Могут ли чипы представлять угрозу?
Сразу отбросим теории конспирологов в шапочках из фольги о порабощении человеческого сознания и тотальном контроле над людьми. В этой статье речь не о них.
В действительности опасность могли бы представлять хакеры
Однако сейчас чипы им не интересны: они передают сигнал на очень маленькое расстояние и не содержат важной информации в больших объемах. Для хакеров еще несколько лет куда выгоднее будет взламывать ваш компьютер или телефон
Однако если чипирование продолжит развиваться и выйдет на новый уровень, они могут в нем заинтересоваться, однако прогнозов на будущее мы дать не можем.
В любом случае не стоит бояться чипов. Научно-технический прогресс стремителен и то, что казалось нам странным раньше, теперь считается нормой. Могли ли мы несколько десятков лет назад представить, что будем просыпаться и ложиться в постель с девайсом, заменившим практически всю портативную технику? Так и в будущем вполне возможны подкожные чипы, которые постепенно придут на смену смартфонам!
SG3525 PDF
В общем, хоть эта микросхема и не нова, но ее структура позволяет реализовывать различные схемы преобразователей со многими дополнительными опциями. Такими как: стабилизация выходного напряжения, защита по току мощных ключевых транзисторов, защита от перенапряжения, отключение преобразователя при достижении минимального напряжения питания. Правда, диапазон регулировки ШИМ у нее только 50%.
Эта микросхема входит в модуль управления мощными полевыми транзисторами КМОП структуры в преобразователе напряжения, показанном на фото 1.
Ниже приведен машинный перевод параметров данного модуля. Это скриншот страницы с сайта aliexpress.com.
uc3846 — описание, принцип работы, схема включения
ШИМ контроллер uc3846 имеет 16 выводов. Основные принципы работы можно обозначить тезисами:
- если на 16 выводе напряжение ниже 0,35В, выходные импульсы на выводах 11 и 14 будут заблокированы полностью;
- если на выводе 1 напряжение низкое (ниже 0,35В), результат будет таким же;
- на 2 выводе напряжение должно составлять 5,1В;
- 13 и 15 выводам соответствует напряжение питания 8-40В;
- вывод 10 построен для внешней синхронизации в схеме;
- 9 и 6 выводы нужны для подключения резистора и конденсатора, которые будут задавать частоту работу ШИМ;
- выводы 3,4, а также 5,6 служат для сигналов ошибок общей схемы источника питания или преобразователя;
- вывод 12 — общий провод;
- вывод 7 — выход усилителя ошибки;
- вывод 1 — ограничение предельного тока.
Основная схема включения микрочипа uc3846 представлена на рисунке 7.
Рисунок 7. Схема включения микрочипа uc3846
Как смоделировать работу микросхемы
При моделировании работы нет необходимости в выпаивании микросхемы. Но обязательно нужно выключать устройство перед началом проведения работ. Проверка схемы на UC3842 заключается в том, чтобы на нее подать напряжение от внешнего источника и оценить работу. Процедура проведения работы выглядит так:
Отключается блок питания от сети переменного тока.
От внешнего источника стабилизированного напряжения и тока подается на седьмой контакт микросхемы напряжение больше 16 В. В этот момент должен произойти запуск микросхемы
Обратите внимание на то, что микросхема не начнет работать до тех пор, пока напряжение не окажется выше 16 В.
Используя осциллограф или вольтметр, нужно произвести замер напряжения на восьмом выводе. На нем должно быть +5 В.
Убедитесь в том, что напряжение на восьмом выводе стабильно
Если снизить напряжение источника питания ниже 16 В, то на восьмом выводе пропадет ток.
Используя осциллограф, проведите замер напряжения на четвертом выводе. В том случае, если элемент исправен, на графике будут импульсы пилообразной формы.
Измените напряжение источника питания – при этом частота и амплитуда сигнала на четвертом выводе останутся неизменными.
Проверьте осциллографом, есть ли на шестой ножке прямоугольные импульсы.
Только в том случае, если все вышеописанные сигналы имеются и ведут себя так, как и нужно, можно говорить об исправности микросхемы. Но рекомендуется проверять исправность и выходных цепей – диод, резисторы, стабилитрон. При помощи этих элементов происходит формирование сигналов для осуществления токовой защиты. Они выходят из строя при пробое.
Назначения элементов и работа схемы
Начнем с конденсатора С1, резисторов R5 и R6 – это элементы, от величин которых зависит рабочая частота контроллера, которую можно регулировать естественно с помощь триммера R5. C3 – от величины этого конденсатора зависит время плавного запуска схемы. От величины резистора R4 зависит длительность интервала «мертвого» времени. Выводы 1 и 2 микросхемы DA1, это входы усилителя ошибки. Так как данный модуль управления предназначен для работы в составе довольно таки мощного преобразователя, по всей вероятности на данном усилителе собрана схема мягкого запуска. Т.е. при включении схемы, в первый момент времени длительность выходных импульсов управления мощными ключами минимальная. По мере заряда конденсатора С2 их длительность увеличивается до нужной величины. Конденсаторы С5 и С6, по всей видимости фильтрующие. На биполярных транзисторах VT2… VT5 собраны дополнительные ключи для управления затворами мощных КМОП транзисторов.
На микросхеме DA4 собрана схема защиты мощных транзисторов от превышения допустимого тока. Схема питается от отдельного микросхемного стабилизатора напряжения DA3
Обратите внимание, что общий провод схемы защиты соединен с «землей» через контакт 8 разъема и датчик тока – шунт. С контакта 8 разъема едет провод на истоки мощных транзисторов
Таким образом, сигнал с шунта через резистор R23 подается на инвертирующий вход операционного усилителя DA4.2. А нижний конец шунта через «земляной» провод через резистор R22 подается на не инвертирующий вход данного ОУ. Коэффициент усиления напряжения шунта регулируют при помощи резистора обратной связи R21 и в общем случае он равен отношению R21/R23. С помощью этого резистора регулируют и уровень тока отсечки схемы защиты. На DA4.1 собран компаратор напряжений. Опорное напряжение с резистивного делителя R18,R19 подается на инвертирующий вход ОУ, вывод 6 DA4.1. На не инвертирующий вход подается усиленное напряжение с датчика тока – шунта. Диод VD2 в схеме компаратора устраняет эффект дребезга выходного напряжения, когда синфазные сигналы на его входе находятся в зоне равенства. В нормальном режиме работы преобразователя усиленное напряжение сигнала с шунта должно быть всегда меньше опорного напряжения на выводе 6 мс DA4.1. Увеличение тока через КМОП транзисторы повлечет за собой увеличение напряжения на выводе 5 мс DA4.1 и как только оно превысит опорное напряжение, компаратор включится и на его выходе появится напряжение примерно равное напряжению его питания, т.е. +5В. Это напряжение через разделительный диод VD1 поступит на вход SHUTDOWN (выключение) — вывод 10 мс DA1.
Проверка выходного сопротивления
Один из основных способов диагностики – замер величины сопротивления на выходе. Можно сказать, что это самый точный способ определения поломок
Обратите внимание на то, что в случае пробоя силового транзистора к выходному каскаду элемента будет приложен высоковольтный импульс. По этой причине происходит выход из строя микросхемы
На выходе сопротивление окажется бесконечно большим в случае, если элемент исправен.
Замер сопротивления производится между выводами 5 (масса) и 6 (выход). Измерительный прибор (омметр) подключается без особых требований – полярность значения не имеет. Рекомендуется перед началом проведения диагностики выпаять микросхему. При пробое сопротивление будет равно нескольким Ом. В том случае, если осуществлять измерение сопротивления без выпаивания микросхемы, то цепочка затвор-исток может звониться. И не стоит забывать о том, что в схеме блоков питания на UC3842 присутствует постоянный резистор, который включается между массой и выходом. При его наличии у элемента будет иметься выходное сопротивление. Следовательно, если на выходе сопротивление очень низкое или равно 0, то микросхема неисправна.
sg3525 — описание, принцип работы, схема включения
Микросхема sg3525 — широтно-импульсный модулятор в интегральном исполнении. Обеспечивает повышение производительности и уменьшение числа внешних деталей при проектировании и производстве всех видов импульсных источников питания. Имеет встроенный источник опорного напряжения +5,1В. Вход генератора обеспечивает синхронизированную работу различны устройств. sg3525 имеет встроенный плавный пуск схемы, что обеспечивается благодаря наличию внешнего конденсатора. Входные каскады микросхемы обеспечивают ток на выходе до 400 мА .
Схема подключения видна на рисунке 5.
Рисунок 5. Схема подключения ШИМ sg3525
Микросхема UC3842 (ШИМ) или изготавливаем Зарядное устройство для автомобильных аккумуляторов
Продолжая серию статей о самодельных лабораторных блоках питания, нельзя пройти мимо компьютерных блоков в основе которых лежит ШИМ контроллер серии UC38хх. В большинстве современных фирменных блоков ПК используется именно эта микросхема, что в перспективе позволяет своими руками создавать надежные и мощные источники питания. Переделка такого компьютерного блока питания в лабораторный будет происходить в несколько этапов:. Супервизор WT N производит мониторинг напряжения на шинах блока, отслеживает перегрузку, отвечает за пуск и аварийную остановку. Для его отключения необходимо произвести два простых действия. Выходное напряжение в блоке будет меняться в широком диапазоне, а питание 12 В штатного вентилятора должно быть неизменным. Существует несколько вариантов решения данной проблемы:. Последние два варианта не нуждаются в описании из-за своей простоты включения.
Как это защищает Ваш телефон
Данные на Вашем телефоне хранятся в зашифрованном виде на диске. Ключ, который разблокирует данные, хранится в защищенной области. Когда Вы разблокируете свой телефон с помощью ПИН-кода, пароля, идентификатора лица или сенсорного идентификатора, процессор внутри защищенной зоны аутентифицирует Вас и использует Ваш ключ для дешифрования Ваших данных в памяти.
Этот ключ шифрования никогда не покидает защищенную область защитного чипа. Если злоумышленник пытается войти в систему, угадывая ПИН или пароль, защищенный чип может замедлить их и обеспечить задержку между попытками. Даже если этот человек нарушил основную операционную систему Вашего устройства, защищенный чип ограничил бы попытки доступа к Вашим ключам безопасности.
Как работает микросхема (adsbygoogle = window.adsbygoogle || []).push({});
А теперь нужно рассмотреть кратко работу элемента. При появлении на восьмой ножке постоянного напряжения +5 В происходит запуск генератора OSC. На входы триггера RS и S поступает положительный импульс небольшой длины. Далее, после подачи импульса, происходит переключение триггера и на выходе появляется ноль. Как только импульс OSC начнет спадать, на прямых входах элемента напряжение окажется равным нулю. А вот на инвертирующем выходе появится логическая единица.
Эта логическая единица позволяет открыть транзистор, поэтому электрический ток начнет протекать от источника питания через цепочку коллектор-эмиттер к шестому выводу микросхемы. Отсюда видно, что на выходе будет находиться открытый импульс. И он прекратится только тогда, когда на третий вывод будет подано напряжение 1 В или выше.
Как работает микросхема
А теперь нужно рассмотреть кратко работу элемента. При появлении на восьмой ножке постоянного напряжения +5 В происходит запуск генератора OSC. На входы триггера RS и S поступает положительный импульс небольшой длины. Далее, после подачи импульса, происходит переключение триггера и на выходе появляется ноль. Как только импульс OSC начнет спадать, на прямых входах элемента напряжение окажется равным нулю. А вот на инвертирующем выходе появится логическая единица.
Эта логическая единица позволяет открыть транзистор, поэтому электрический ток начнет протекать от источника питания через цепочку коллектор-эмиттер к шестому выводу микросхемы. Отсюда видно, что на выходе будет находиться открытый импульс. И он прекратится только тогда, когда на третий вывод будет подано напряжение 1 В или выше.
Как работает система проверки шуб по чипу и стоит ли ей доверять
Фактическая маркировка меховых изделий началась еще 3 года назад. За это время система прошла свою “обкатку” среди участников оборота и фактически перешла под управление ЦРПТ только в июне этого года. При этом изменениям поверглись лишь организационные моменты.
Данные о продукции, которые были ранее у старого оператора, перенесли в новый личный кабинет. Перемаркировки уже выпущенной продукции при этом не планируется.
Для того, чтобы понимать основные принципы работы честного знака и то как происходит фиксация прослеживаемости шуб, необходимо ознакомится со следующими моментами:
- При маркировании изделия используется так называемые – контрольно идентификационные знаки или КИЗ.
- Они производятся и контролируются ГОЗНАКом и наносятся на шубу 3мя возможными способами: Вшиванием.
- Наклеиванием.
- Используя навесные бирки.
При производстве КИЗ, используется специальная радио-метка RFID.
Маркировка и выдача знаков, осуществляется только через систему “Честный знак” и контролируется ей же. При этом заказать выпуск КИЗ можно только в 3х случаях:
- Когда Вы являетесь импортером и ввозите продукцию на территорию ЕАЭС.
Когда Вы являетесь производителем шуб.
Когда идентификационный знак потеряет свою работоспособность, например в случае механического повреждения.
Другие участники оборота, лишь отмечают факты прибытия и выбытия идентификаторов на своем этапе реализации.
Как должен выглядеть правильный КИЗ
Те, что произведены на территории ЕАЭС
Те, что ввезены на территорию ЕАЭС
У ГОЗНАК на этот счет имеется четкие требования и правила внешнего вида КИЗ, которые должны наноситься на шубы. Всего их имеется 2 вида: (красные) ввозимые на территорию ЕАЭС, (зеленые) произведенные на территории ЕАЭС.
Расшифровываются они следующим образом:
- Указывается идентификатор страны.
- Отмечаются сведения о наличии чипа RFID в штрих-коде изделия.
- Наносится Data Matrix код информации о продукции.
- Указывается краткое название продукции, согласно интерпретации в классификаторе ТН ВЭД.
- Заносятся данные штрих-кода EAN-128 из организации ГС1 РУС ЮНИСКАН.
- В случае с красными КИЗ, отмечается факт ввоза на территорию таможенного союза. Для этого на идентификации страны, печатается стрелка.
sg3525 — описание, принцип работы, схема включения
Микросхема sg3525 — широтно-импульсный модулятор в интегральном исполнении. Обеспечивает повышение производительности и уменьшение числа внешних деталей при проектировании и производстве всех видов импульсных источников питания. Имеет встроенный источник опорного напряжения +5,1В. Вход генератора обеспечивает синхронизированную работу различны устройств. sg3525 имеет встроенный плавный пуск схемы, что обеспечивается благодаря наличию внешнего конденсатора. Входные каскады микросхемы обеспечивают ток на выходе до 400 мА .
Схема подключения видна на рисунке 5.
Рисунок 5. Схема подключения ШИМ sg3525
Немного теории
Схема отключения при понижении входного напряжения
Рис. Схема отключения при понижении входного напряжения
Схема отключения при понижении входного напряжения или UVLO-схема(по-английски отключение при понижении напряжения – Under-Voltage LockOut) гарантирует, что напряжение Vcc равно напряжению, делающему микросхему UC384x полностью работоспособной для включения выходного каскада. На Рис. показано, что UVLO-схема имеет пороговые напряжения включения и выключения, значения которых равны 16 и 10, соответственно. Гистерезис , равный 6В, предотвращает беспорядочные включения и выключения напряжения во время подачи питания.
Генератор
Рис. Генератор UC3842
Частотозадающий конденсатор Ct заряжается от Vref(5В) через частотозадающий резистор Rt, а разряжается внутренним источником тока.
Микросхемы UC3844 и UС3845 имеют встроенный счетный триггер, который служит для получения максимального рабочего цикла генератора, равного 50%. Поэтому генераторы этих микросхем нужно установить на частоту переключения вдвое выше желаемой. Генераторы микросхем UC3842 и UC3843 устанавливается на желаемую частоту переключения. Максимальная рабочая частота генераторов семейства UC3842/3/4/5 может достигать 500 кГц.
Считывание и ограничение тока
Рис. Организация обратной связи по току
Преобразование ток-напряжение выполнено на внешнем резисторе Rs, связанном с землей. RC фильтр для подавления выбросов выходного ключа. Инвертирующий вход токочувствительного компаратора UC3842 внутренне смещен на 1 Вольт. Ограничение тока происходит, если напряжение на выводе 3 достигает этого порогового значения.
Усилитель сигнала ошибки
Рис. Структурная схема усилителя сигнала ошибки
Неинвертирующий вход сигнала ошибки не имеет отдельного вывода и внутренне смещен на 2,5 вольт. Выход усилителя сигнала ошибки соединен с выводом 1 для подсоединении внешней компенсирующей цепи, позволяя пользователю управлять частотной характеристикой замкнутой петли обратной связи конвертора.
Рис. Схема компенсирующей цепи
Схема компенсирующей цепи, подходящая для стабилизации любой схемы преобразователя с дополнительной обратной связью по току, кроме обратноходовых и повышающих конвертеров, работающих с током катушки индуктивности.
Способы блокировки
Возможны два способа блокировки микросхемы UC3842: повышение напряжения на выводе 3 выше уровня 1 вольт, либо подтягивание напряжения на выводе 1 до уровня не превышающего падения напряжения на двух диодах, относительно потенциала земли. Каждый из этих способов приводит к установке ВЫСОКОГО логического уровня напряжения на выходе ШИМ-копаратора (структурная схема). Поскольку основным (по умолчанию) состоянием ШИМ-фиксатора является состояние сброса, на выходе ШИМ-компаратора будет удерживаться НИЗКИЙ логический уровень до тех пор, пока не изменится состояние на выводах 1 и/или 3 в следующем тактовом периоде (периоде, который следует за рассматриваемым тактовым периодом, когда возникла ситуация, требующая блокировки микросхемы).
Как смоделировать работу микросхемы
При моделировании работы нет необходимости в выпаивании микросхемы. Но обязательно нужно выключать устройство перед началом проведения работ. Проверка схемы на UC3842 заключается в том, чтобы на нее подать напряжение от внешнего источника и оценить работу. Процедура проведения работы выглядит так:
Отключается блок питания от сети переменного тока. От внешнего источника стабилизированного напряжения и тока подается на седьмой контакт микросхемы напряжение больше 16 В. В этот момент должен произойти запуск микросхемы
Обратите внимание на то, что микросхема не начнет работать до тех пор, пока напряжение не окажется выше 16 В. Используя осциллограф или вольтметр, нужно произвести замер напряжения на восьмом выводе
На нем должно быть +5 В. Убедитесь в том, что напряжение на восьмом выводе стабильно. Если снизить напряжение источника питания ниже 16 В, то на восьмом выводе пропадет ток. Используя осциллограф, проведите замер напряжения на четвертом выводе. В том случае, если элемент исправен, на графике будут импульсы пилообразной формы. Измените напряжение источника питания – при этом частота и амплитуда сигнала на четвертом выводе останутся неизменными. Проверьте осциллографом, есть ли на шестой ножке прямоугольные импульсы.
Только в том случае, если все вышеописанные сигналы имеются и ведут себя так, как и нужно, можно говорить об исправности микросхемы. Но рекомендуется проверять исправность и выходных цепей – диод, резисторы, стабилитрон. При помощи этих элементов происходит формирование сигналов для осуществления токовой защиты. Они выходят из строя при пробое.
uc3842 — описание, принцип работы, схема включения
uc3842 является широтно-импульсным контроллером, который применяется в основном, в преобразователях постоянного напряжения. Очень часто uc3842 используют в блоках питания различной аппаратуры. Подобный элемент можно встретить в «начинке» современных телевизоров и компьютерных мониторов.
Микросхема uc3842 имеет восемь выводов, каждый из которых выполняет свое предназначение:
- на первый подается напряжение;
- второй нужен для создания обратной связи;
- в случае подачи на третий вывод напряжения более 1В, на выходе МС не будет никаких импульсов;
- четвертый — место подключение переменного резистора;
- пятый — общий;
- шестой служит для снятия ШИМ-импульсов;
- седьмой необходим для подключения питания от 16 до 34В, в нем срабатывает защита от перенапряжения;
- восьмой подключается специальное устройство, которое стабилизирует частоту импульсов.
Типовая схема включения микрочипа uc3842 представлена на рисунке 2.
Рисунок 2. Типовая схема включения uc3842
Частота работы устройств, синхронизация
Микросхемы ШИМ-контроллеров могут применяться для различных целей. Чтобы отладить их совместную работу с другими элементами устройства, следует разобраться, как устанавливать те или иные параметры работы контроллера и какие компоненты цепи за это отвечают.
Резистор и емкость, задающие частоту работы всего устройства (RT, CT). Каждый контроллер может работать лишь на определенно заданной частоте. Каждый из импульсов следует лишь с этой частотой. Устройство может менять длительность импульсов, их форму и протяженность, но только не частоту. На практике это означает, что чем меньше протяженность импульса, тем длительнее пауза между ним и следующим. При этом частота следования всегда неизменна. Емкость, подключенная между ножкой CT и общим кабелем, и резистор, подключенный к выходу RT и общему кабелю, в комбинации могут задавать частоту, на которой будет работать контроллер.
- Синхроимпульсы (CLOCK). Весьма распространены случаи, в которых требуется отладить работу нескольких контроллеров так, чтобы выходные сигналы формировались синхронно. Для этого к одному из контроллеров (как правило, ведущему) требуется подключить частотозадающие емкость и резистор. На выходе CLOCK контроллера сразу же появятся короткие импульсы, соответствующие напряжению, которые подаются на аналогичные выходы всей группы устройств. Их принято называть ведомыми. Выводы RT таких контроллеров следует объединить с ножками VREF, а CT – с общим кабелем.
- Напряжение сравнения (RAMP). На этот вывод следует подавать сигнал пилообразной формы (напряжение). При возникновении синхроимпульса на выходе устройства образуется открывающее контрольное напряжение. После того как показатель напряжения на RAMP становится больше в несколько раз, чем величина выходного напряжения на усилителе ошибки, на выходе можно наблюдать импульсы, отвечающие закрывающему напряжению. Длительность импульса может рассчитывать от момента возникновения синхроимпульса вплоть до момента многократного превышения показателя напряжения на RAMP над величиной выходного напряжения усилителя ошибки.
Читать также: Подключение шуруповерта к зарядному устройству напрямую
uc3843 — описание, принцип работы, схема включения
Микросхема uc3843 — интегральная схема (ИС), которая предназначена для построения стабилизированных импульсных источников питания с широтно-импульсной модуляцией. В промышленном производстве выпускается в корпусах типа SOIC-8(14), DIP-8.
Основным принципом работы можно назвать применение вместе с uc3843 МОП транзистора. Это объясняется тем фактом, что мощность выходного каскада uc3843 незначительная. Поскольку амплитуда выходного сигнала может достигать напряжения питания МС, в качестве ключа используют МОП-транзистор.
Схема включения uc3843 приведена на рисунке.
Рисунок 1. Схема включения uc3843
Назначение выводов микросхемы (краткий обзор)
Для начала нужно рассмотреть назначение всех выводов микросхемы. Описание UC3842 выглядит таким образом:
На первый вывод микросхемы подается напряжение, необходимое для осуществления обратной связи. Например, если понизить на нем напряжение до 1 В или ниже, на выводе 6 начнет существенно уменьшаться время импульса. Второй вывод тоже необходим для создания обратной связи. Однако, в отличие от первого, на него нужно подавать напряжение более 2,5 В, чтобы сократилась длительность импульса. Мощность при этом также снижается. Если на третий вывод подать напряжение более 1 В, то импульсы прекратят появляться на выходе микросхемы. К четвертому выводу подключается переменный резистор – с его помощью можно задать частоту импульсов. Между этим выводом и массой включается электролитический конденсатор. Пятый вывод – общий. С шестого вывода снимаются ШИМ-импульсы. Седьмой вывод предназначен для подключения питания в диапазоне 16..34 В. Встроена защита от перенапряжения
Обратите внимание на то, что при напряжении ниже 16 В микросхема работать не будет. Чтобы осуществить стабилизацию частоты импульсов, используется специальное устройство, которое подает на восьмой вывод +5 В
Прежде чем рассматривать практические конструкции, нужно внимательно изучить описание, принцип работы и схемы включения UC3842.
Назначение выводов микросхемы (краткий обзор)
Для начала нужно рассмотреть назначение всех выводов микросхемы. Описание UC3842 выглядит таким образом:
На первый вывод микросхемы подается напряжение, необходимое для осуществления обратной связи. Например, если понизить на нем напряжение до 1 В или ниже, на выводе 6 начнет существенно уменьшаться время импульса.
Второй вывод тоже необходим для создания обратной связи. Однако, в отличие от первого, на него нужно подавать напряжение более 2,5 В, чтобы сократилась длительность импульса. Мощность при этом также снижается.
Если на третий вывод подать напряжение более 1 В, то импульсы прекратят появляться на выходе микросхемы.
К четвертому выводу подключается переменный резистор – с его помощью можно задать частоту импульсов. Между этим выводом и массой включается электролитический конденсатор.
Пятый вывод – общий.
С шестого вывода снимаются ШИМ-импульсы.
Седьмой вывод предназначен для подключения питания в диапазоне 16..34 В. Встроена защита от перенапряжения
Обратите внимание на то, что при напряжении ниже 16 В микросхема работать не будет.
Чтобы осуществить стабилизацию частоты импульсов, используется специальное устройство, которое подает на восьмой вывод +5 В.
Прежде чем рассматривать практические конструкции, нужно внимательно изучить описание, принцип работы и схемы включения UC3842.