип действия всех их заключается в следующем. В разные полупериоды переменного тока происходит поочередно зарядка нескольких конденсаторов, а суммарное напряжение на них превышает амплитудное значение на обмотке. Таким образом, за счет увеличения числа конденсаторов и, как далее будет видно, количества диодов, получают напряжение в несколько раз превышающее величину подведенного.

Теперь давайте рассмотрим конкретные примеры и схемные решения.

Схема двухполупериодного умножителя состоит из двух диодов и двух конденсаторов, подключенных со стороны вторичной обмотки трансформатора.

Пусть в начальный момент потенциалы на обмотке имеют такие знаки, что ток протекает от точки 1 к точке 2. Проследим дальнейший путь тока. Он протекает через конденсатор C2, заряжая его, и возвращается к обмотке через диод VD2. В следующий полупериод ЭДС во вторичной обмотке направлена от точки 2 к 1 и через диод VD1 происходит зарядка конденсатора C1 до того же значения, что и С2. Таким образом, за счет последовательного соединения двух конденсаторов C1 и C2 на сопротивлении нагрузки получается удвоенное напряжение.

Если измерить значение переменного напряжения на обмотке и постоянное на одном из конденсаторов, то они буде отличаться почти в 1,41 раза. Например при действующем значении на вторичной обмотке, равном 10 В, на конденсаторе будет приблизительно 14 В. Это поясняется тем, что конденсатор заряжается до амплитудного, а не до действующего значения переменного напряжения. А амплитудное значения, как известно в 1,41 раза выше действующего. К тому же мультиметром возможно измерить лишь действующие значения переменных величин.

Рассмотрим еще один вариант. Здесь для умножения напряжения используется несколько иной подход. Когда потенциал точки 2 выше потенциал т.1 под действием протекающего тока заряжается конденсатор С1, а цепь замыкается через VD2.

После изменения направления тока, вторичная обмотка W2 и конденсатор С1 можно представить, как два последовательно соединенные источника питания с равными значениями амплитуды, поэтому конденсатор С2 зарядится до их суммарного напряжения, т.е. на его обкладках оно будет в два раза больше, чем на выводах вторичной обмотки. Во время тога, как конденсатор С2 будет заряжаться, С1 наоборот, будет разряжаться. Затем все повторится снова.

Умножитель напряжения многократный

Процессы в схеме утроения напряжения протекают в такой последовательности: сначала заряжаются конденсаторы С1 и С3 через сопротивление R и соответствующие диоды VD1 и VD3. В следующий полупериод С2 через VD2 заряжается до удвоенного напряжения (С1 + обмотка) и на сопротивлении нагрузки получается утроенное значение.

Больший интерес имеет следующий умножитель напряжения. Рассмотрим принцип его работы. Когда потенциал точки 1 положителен относительно точки 2 ток протекает по пути через VD1 и С1 заряжая конденсатор.

В следующий полупериод, когда ток изменил свое направление, заряжается второй конденсатор через второй диод до величины, равного сумме напряжений на С1 и обмотке трансформатора. При этом С1 разрядится. В третий полупериод, когда первый конденсатор снова начнет заряжаться, С2 через третий диод разрядится на С3, зарядив его до двойного значения относительно выводов обмотки.

К концу третьего полупериода на нагрузку будет подано суммарное напряжение заряженных конденсаторов С1 и С3, т. е. примерно утроенное значение.

Если данную схему применить без трансформатора, непосредственно подключить к 220 В, то на выходе получим приблизительно 930 В.

По аналогии с рассмотренными схемами могут быть построены схемы с большей кратностью умножения. Но следует помнить, что с увеличением числа умножений по причине большего содержание в схеме диодов и конденсаторов возрастает внутренне сопротивление выпрямителя, что приводит к дополнительной просадке напряжения.

Умножитель напряжения ⋆ diodov.net

При изготовлении электронных устройств, в частности блоков питания, в некоторых случаях возникает необходимость иметь выпрямленное напряжение большей величины, чем на клеммах вторичной обмотке трансформатора или в розетке 220 В.

Например, после выпрямления сетевого напряжения 220 В на фильтрующем конденсаторе при очень малой нагрузке можно получить максимум амплитудное значение переменного напряжения 311 В. Следовательно конденсатор зарядится до указанного значения.

Однако применяя умножитель напряжения можно повысить его до 1000 В и более.

Удвоитель напряжения

Схема умножителя напряжения может выполняться в нескольких вариантах, одна принцип действия всех их заключается в следующем.

В разные полупериоды переменного тока происходит поочередно зарядка нескольких конденсаторов, а суммарное напряжение на них превышает амплитудное значение на обмотке.

Таким образом, за счет увеличения числа конденсаторов и, как далее будет видно, количества диодов, получают напряжение в несколько раз превышающее величину подведенного.

Теперь давайте рассмотрим конкретные примеры и схемные решения.

Пусть в начальный момент потенциалы на обмотке имеют такие знаки, что ток протекает от точки 1 к точке 2. Проследим дальнейший путь тока. Он протекает через конденсатор C2, заряжая его, и возвращается к обмотке через диод VD2.

В следующий полупериод ЭДС во вторичной обмотке направлена от точки 2 к 1 и через диод VD1 происходит зарядка конденсатора C1 до того же значения, что и С2.

Таким образом, за счет последовательного соединения двух конденсаторов C1 и C2 на сопротивлении нагрузки получается удвоенное напряжение.

Если измерить значение переменного напряжения на обмотке и постоянное на одном из конденсаторов, то они буде отличаться почти в 1,41 раза. Например при действующем значении на вторичной обмотке, равном 10 В, на конденсаторе будет приблизительно 14 В.

Это поясняется тем, что конденсатор заряжается до амплитудного, а не до действующего значения переменного напряжения. А амплитудное значения, как известно в 1,41 раза выше действующего.

К тому же мультиметром возможно измерить лишь действующие значения переменных величин.

Рассмотрим еще один вариант. Здесь для умножения напряжения используется несколько иной подход. Когда потенциал точки 2 выше потенциал т.1 под действием протекающего тока заряжается конденсатор С1, а цепь замыкается через VD2.

После изменения направления тока, вторичная обмотка W2 и конденсатор С1 можно представить, как два последовательно соединенные источника питания с равными значениями амплитуды, поэтому конденсатор С2 зарядится до их суммарного напряжения, т.е. на его обкладках оно будет в два раза больше, чем на выводах вторичной обмотки. Во время тога, как конденсатор С2 будет заряжаться, С1 наоборот, будет разряжаться. Затем все повторится снова.

Умножитель напряжения многократный

Процессы в схеме утроения напряжения протекают в такой последовательности: сначала заряжаются конденсаторы С1 и С3 через сопротивление R и соответствующие диоды VD1 и VD3. В следующий полупериод С2 через VD2 заряжается до удвоенного напряжения (С1 + обмотка) и на сопротивлении нагрузки получается утроенное значение.

Больший интерес имеет следующий умножитель напряжения. Рассмотрим принцип его работы. Когда потенциал точки 1 положителен относительно точки 2 ток протекает по пути через VD1 и С1 заряжая конденсатор.

В следующий полупериод, когда ток изменил свое направление, заряжается второй конденсатор через второй диод до величины, равного сумме напряжений на С1 и обмотке трансформатора. При этом С1 разрядится. В третий полупериод, когда первый конденсатор снова начнет заряжаться, С2 через третий диод разрядится на С3, зарядив его до двойного значения относительно выводов обмотки.

К концу третьего полупериода на нагрузку будет подано суммарное напряжение заряженных конденсаторов С1 и С3, т. е. примерно утроенное значение.

По аналогии с рассмотренными схемами могут быть построены схемы с большей кратностью умножения. Но следует помнить, что с увеличением числа умножений по причине большего содержание в схеме диодов и конденсаторов возрастает внутренне сопротивление выпрямителя, что приводит к дополнительной просадке напряжения.

Схемы с умножением напряжения применяются для питания малой нагрузки, т.е. сопротивление нагрузки должно быть высоким. В противном случае нужно использовать неполярные конденсаторы большой емкости, рассчитанные на высокое напряжение. Это связано с тем, что при значительном токе нагрузки конденсаторы будут быстро разряжаться, что вызовет недопустимо большие пульсации на нагрузке.

Преимущества и недостатки

Dc dc преобразователь. устройство и принцип работы основных схем

Говоря о преимуществах умножителя напряжения, можно отметить следующие:

Возможность получать на выходе значительные величины электричества – чем больше звеньев цепи, тем больший коэффициент умножения получится.

  • Простота конструкции – все собрано на типовых звеньях и надежных радиоэлементах, редко выходящих из строя.
  • Массогабаритные показатели – отсутствие громоздких элементов, таких как силовой трансформатор, уменьшают размеры и вес схемы.

Самый большой недостаток любой схемы умножителя в том, что невозможно получить при помощи его большой ток на выходе для питания нагрузки.

Медицина

Одним из «экзотических» примеров применения УН в медицинской аппаратуре является его использование в конструкции электроэффлювиальной люстры (ЭЛ), которая предназначена для получения потока отрицательных ионов, оказывающих благоприятное воздействие на дыхательные пути человека.

Для получения высокого отрицательного потенциала для излучающей части генератора аэроионов использован УН с отрицательным выходным напряжением. Из-за достаточно большого объема вспомогательной информации рекомендации по конструкции и применению ЭЛ выходят за рамки настоящей статьи, поэтому ЭЛ упомянута только информативно.