Читаем электрические схемы с транзистором

Содержание

Устройство

Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E), базы («Б», англ. B) и коллектора («К», англ. C). В зависимости от порядка чередования слоёв различают n-p-n (эмиттер — n-полупроводник, база — p-полупроводник, коллектор — n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты.

Обозначение биполярных транзисторов на схемах и их структура. Направление стрелки показывает направление тока через эмиттерный переход, и служит для идентификации n-p-n и p-n-p транзисторов. Наличие окружности символизирует транзистор в индивидуальном корпусе, отсутствие — транзистор в составе микросхемы.

С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располагается между эмиттерным и коллекторным слоями и должен иметь большое электрическое сопротивление.

Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора

Общая площадь перехода база-эмиттер выполняется значительно меньше площади перехода коллектор-база, что увеличивает вероятность захвата неосновных носителей из базового слоя и улучшает коэффициент передачи. Так как в рабочем режиме переход коллектор-база обычно включён с обратным смещением, в нём выделяется основная доля тепла, рассеиваемого прибором, и повышение его площади способствует лучшему охлаждению кристалла. Поэтому на практике биполярный транзистор общего применения является несимметричным устройством (то есть инверсное включение, когда меняют местами эмиттер и коллектор, нецелесообразно).

Для повышения частотных параметров (быстродействия) толщину базового слоя делают меньше, так как этим, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей. Но при снижении толщины базы снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.

В первых транзисторах в качестве полупроводникового материала использовался металлический германий. Полупроводниковые приборы на его основе имеют ряд недостатков, и в настоящее время биполярные транзисторы изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.

Что такое транзистор

Для того, чтобы углубиться в тематику различных видов транзисторов, а конкретно в нашем случае узнать больше о транзисторе Дарлингтона, предлагаю сначала узнать все о самом простом транзисторе. Давайте разберемся, зачем он нужен и как он работает.

Начать хотелось бы с такого понятия, как триод. Это в общем такая лампа, которая может управлять током в цепи. Так вот, транзистор это тоже такой полупроводниковый триод, только уже без лампы. У него есть целых 3 вывода. Для чего оно надо? Транзисторы используются для коммутации и преобразования тока в цепи, при этом питаясь от небольшого входного тока. В электронике они используются очень часто. Например, их применяют во всех управляющих схемах различных электронных устройств (в тех же компьютерных платах). Конечно, иногда их еще можно заменить реле и тиристорами, но у тех тоже есть свои существенные недостатки, но это уже, как вы понимаете, совсем другая история. Вот так выглядит самый обыкновенный транзистор:

Полевые SMD транзисторы

Маркировка Тип прибора Маркировка Тип прибора
6A MMBF4416 C92 SST4392
6B MMBF5484 C93 SST4393
6C MMBFU310 H16 SST4416
6D MMBF5457 I08 SST108
6E MMBF5460 I09 SST109
6F MMBF4860 I10 SST110
6G MMBF4393 M4 BSR56
6H MMBF5486 M5 BSR57
6J MMBF4391 M6 BSR58
6K MMBF4932 P01 SST201
6L MMBF5459 P02 SST202
6T MMBFJ310 P03 SST203
6W MMBFJ175 P04 SST204
6Y MMBFJ177 S14 SST5114
B08 SST6908 S15 SST5115
B09 SST6909 S16 SST5116
B10 SST6910 S70 SST270
C11 SST111 S71 SST271
C12 SST112 S74 SST174
C13 SST113 S75 SST175
C41 SST4091 S76 SST176
C42 SST4092 S77 SST177
C43 SST4093 TV MMBF112
C59 SST4859 Z08 SST308
C60 SST4860 Z09 SST309
C61 SST4861 Z10 SST310
C91 SST4391

А это пример n-p-n и p-n-n биполярных транзисторов (sot-23, sot-323) с типовым расположением выводов:

Изучение электросхем автомобилей

Минимального понятия о действии электрического тока достаточно для того, чтобы разобраться, как устроена электрическая цепь в автомобиле, на даче или производстве. В книге по ремонту авто обычно обозначения прописаны после главной схемы, там же есть цифровые сноски для удобства и быстрого ориентира.

При изучении схемы необходимо иметь мультиметр.

Он должен измерять такие величины, как:

  • напряжение;
  • ток;
  • сопротивление.

На каждом датчике машины при работе должны быть определенные параметры, если они не совпадают, электрооборудование будет работать некорректно.

Электронная схема состоит из:

  • источника питания — это может быть АКБ или генератор — начинать читать схему нужно от них;
  • электрические цепи, производящие передачу тока;
  • приборы управления, выполняющие замыкание проводки или ее размыкание;
  • потребители электротока.

К аппаратуре управления относятся:

  • релейный механизм;
  • переключатели;
  • концевые элементы;
  • замок зажигания.

Основными потребителями электрической энергии в машине является:

  • осветительная сеть;
  • обогрев (сидений, стекол, зеркал);
  • приборная панель;
  • система безопасности автомобиля.

Образец чтения схемы своими руками, если не заводится автомобиль:

  1. По схеме определяем цвет и маркировку проводников по системе зажигания.
  2. Ставим ключ зажигания во включенное положение и замеряем мультиметром значение напряжения на блоке зажигания. Если напряжение есть — неисправен сам блок управления, когда значение на приборе 0, то причина в подходящем проводе.

После устранения причин необходимо выполнить повторные измерения.

Что следует учитывать?

На схеме, прилагающейся к автомобилю, цветовое обозначение проводов обычно совпадает с цветом электроцепей машины.

При расшифровке схемы нужно учитывать некоторые моменты:

  1. Проводник может иметь один или два цвета (быть основным или дополнительным). Основные цвета черный «-» и красный «+». На дополнительных наносятся поперечные или продольные штрихи.
  2. Когда два или более кабелей размещены на одном жгуте и имеют одинаковую маркировку, это означает, что у них гальваническое соединение.
  3. Если проводник входит в жгут, он должен иметь небольшой наклон в сторону, где он находится.
  4. Провода с черным цветом предназначены для соединения с массой.
  5. На электроцепях есть обозначения, благодаря которым определяется место подключения к приборам.
  6. Номера на механизмах должны соответствовать цифрам в схеме.
  7. Числа, указанные в кружках, означают соединение кабеля с «минусом». Сочетание цифр и букв должно соответствовать разъемным соединениям.

На видео показаны графические буквенные обозначения. Снято каналом chipdip.

Советы для начинающих

Главное правило — это соблюдение техники безопасности. При работе с приборами измерений необходимо заранее учитывать измеряемый предел, производя замеры значений, не замыкая щупы прибора.

Принцип работы биполярного транзистора

Принцип работы биполярного транзистора для чайников опишем на образце P→N→P транзисторного аппарата на рисунке 3. Принцип работы биполярного транзистора N→P→N вида сходен переходу в прямом направлении, только в этом случае заряды — электрические частицы движутся от «К» до «Э». Для выполнения данного условия необходимо всего на всего изменить полярность подключенного напряжения.

Рисунок 3 — Принцип работы P→N→P транзистора

При отсутствии внешних возмущений, внутри биполярника между его слоями будет существовать разность зарядов. На границах раздела будут установлены единые барьерные мосты, так как в это время доля «дырок» в коллекторе соответствует их численности в эмиттере.

Для точной работы биполярного транзистора переход в коллекторном пласте необходимо сместить в противоположном курсе, в то же время в эмиттере направленность перехода должна быть прямым. В этом случае режим функционирования будет активным.

Для выполнения вышеуказанных условий необходимо применить два питания, один из которых с положительным знаком соединяем с концом эмиттера, «минус» подключаем к базовому слою. Второй источник напряжения соединяем в следующем порядке: «плюс» к базовому концу, «минус» — к концу коллектора. Изобразим подключение на рисунке 4.

Рисунок 4 — Принципиальная схема подключения транзистора

Под воздействием напряжения Uэ, Uк через барьеры совершается переход дырок в эмиттере №1-5 и в базовом слое электрически заряженных частиц №7,8. В данном случае величина тока в эмиттере будет зависеть от количества переходов дырок, так как их больше.

Дырки, которые перешли в базовый слой собираются у барьерного перехода. Тем самым у границы с эмиттерным слоем будет собираться массовое количество дырок, в то же время у границы с «К», концентрация их существенно ниже. В связи с этим начнется диффузия дырок к «К» и близи границы произойдет их ускорение поля «Б» и переход в «К».

При перемещении через средний слой базы дырки рекомбинируют, заряженный электрон 6 замещает дырку 5. Такое перемещение будет совершаться с увеличением плюсового заряда при переходе дырок, соответственно движение зарядов в обратном направлении будет создавать ток определенной величины, а база остается электрически нейтральной.

Число дырок, которые перешли в коллектор будет меньше числа, которые покинули эмиттер. Это значит, что электрический ток «К» будет отличаться от значения тока «Э».

Обратный переход дырок из коллектора нежелателен и снижает эффективность транзистора, потому что переход осуществляется не основными, а вспомогательными носителями энергии и зависит данный переход сугубо от величины температуры. Данный ток носит название тока тепла. По значению теплового тока судят о качестве биполярного транзистора.

Рисунок 5 — Направление токов в биполярном транзисторе

На основании выше изложенного напрашивается вывод: любое изменение тока в структуре слоев эмиттер — база сопровождается изменением величины тока коллектора, причем самое малое изменение «базового» тока приведет к значимой коррекции выходного коллекторного тока.

Примеры обозначения приборов:

КТ937А-2 — кремниевый биполярный, большой мощности, высокочастотный, номер разработки 37, группа А, бескорпусный, с гибкими выводами на кристаллодержателе (см рисунок в начале статьи).

Биполярные транзисторы, разработанные до 1964 г. и выпускаемые по настоящее время, имеют систему обозначений, включающую в себя два или три элемента.

Первый элемент обозначения

— буква П, характеризующая класс биполярных транзисторов, или две буквы МП — для транзисторов в корпусе, герметизируемом способом холодной сварки.

Второй элемент

— двух- или трехзначное число, которое определяет порядковый номер разработки и указывает на подкласс транзистора по роду исходного полупроводникового материала, значениям допустимой рассеиваемой мощности и граничной частоты:

● от 1 до 99 — германиевые маломощные низкочастотные транзисторы;

● от 101 до 199 — кремниевые маломощные низкочастотные транзисторы;

● от 201 до 299 — германиевые мощные низкочастотные транзисторы;

● от 301 до 399 — кремниевые мощные низкочастотные транзисторы;

● от 401 до 499 — германиевые высокочастотные и СВЧ маломощные транзисторы;

● от 501 до 599 — кремниевые высокочастотные и СВЧ маломощные транзисторы;

● от 601 до 699 — германиевые высокочастотные и СВЧ мощные транзисторы;

● от 701 до 799 — кремниевые высокочастотные и СВЧ мощные транзисторы.

Третий элемент

обозначения (у некоторых типов он может отсутствовать) — буква, условно определяющая классификацию по параметрам транзисторов, изготовленных по единой технологии.

Как расшифровать другие обозначения в электронном авиабилете

Date (дата вылета) – открытая/фиксированная. Открытая предполагает корректировку отлета или прибытия.

Time (время вылета) указывается по местному времени. При этом начало-окончание регистрации не указываются, поэтому за информацией об окончании регистрации необходимо следить на информационном табло.

Form of payment (форма оплаты) – наличные (cash), оплата по безналу (inv), расчет по кредитной карте (СС).

Практические все авиакомпании, особенно международного класса используют е-тикет – электронный билет. На первый взгляд он выглядит подозрительно и непонятно, но стоит один раз изучить расшифровку буквенных обозначений, чтобы развеять все сомнения.

Однолинейная схема электроснабжения своими руками | ProElectrika.com

Графическое отображение схем электроснабжения

Схемой называется графическое отображение элементов той или иной конструкции, указанных на чертеже. Кроме того, бывают схемы электронных устройств, в том числе интегральных и изложения какого либо материала в упрощенном виде. Однолинейная схема энергоснабжения, например, частного дома, тоже не является исключением из основного определения.

Касательно термина «однолинейная схема электроснабжения» понимается графическое изображение трех фаз питающей сети и соединяющих различные электрические элементы в виде одной линии. Это введение условного обозначения значительно упрощают и делают не громоздкими схемы электроснабжения. По определению электрическая схема является документом, содержащим в виде обозначений и изображений составные элементы изделий, принцип действия которых основан на использовании электрической энергии и их связи между собой. Правила, согласно которым выполняются все виды электрических схем, в том числе и однолинейная схема электроснабжения, определены ГОСТ 2.702-75, а выполнение схем цифровой электроники и вычислительной техники определяются ГОСТ 2.708-81. Условное отображение трехфазного напряжения питания, для примера, приведено на рисунке «а», а его упрощенное отображение, которое и явилось причиной появления однолинейных схем отображено на рисунке «б».

Кроме того, чтобы визуально отобразить на схемах трехфазное подключение, используют несколько обозначений, таких как перечеркнутая линия с цифрой «3», расположенной рядом с вводом или выводом проводки, и прямая линия, перечеркнутая тремя косыми отрезками. Для однолинейных схем электроснабжения обозначения приборов, пускателей, контакторов, выключателей, розеток и прочих элементов применяют согласно ГОСТ и европейских правил конструирования, проектирования и монтажа электроприборов.

Линейная схема электроснабжения, примеры которой приведены на рисунках 1 и 2, отображает простейшее соединение и взаимодействие элементов освещения, силового питания и розеток для бытовой техники.

Промышленные схемы обеспечения электроэнергией предприятий и подключения оборудования не имеют принципиальных различий с однолинейной схемой электроснабжения частного дома или другого сооружения.

Виды схем электроснабжения

При проектировании систем электроснабжения различают схемы эксплуатационной ответственности, балансовой принадлежности, исполнительные и расчетные, которые призваны отобразить как планируемые работы, так и существующую систему или разделение систем по потребителям с целью установления границ безопасности.

Исполнительная схема электроснабжения

представляет собой документ, составленный на действующем объекте, отображающий текущее состояние сетей, приборов, входящих в эти сети, и рекомендации по устранению недостатков и дефектов, если таковые были выявлены в результате проведения соответствующего комплекса мероприятий.

В случаях проектирования новых строительных объектов составляется расчетная установочная схема. Такой элемент строительного проекта включает в себя структурную электрическую схему, функциональную электрическую схему, монтажную электрическую схему, а при необходимости кабельные планы и принципиальные электрические чертежи. Кроме того, если составляется, например, схема электроснабжения коттеджа, то в соответствии с последними тенденциями загородного строительства в нее включается проект пожарной безопасности.

Структурные схемы

представляют общую информацию об электроустановке, выраженную в указании взаимосвязей силовых элементов, таких как трансформаторы, распределительные щиты, линии электропередач, точки врезки и прочее.

Функциональные схемы

выполняются в основном для абстрактной передачи функций механизмов, к которым выполняется электроснабжение, их взаимодействие между собой и влияние на общую обстановку с точки зрения безопасности. Применяют такие проекты в основном при проектировании промышленных объектов с высокой наполняемостью площадей машинами, механизмами и оборудованием которые на схеме могут быть обозначены любым способом удобным проектировщику. Кроме того в этих документах часто не указывают размеры объектов, и они не являются планировочными документами.

Принципиальные схемы

принято выполнять в соответствии с ГОСТ и стандартами, действующими в странах не входящих ранее в состав СССР. Стандарты, действующие в мировом сообществе, отвечают требованиям национальных производителей согласованных с государственными органами. К ним относятся стандарты IEC, ANSI, DIN и другие.

Что такое полевой транзистор

Полевой транзистор представляет собой полупроводниковый прибор, в котором управление током между двумя электродами, образованным направленным движением носителей заряда дырок или электронов, осуществляется электрическим полем, создаваемым напряжением на третьем электроде. Электроды, между которыми протекает управляемый ток, носят название истока и стока, причем истоком считают тот электрод, из которого выходят (истекают) носители заряда. 

Третий, управляющий, электрод называют затвором. Токопроводящий участок полупроводникового материала между истоком и стоком принято называть каналом, отсюда еще одно название этих транзисторов — канальные. Под действием напряжения на затворе» относительно истока меняется сопротивление канала» а значит, и ток через него.

В зависимости от типа носителей заряда различают транзисторы с n-каналом или р-каналом. В n-канальных ток канала обусловлен направленным движением электронов, а р-канальных — дырок. В связи с этой особенностью полевых транзисторов их иногда называют также униполярными.

Это название подчеркивает, что ток в них образуют носители только одного знака, что и отличает полевые транзисторы от биполярных. Для изготовления полевых транзисторов используют главным образом кремний, что связано с особенностями технологии их производства.

Основные параметры полевых транзисторов

Крутизна входной характеристики S или проводимость прямой передачи тока Y21 указывает, на сколько миллиампер изменяется ток канала при изменении входного напряжения между затвором и истоком на 1 В. Поэтому значение крутизны входной характеристики определяется в мА/В, так же как и крутизна характеристики радиоламп. Современные полевые транзисторы имеют крутизну от десятых долей до десятков и даже сотен миллиампер на вольт. Очевидно, что чем больше крутизна, тем большее усиление может дать полевой транзистор. Но большим значениям крутизны соответствует большой ток канала. 

Поэтому-на практике обычно выбирают такой ток канала, при котором, о одной стороны, достигается требуемое усиление, а с другой — обеспечивается необходимая экономичность в расходе тока. Частотные свойства полевого транзистора, так же как и биполярного, характеризуются значением предельной частоты.

Полевые транзисторы тоже делят на низкочастотные, среднечастотные и высокочастотные, и также для получения большого усиления максимальная частота сигнала должна быть по крайней мере в 10…20 раз меньше предельной частоты транзистора. Максимальная допустимая постоянная рассеиваемая мощность полевого транзистора определяется точно так же, как и для биполярного. Промышленность выпускает полевые транзисторы малой, средней и большой мощности.

Транзисторы в заводской упаковке.

Основные характеристики

Основная особенностью всех видов транзисторов является способность управлять мощным током с помощью небольшого по силе. Их отношение показывает насколько эффективен полупроводниковый прибор.

В биполярных транзисторах этот показатель называется статическим коэффициентом передачи тока базы. Он характеризует, во сколько раз основной коллекторный ток больше вызвавшего его тока базы. Этот параметр имеет очень широкое значение и может достигать 800.

Для полевых транзисторов схожий по типу параметр называется крутизной входной характеристики или проводимостью прямой передачи тока. Если вкратце, он показывает, на сколько изменится напряжение, проходящее через канал, если изменить напряжение затвора на 1 В.

Если на транзистор подать сигнал с определенной частотой, то он многократно усилит его. Это свойство полупроводниковых приборов применяется в радиоэлектронике. Однако существует предел усиления частоты, за которым триод уже не в состоянии усилить сигнал.

Еще одной показательной характеристикой транзистора является максимальная допустимая рассеиваемая мощность. Дело в том, что при работе любого электрического прибора вырабатывается тепло. Оно тем больше, чем выше значения силы тока и напряжения в цепи.

Отводится оно несколькими способами: с помощью специальных радиаторов, принудительного обдува воздухом и другими. Таким образом, существует некий предел количества теплоты для любого триода (для каждого он разный), который он может рассеять в пространство. Поэтому при выборе прибора исходят из характеристик электрической цепи, на который предстоит установить транзистор.

Транзистор в режиме инвертора

До сих пор все наши примеры были основаны на включении нагрузки при подаче напряжения на затвор транзистора. Транзистор так же может работать и в инверсном режиме, это когда он проводит ток при отсутствии входного напряжения на затворе.

Рассмотрим данный режим работы транзистора на примере простой охранной сигнализации, издающей звук при обрыве тонкого провода охранного шлейфа.

Сперва, мы должны с типами полевых транзисторов. Все транзисторы бывают двух разных типов проводимости: P-канальный  и N-канальный.

N-канальный

P-канальный
   
Транзистор открыт при подаче напряжения   на затвор

Транзистор заперт  при подаче напряжения на затвор

Единственная разница в символьном обозначении является направление стрелки затвора.

До сих пор все наши примеры были связаны с полевым транзистором N-канальным. Транзисторы данного типа доминируют в радиоэлектронных схемах, поскольку они дешевле в производстве. Тем не менее, в следующем примере   мы используем   Р-канальный полевой транзистор.

Помните, что Р-канальный полевой транзистор находится в закрытом состоянии в тот момент, когда на его затворе находится управляющее напряжение. Поэтому, как видно из вышеприведенной схемы, звуковой генератор (buzzer) будет в выключенном состоянии до тех пор, пока провод цел. Как только провод будет разорван, напряжение на затворе   пропадет,  и транзистор начнет пропускать ток, и активирует звуковой генератор.

Пока охранный шлейф не оборван, основная аккумуляторная батарея бездействует и тем самым сохраняет свой заряд. В тоже время, для обеспечения напряжения на затворе транзистора необходимо ничтожно малый ток малой батареи, и ее хватит на очень длительный срок.

Мы так же можем   оптимизировать данную схему и использовать всего один источник питания. Все, что мы должны сделать, это подключить охранный шлейф к затвору и плюсу большой батареи и исключить малую батарею.

перевод: http://efundies.com/

2.4. Катушки индуктивности, дроссели и трансформаторы (ГОСТ 2.723-69)

Буквенно-цифровое позиционное обозначение катушек индуктивности и дросселей состоит из латинской буквы L и порядкового номера по схеме. При необходимости указывают и главный параметр этих изделий – индуктивность, измеряемую в генри (Гн), миллигенри (1 мГн = 10-3 Гн) и микрогенри (1 мкГн = 10-6 Гн). Если катушка или дроссель имеет магнитопровод, УГО дополняют его символом – штриховой или сплошной линией. Радиочастотные трансформаторы могут быть с магнитопроводами или без них и иметь обозначение L1, L2 и т. д. Трансформаторы, работающие в широкой полосе частот, обозначают буквой Т, а их обмотки – римскими цифрами (табл. 2.3).

Таблица 2.3

УГО катушек индуктивности и трансформаторов

Что внутри транзистора

Если бы мы могли разрезать один транзистор в микропроцессоре, мы бы увидели что-то вроде этого:

Слева — проводник, по которому бежит ток, справа — просто проводник, пока без тока. Между ними находится проводящий канал — те самые «ворота». Когда ворота открыты, ток из левого проводника поступает в правый. Когда закрыты — правый остаётся без тока. Чтобы ворота открылись, на них нужно подать ток откуда-то ещё. Если тока нет, то ворота закрыты.

Теперь, если грамотно посоединять тысячу транзисторов, мы получим простейшую вычислительную машину. А если посоединять миллиард транзисторов, получим ваш процессор.

Для каких устройств нужны условные графические обозначения?

Для всех устройств, входящих в состав технического решения по системе видеонаблюдения, а также для указаний по прокладке кабельных линий. Приведем лишь часть необходимых УГО:

№ п/п Тип оборудования Условное графическое обозначение Чем регламентируется?
1 Видеокамера Р 071-2017
2 Видеокамера (купольная) Р 071-2017
3 Видеокамера с поворотным устройством Р 071-2017
4 Видеокамера в герметичном термокожухе Р 071-2017
5 Видеокамера с передачей по радиоканалу Р 071-2017
6 Видеомонитор Р 071-2017
7 Пульт управления поворотной видеокамерой Р 071-2017
8 Видеонакопитель Р 071-2017
9 Сервер Р 071-2017
10 Источник бесперебойного электропитания Р 071-2017
11 Источник электропитания постоянного тока Р 071-2017
12 Батарея аккумуляторная ГОСТ 21.210-2014
13 Грозоразрядник Р 071-2017
14 Видеоусилитель Р 071-2017
15 Преобразователь сигнала для передачи по витой паре Р 071-2017
16 Преобразователь сигнала для передачи по оптоволоконной линии связи Р 071-2017
17 Преобразователь сигнала для передачи по коаксиальному кабелю Р 071-2017
18 Оборудование освещения Р 071-2017
19 Персональный компьютер Р 071-2017
20 Принтер Р 071-2017
21 Дополнительное оборудование (например KVM-удлинитель, контроллеры видеостен и т.п.) Р 071-2017
22 Коробка соединительная Р 071-2017
23 Коробка распределительная телефонная (типа КРТН) Р 071-2017
24 Бокс телефонный Р 071-2017
25 Устройство коммутационное (типа УК1) Р 071-2017
26 Линия проводки. Общее изображение Р 071-2017
27 Линия цепей управления Р 071-2017
28 Линия сети аварийного эвакуационного и охранного освещения Р 071-2017
29 Линия напряжения 36 В и ниже Р 071-2017
30 Линия заземления и зануления Р 071-2017
31 Металлические конструкции, используемые в качестве магистралей заземления, зануления Р 071-2017
32 Прокладка на тросе и его концевое крепление Р 071-2017
33 Проводка в трубах. Общее изображение. Р 071-2017
34 Коробка ответвительная ГОСТ 21.210-2014
35 Проводка в лотке ГОСТ 21.210-2014
36 Проводка в коробе ГОСТ 21.210-2014
37 Проводка под плинтусом ГОСТ 21.210-2014
38 Конец проводки кабеля ГОСТ 21.210-2014
39 Проводка уходит на более высокую отметку или приходит с более высокой отметки ГОСТ 21.210-2014
40 Проводка уходит на более низкую отметку или приходит с более низкой отметки ГОСТ 21.210-2014
41 Проводка пересекает отметку, изображенную на плане, сверху вниз или снизу вверх и не имеет горизонтальных участков в пределах данного плана ГОСТ 21.210-2014
42 Коробка вводная ГОСТ 21.210-2014
43 Коробка протяжная, ящик протяжной ГОСТ 21.210-2014
44 Ящик с аппаратурой ГОСТ 21.210-2014
45 Шкаф, панель, пульт, щиток одностороннего обслуживания, пост местного управления ГОСТ 21.210-2014
46 Шкаф, панель двустороннего обслуживания ГОСТ 21.210-2014
47 Оптический волновод, оптическая линия, оптическое волокно, волоконный световод, оптический кабель. Общее обозначение ГОСТ 2.761-84
48 Optical fiber cable TIA-606-B
49 Соединительная неразъемная муфта ГОСТ 2.761-84
50 Оптический ответвитель ГОСТ 2.761-84
51 Access Point TIA-606-B
52 Сетевой коммутатор Cisco Systems, Inc
53 Сетевой роутер Cisco Systems, Inc
54 Многоуровневый коммутатор Cisco Systems, Inc

Комментарий Видеомакс

К сожалению, в нормативных документах содержатся не все необходимые в проекте УГО. Например, в Р 071-2017 УГО камер видеонаблюдения всего три — отдельно выделены поворотные и в термокожухе. Но что делать с огромным количеством различных типов корпусов для камер — ведь они не укладываются в эти три типа? Да и для много другого оборудования УГО не хватает. Мы кране не рекомендуем изобретать собственные УГО, а важные отличительные особенности видеокамер и оборудования указывать в буквенно-цифровом обозначении устройства или рядом с ним.