Активная, реактивная, неактивная и полная мощность электрического тока

Содержание

Треугольник мощностей

Чтобы разобраться с реактивной нагрузкой рассмотрим треугольник мощностей.

где Р – активная мощность, которая измеряется в Ватах и используется для совершения полезной работы;

Q – реактивная, которая измеряется в Варах и используется для создания электромагнитного поля;

S – полная мощность используется для расчета электрических цепей.

Для расчета полной мощности применяем теорему Пифагора: S2=P2+Q2. Или с помощью формулы: S=U*I, где U – это показание напряжения на нагрузке, I — показание амперметра, которое включается последовательно с нагрузкой. В расчетах также используется коэффициент мощности – cosφ. На приборах, которые относятся к реактивной нагрузке, обычно указаны активная мощность и cosφ. С помощью этих параметров также можно получить полную мощность.

Иногда на приборах указывается полная мощность, а cosφ не указан. В этом случае применяется коэффициент 0,7.

Реактивная сила

В синусоидальных условиях реактивная мощность — это мнимая часть полной полной мощности. Замечено , выражается в реактивных вольт-амперах (var, см. Параграф «   ») и мы имеем:
Q{\ displaystyle Q}

Qзнак равноUежж⋅яежж⋅грех⁡φ{\ Displaystyle Q = U _ {\ mathrm {eff}} \ cdot I _ {\ mathrm {eff}} \ cdot \ sin \ varphi}

Диполи, имеющие импеданс , значение которого является чисто мнимым числом ( емкость или индуктивность ), имеют нулевую активную мощность и реактивную мощность, равную по абсолютной величине их полной мощности.

Практическая сфера

Реактивная мощность возникает в любой системе, имеющей реактивные компоненты (т.е. емкостные или индуктивные). Он может быть либо «произведен» ( емкостная цепь ), либо «потреблен» ( индуктивная цепь ) различными элементами цепей

Даже если она мнимая (в математическом смысле этого термина), реактивная мощность имеет реальный физический смысл, и ее значение имеет важное значение для определения размеров и стабильности электрических сетей (сами электрические линии являются индуктивными).

В то время как используется для генерации работы (например, двигателя) или тепла , реактивная мощность соответствует, когда она «потребляется», например, созданию магнитного поля в машинах. Электрическая ( трансформаторы , асинхронные машины и  т. Д.) . ). К потребителям реактивной энергии относятся также: люминесцентные лампы и разрядники в магнитных балластах , двигатели и лифты, чиллеры, нагревательные индукционные ( индукционные печи и дуговые печи ), сварочные аппараты и статические преобразователи.

Если реактивная мощность, потребляемая потребителями, слишком высока по сравнению с активной мощностью, увеличение тока во всей электрической сети (частной сети и распределительной сети) вызывает тепловые потери, перегрузки распределительных трансформаторов, перегрев силовых кабелей и падения напряжения, поэтому необходимо исправить это. При увеличении размеров этих установок с экономическими последствиями, которые это нереалистично, предпочтительно компенсировать эту реактивную мощность за счет повышения коэффициента мощности путем установки систем, «производящих» реактивную энергию. Этими системами могут быть конденсаторы , наборы катушек индуктивности и конденсаторов (наборы, которые можно автоматизировать), вращающиеся машины ( синхронные компенсаторы ) или статические компенсаторы .

Измерение мощности

Во Франции ценообразование для потребителей, которым энергия доставляется при высоком напряжении, а заказчик обеспечивает преобразование в низкое напряжение своим собственным частным трансформатором, принимает во внимание реактивную энергию. Реактивная энергия, потребленная сверх установленного порога (в определенное время с ноября по март), оплачивается

Целью этого биллинга является компенсация энергоносителю потерь, причиненных в его сети, а также стимул для клиентов улучшить свою установку (см. ). Концепция обычно выражается значением коэффициента мощности , соответствующей: .
загар⁡φ⩽,4{\ displaystyle \ tan {\ varphi} \ leqslant 0.4}загар⁡φ⩽,4{\ displaystyle \ tan {\ varphi} \ leqslant 0 {,} 4} потому что⁡φ{\ displaystyle \ cos \ varphi}потому что⁡φ⩾,93{\ displaystyle \ cos \ varphi \ geqslant 0 {,} 93}

Соединение обмоток трансформатора в звезду

При соединении в звезду действуют следующие соотношения –

  • линейные токи равны фазным,
  • линейные напряжения больше фазных в √3 раз

Возможно множество вариантов соединения обмоток трансформатора в звезду, некоторые из них приведены на рисунке ниже. И, как говорится, не все из них одинаково полезны, а точнее, для разных случаев необходима разная схема соединений.

Следует отметить, что в звезду можно соединить как один трехфазный трансформатор, так и три однофазных. На рисунке обозначаются:

  • А, В, С – начала обмоток высшего напряжения
  • Х, Y, Z – окончания обмоток высшего напряжения
  • a, b, c – начала обмоток низкого напряжения
  • x, y, z – окончания обмоток низкого напряжения

Активная и реактивная электрическая мощность

Общая зависимость электрической мощности от электрического тока и напряжения известна давно: это произведение. Помножим ток на напряжение – получим значение этой величины, потребляемой цепью из сети.

Но на деле все может оказаться не так просто. Потому что, просто умножив напряжение на ток, мы получим значение полной мощности. Казалось бы – это то, что нужно! Ведь обычно нас интересует именно полное значение любой величины.

Однако на электрическую мощность такое отношение распространять нельзя, так как электроэнергия и мощность, на основании которых изменяются показания нашего квартирного счетчика – не полные, а активные.

Активная мощность

– это та мощность, которая потребляется в тот момент, когда в сети в один и тот же момент есть и напряжение, и синхронный с ним электрический ток. На самом деле, в цепях постоянного тока за исключением переходных процессов при включении-выключении так оно и бывает.

Постоянно «жмет» напряжение, если цепь замкнута – постоянно «давит» некоторый ток. В итоге полная и активная мощность становятся равны, поскольку ток и напряжение действуют согласованно.

Иное дело – цепи переменного тока. Напряжение в них меняет свое направление пятьдесят раз в секунду, а ток… иногда приотстает, а иногда опережает напряжение. К примеру, если в цепи имеется «индуктивность», то есть, катушка из провода, имеющая множество витков, то ток на таком элементе цепи «отстанет» от напряжения.

Причина заключается в противо-ЭДС самоиндукции, сопротивляющейся изменению тока в катушке. Получается, что напряжение к индуктивности уже приложено, а ток еще никак не может возрасти из-за помех со стороны противо-ЭДС.

В среде учащихся многих электротехнических ВУЗов бытует такое художественное сравнение: «Для тока требуется время, чтобы он мог пробежать через каждый виток, а напряжение – вот оно, уже на концах катушки».

ЭДС противоиндукции вызывает падение напряжения и снижение тока в цепи. То есть, катушка является источником индуктивного сопротивления. Но оно отличается от активного сопротивления тем, что на нем не выделяется никакого тепла и вообще не потребляется никакой мощности в привычном понимании.

Происходит просто «пустопорожнее» переливание электроэнергии от источника к индуктивности. И энергия, перенаправляемая туда и обратно как мяч в настольном теннисе, никуда из сети не уходит. Это реактивная энергия и потребителю в быту за нее не приходится платить энергосбытовой компании.

Реактивная энергия

, производимая в сети в единицу времени, может считаться реактивной мощностью. Вычисляется она так же, как и активная – произведением реактивной составляющей тока на напряжение.

Реактивной же составляющей тока является та, которая не совпадает с напряжением по своей фазе. Величина «несовпадения» характеризуется углом сдвига фаз. В случае с чистой индуктивностью сдвиг фаз составляет максимум – 90°. Это означает, что когда напряжение достигает самого большого своего значения, ток только начинает расти.

А если в цепи расположен конденсатор (емкость), то напряжение, напротив, будет отставать от тока на 90 градусов по причине того, что для возникновения падения напряжения конденсатору требуется зарядить свои обкладки.

Точно так же источник и конденсатор в одной цепи будут обмениваться реактивной энергией, которая ни на что не будет тратиться.

В реальной цепи не бывает чисто активной или чисто реактивной нагрузки, поэтому полная мощность всегда состоит из активной и реактивной составляющей, а угол сдвига фаз находится в пределах между нулем и 90°.

Реактивная составляющая тока равна его произведению на синус угла сдвига фаз, а активная – произведению на косинус этого угла:

Q=I*sin⁡φ; P=I*cosφ

Полную мощность можно найти по теореме Пифагора:

S=√(P^2+Q^2);

При этом, реактивную мощность, в отличие от активной, нельзя исчислять в ваттах, потому что она неэффективна. Поэтому для реактивной мощности придумали особую единицу измерения – вольт-амперы реактивные (ВАРы). А полная измеряется в вольт-амперах, без уточнения характера нагрузки.

Трансформаторные подстанции

Схемы первичных соединений трансформаторной подстанции определяются категорией потребителей и мощностью трансформаторов (Тр). На рис. 1а приведена схема трансформаторной подстанции в однолинейном изображении, без сборных шин на стороне высшего напряжения (6 или 10 кВ), с трансформатором мощностью до 100 кВ·А, при радиальном питании, применяемая обычно для питания нагрузок III и, реже, II категории. Включают и отключают трансформатор выключателем нагрузки 2, защита от токов короткого замыкания выполнена в виде плавких предохранителей 3. На стороне низшего напряжения (380 В) трансформатора защита от перегрузки осуществляется воздушным автоматическим выключателем максимального тока 4. Питание потребителям подается через сборные шины низшего напряжения 6. Защита отходящих кабелей 8 низшего напряжения выполнена в виде плавких предохранителей 3; отключение осуществляют рубильником 7. В последнее время рубильник и плавкие предохранители часто заменяют воздушным автоматическим выключателем (автоматом) максимального тока, выполняющим функции включения/отключения и защиты от перегрузки и короткого замыкания. Трансформатор тока 5 служит для питания цепей измерения (счетчика киловатт-часов и амперметра).

Рис. 1. Однолинейные схемы трансформаторной подстанции до 1000 кВ•А: а — для потребителей III и II категории; б — для потребителей II и I категории

Для питания потребителей I и II категорий используется так называемая двухлучевая трансформаторная подстанция (рис. 1б). Питание на подстанцию поступает по двум кабельным вводам 1 от двух различных источников напряжением 6-10 кВ. Оперативное переключение и защита трансформаторов Т рпроизводится соответственно при помощи выключателей мощности 9. Установка на стороне низшего напряжения автоматических выключателей 10, выключателей мощности на стороне высшего напряжения 9 и межсекционного автомата 11 позволяет осуществить, кроме защиты от перегрузки и короткого замыкания, автоматическое включение резерва (АВР), обусловленное правилами устройства электроустановок (ПУЭ) для потребителей I категории. Резервное питание включается автоматически после аварийного отключения одного из питающих вводов (АВР на стороне высшего напряжения 6-10 кВ) или одного из питающих трансформаторов (АВР на стороне низшего напряжения 380 В). Перерыв в подаче энергии при АВР не превышает 1 с, что практически не нарушает нормальной работы большинства потребителей. Трансформаторы тока 13 и трансформаторы напряжения 12 служат для питания цепей измерения и защиты на стороне напряжения 6-10 кВ.

Вторичная обмотка понижающего трансформатора соединяется звездой с выведенной и заземленной нулевой точкой. На междуфазное (линейное) напряжение 380 В включается силовая нагрузка — в основном преобразователи электроприводов, двигатели трехфазного тока и др.; на фазное напряжение 220 В включаются осветительные устройства. Таким образом, применение четырехпроводной системы с линейным напряжением 380 В обусловливает совместное питание силовой и осветительных нагрузок.

В последнее время на крупных полиграфических предприятиях получили распространение внутрицеховые комплектные трансформаторные подстанции (КТП) с высшим первичным напряжением 6-10 кВ и низшим 380 В, с сухими (без маслозаполнения) трансформаторами мощностью до 1000 кВ·А. В состав КТП входят силовой трансформатор на 630 или 1000 кВ·А, коммутационная защитная и измерительная аппаратура и фидерные аппараты. Коммутационная аппаратура высшего напряжения и автоматы, размещенные в стальных ячейках, имеют втычные контакты и приспособления для выключения автоматов при открывании дверей.

https://youtube.com/watch?v=wjOWr-CS0oM

Нужны ли устройства компенсации в быту?

На первый взгляд в домашней сети не должно быть больших реактивных токов. В стандартном наборе бытовых потребителей преобладают электрическая техника с резистивными нагрузками:

  • электрочайник (P f = 1);
  • лампы накаливания (P f = 1);
  • электроплита (P f = 1) и другие нагревательные приборы;

Коэффициенты мощности современной бытовой техники, такой как телевизор, компьютер и т.п. близки к 1. Ими можно пренебречь.

Но если речь идёт о холодильнике (P f = 0,65), стиральной машине и микроволновой печи, то уже стоит задуматься об установке синхронных компенсаторов. Если вы часто пользуетесь электроинструментом, сварочным аппаратом или у вас дома работает электронасос, тогда установка устройства компенсации более чем желательна.

Экономический эффект от установки таких устройств ощутимо скажется на вашем семейном бюджете. Вы сможете экономить около 15% средств ежемесячно. Согласитесь, это не так уж мало, учитывая тарифы не электроэнергию.

Попутно вы решите следующие вопросы:

  • уменьшение нагрузок на индуктивные элементы и на проводку;
  • улучшение качества тока, способствующего стабильной работе электронных устройств;
  • понижение уровня высших гармоник в бытовой сети.

Для того чтобы ток и напряжение работали синфазно, устройства компенсации следует размещать как можно ближе к потребителям тока. Тогда реальная отдача индуктивных электроприёмников будет принимать максимальные значения.

Источник

Коррекция коэффициента мощности в системах энергоснабжения

На потери энергии из-за низкого коэффициента мощности часто не обращают внимания. Между тем, они могут привести к снижению надёжности, проблемам с безопасностью и повышенным расходам на электроэнергию. Чем ниже коэффициент мощности, тем менее экономична система. Реальное количество используемой или рассеиваемой мощности в цепи называется активной мощностью. Реактивные нагрузки (индуктивности и конденсаторы) производят так называемую реактивную мощность. Линейная комбинация активной и реактивной мощностей называется полной или кажущейся мощностью.

Система электропитания содержит активные (резистивные), индуктивные и емкостные нагрузки. Примерами активных нагрузок являются системы освещения с лампами накаливания и электронагреватели. В качестве примеров индуктивных нагрузок можно привести асинхронные двигатели, трансформаторы и реакторы. Примерами емкостных нагрузок являются конденсаторы, регулируемые или нерегулируемые конденсаторные батареи, пусковые конденсаторы двигателя, генераторы и синхронные двигатели.

Коррекция коэффициента мощности (ККМ), как правило, достигается путём добавления емкостной нагрузки, чтобы компенсировать имеющуюся в системе индуктивную нагрузку. Коэффициент мощности системы энергоснабжения постоянно изменяется из-за изменения мощности и количества двигателей, используемых в данный момент. Это затрудняет достижение постоянного баланса между индуктивными и емкостными нагрузками. Коррекция коэффициента мощности приносит много преимуществ. Для потребителя основным преимуществом является отсутствие платы за низкий коэффициент мощности. Для поставщика электроэнергии преимущества заключаются в увеличении срока службы оборудования и снижении эксплуатационных расходов.

Энергия и мощность электрического тока

а) Энергия электрического тока.

Для создания электрического тока в цепи источник должен обладать необходимой энергией.

Величина этой энергии определяется по формуле:

или

Где: W – энергия электрического тока, Вт·ч

U – напряжение на зажимах цепи, В.

R – сопротивление цепи, Ом.

t – время протекания тока, час.

б) мощность электрического тока

Различные источники электрической энергии могут за один и тот же промежуток времени выдавать различное количество электрической энергии.

Способность источника выдавать в единицу времени определенное количество электрической энергии, а потребитель, соответственно, – потреблять эту энергию характеризуется мощностью источника (потребителя).

Значение мощности электрического тока определяется из выражения:

или

Где: W – энергия электрического тока, Вт·ч

t — время работы источника (потребителя), час.

Р – мощность источника (потребителя), Вт.

U – напряжение, В

R – сопротивление цепи, Ом.

Мощность, развиваемая источником тока во всей цепи, называется полной мощностью .

Она определяется по формуле:

где: Pобщ — полная мощность, развиваемая источником тока во всей цепи, Вт;

Е — э. д. с. источника, В;

I — величина тока в цепи, А.

В общем виде электрическая цепь состоит из внешнего участка (нагрузки) с сопротивлением R и внутреннего участка с сопротивлением R (сопротивлением источника тока).

Заменяя в выражении полной мощности величину э. д. с. через напряжения на участках цепи, получим

Величина UI соответствует мощности, развиваемой на внешнем участке цепи (нагрузке), и называется полезной мощностью Pпол=UI

Величина UoI соответствует мощности, бесполезно расходуемой внутри источника, её называют мощностью потерь Po = UoI.

Таким образом, полная мощность равна сумме полезной мощности и мощности потерь

в) Коэффициент полезного действия электрической цепи

Отношение полезной мощности к полной мощности, развиваемой источником, называется коэффициентом полезного действия, сокращенно к. п. д.,и обозначается η

Из определения следует:

При любых условиях коэффициент полезного действия η ≤ 1.

Рис.13.1 Энергетическая диаграмма электрической цепи

Рассмотрим элементарную электрическую цепь, содержащую источник ЭДС с внутренним сопротивлением r, и внешним сопротивлением R

Рис.13.2. Схема электрической цепи

КПД определяется как отношение полезной мощности к затраченной:

Обычно электрический к. п. д. принято выражать в процентах.

Источник

Физика процесса

Когда мы имеем дело с цепями постоянного тока, то говорить о реактивной мощности не приходится. В таких цепях значения мгновенной и полной мощности совпадают. Исключением являются моменты включения и отключения ёмкостных и индуктивных нагрузок.

Похожая ситуация происходит при наличии чисто активных сопротивлений в синусоидальных цепях. Однако если в такую электрическую цепь включены устройства с индуктивными или ёмкостными сопротивлениями, происходит сдвиг фаз по току и напряжению (см. рис.1).

При этом на индуктивностях наблюдается отставание тока по фазе, а на ёмкостных элементах фаза тока сдвигается так, что ток опережает напряжение. В связи с нарушением гармоники тока, полная мощность разлагается на две составляющие. Ёмкостные и индуктивные составляющие называют реактивными, бесполезными. Вторая составляющая состоит из активных мощностей.

Угол сдвига фаз используется при вычислениях значений активных и реактивных ёмкостных либо индуктивных мощностей. Если угол φ = 0, что имеет место при резистивных нагрузках, то реактивная составляющая отсутствует.

  • резистор потребляет исключительно активную мощность, которая выделяется в виде тепла и света;
  • катушки индуктивности провоцируют образование реактивной составляющей и возвращают её в виде магнитных полей;
  • Ёмкостные элементы (конденсаторы) являются причиной появления реактивных сопротивлений.

Main menu

Здравствуйте! Для вычисления физической величины, называемой мощностью, пользуются формулой, где физическую величину — работу делят на время, за которое эта работа производилась.

Выглядит она так:

P, W, N=A/t, (Вт=Дж/с).

В зависимости от учебников и разделов физики, мощность в формуле может обозначаться буквами P, W или N.


Чаще всего мощность применяется, в таких разделах физики и науки, как механика, электродинамика и электротехника. В каждом случае, мощность имеет свою формулу для вычисления. Для переменного и постоянного тока она тоже различна. Для измерения мощности используют ваттметры.

Теперь вы знаете, что мощность измеряется в ваттах. По-английски ватт — watt, международное обозначение — W, русское сокращение — Вт

Это важно запомнить, потому что во всех бытовых приборах есть такой параметр

Мощность — скалярная величина, она не вектор, в отличие от силы, которая может иметь направление. В механике, общий вид формулы мощности можно записать так:

P=F*s/t, где F=А*s,

v=s/t,

Р=F*v.

Из формул видно, как мы вместо А подставляем силу F умноженную на путь s. В итоге мощность в механике, можно записать, как силу умноженную на скорость. К примеру, автомобиль имея определенную мощность, вынужден снижать скорость при движении в гору, так как это требует большей силы.

Средняя мощность человека принята за 70-80 Вт. Мощность автомобилей, самолетов, кораблей, ракет и промышленных установок, часто, измеряют в лошадиных силах. Лошадиные силы применяли еще задолго до внедрения ватт. Одна лошадиная сила равна 745,7Вт. Причем в России принято что л. с. равна 735,5 Вт.

Если вас вдруг случайно спросят через 20 лет в интервью среди прохожих о мощности, а вы запомнили, что мощность — это отношение работы А, совершенной в единицу времени t. Если сможете так сказать, приятно удивите толпу. Ведь в этом определении, главное запомнить, что делитель здесь работа А, а делимое время t. В итоге, имея работу и время, и разделив первое на второе, мы получим долгожданную мощность.

При выборе в магазинах, важно обращать внимание на мощность прибора. Чем мощнее чайник, тем быстрее он погреет воду. Мощность кондиционера определяет, какой величины пространство он сможет охлаждать без экстремальной нагрузки на двигатель

Чем больше мощность электроприбора, тем больше тока он потребляет, тем больше электроэнергии потратит, тем больше будет плата за электричество

Мощность кондиционера определяет, какой величины пространство он сможет охлаждать без экстремальной нагрузки на двигатель. Чем больше мощность электроприбора, тем больше тока он потребляет, тем больше электроэнергии потратит, тем больше будет плата за электричество.

В общем случае электрическая мощность определяется формулой:

W=I*U,

где I — сила тока, U-напряжение

Иногда даже ее так и измеряют в вольт-амперах, записывая, как В*А. В вольт-амперах меряют полную мощность, а чтобы вычислить активную мощность нужно полную мощность умножить на коэффициент полезного действия(КПД) прибора, тогда получим активную мощность в ваттах.

Часто такие приборы, как кондиционер, холодильник, утюг работают циклически, включаясь и отключаясь от термостата, и их средняя мощность за общее время работы может быть небольшой.

В цепях переменного тока, помимо понятия мгновенной мощности, совпадающей с общефизической, существуют активная, реактивная и полная мощности. Полная мощность равна сумме активной и реактивной мощностей.

Для измерения мощности используют электронные приборы — Ваттметры. Единица измерения Ватт, получила свое название в честь изобретателя усовершенствованной паровой машины, которая произвела революцию среди энергетических установок того времени. Благодаря этому изобретению развитие индустриального общества ускорилось, появились поезда, пароходы, заводы, использующие силу паровой машины для передвижения и производства изделий.

Как рассчитать мощность трансформатора

Особенность работы стандартного трансформатора представлена процессом преобразования электроэнергии переменного тока в показатели переменного магнитного поля и наоборот. Самостоятельный расчет трансформаторной мощности может быть выполнен в соответствии с сечением сердечника и в зависимости от уровня нагрузки.

Расчет обмотки преобразователя напряжения и его мощности

По сечению сердечника

Электромагнитный аппарат имеет сердечник с парой проводов или несколькими обмотками. Такая составляющая часть прибора, отвечает за активное индукционное повышение уровня магнитного поля. Кроме всего прочего, устройство способствует эффективной передаче энергии с первичной обмотки на вторичную, посредством магнитного поля, которое концентрируется во внутренней части сердечника.

Читать также: Магнитные углы для сварки

Параметрами сердечника определяются показатели габаритной трансформаторной мощности, которая превышает электрическую.

Расчетная формула такой взаимосвязи:

Sо х Sс = 100 х Рг / (2,22 х Вс х А х F х Ко х Кc), где

  • Sо — показатели площади окна сердечника;
  • Sс — площадь поперечного сечения сердечника;
  • Рг — габаритная мощность;
  • Bс — магнитная индукция внутри сердечника;
  • А — токовая плотность в проводниках на обмотках;
  • F — показатели частоты переменного тока;
  • Ко — коэффициент наполненности окна;
  • Кс — коэффициент наполненности сердечника.

Показатели трансформаторной мощности равны уровню нагрузки на вторичной обмотке и потребляемой мощности из сети на первичной обмотке.

По нагрузке

При выборе трансформатора учитывается несколько основных параметров, представленных:

  • категорией электрического снабжения;
  • перегрузочной способностью;
  • шкалой стандартных мощностей приборов;
  • графиком нагрузочного распределения.

В настоящее время типовая мощность трансформатора стандартизирована.

Чтобы выполнить расчет присоединенной к трансформаторному прибору мощности, необходимо собрать и проанализировать данные обо всех подключаемых потребителях. Например, при наличии чисто активной нагрузки, представленной лампами накаливания или ТЭНами, достаточно применять трансформаторы с показателями мощности на уровне 250 кВА.

Как правильно рассчитать

Активная мощность, как сделать правильный расчет?

Мощность электрического тока влияет на то, как быстро прибор сможет выполнить работу. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.

Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического тока всех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.

Вам это будет интересно Миллиамперы в амперы

Однофазный синусоидальный ток в электрических цепях вычисляется по формуле Р = U x I x cos φ, где υ и Ι. Их обозначение шифруется следующим образом: среднеквадратичное значение напряжение и тока, а φ — фазный угол фаз между ними.

Для цепей несинусоидального тока электрическая ёмкость равна корню квадратному из суммы квадратов активной и реактивной производительности. Активная производительность характеризуется скоростью, которая имеет необратимый процесс преобразования электрической энергии в другие виды энергии. Данная ёмкость может вычисляться через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P = I(2) x r = U(2) x g.

Реактивная мощность (Reactive Power)

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

В любой электрической цепи как синусоидального, так и несинусоидального тока активная способность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая емкость определяется как сумма пропускной способности отдельных фаз. С полной производительностью S, активная связана соотношением P = S x cos φ.

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной производительностью.

Как найти реактивную полную мощность через активную? Данная производительность, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = U x I x sin φ (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным).

Обозначение реактивной величины

Расчеты в синусоидальном режиме

Отмечая:

  • активная мощность  ;п{\ displaystyle P}
  • полная мощность  ;S{\ displaystyle S}
  • реактивная мощность .Q{\ displaystyle Q}

Рассмотрим линейный диполь , импеданс которого записан: ( R  : действительная часть , j: мнимая единица, X  : мнимая часть ), если мы разложим диполь на два диполя последовательно d ‘соответствующих импедансов R и X ( на них действует один и тот же ток I), имеем:
Z_знак равнор+jИкс{\ displaystyle {\ underline {Z}} = R + \ mathrm {j} X}

  • пзнак равнор⋅я2{\ Displaystyle P = R \ cdot I ^ {2}}
  • Qзнак равноИкс⋅я2{\ displaystyle Q = X \ cdot I ^ {2}}

Если мы разложим диполь на два параллельных диполя с соответствующими импедансами R ‘и X’ (на них действует одно и то же напряжение U), мы получим:

  • пзнак равноU2р′{\ Displaystyle P = {\ гидроразрыва {U ^ {2}} {R ‘}}}
  • Qзнак равноU2Икс′{\ Displaystyle Q = {\ гидроразрыва {U ^ {2}} {X ‘}}}

С ир′знак равнор2+Икс2р{\ Displaystyle R ‘= {\ гидроразрыва {R ^ {2} + X ^ {2}} {R}}}Икс′знак равнор2+Икс2Икс{\ Displaystyle X ‘= {\ гидроразрыва {R ^ {2} + X ^ {2}} {X}}}

φ{\ displaystyle \ varphi}аргумент и модуль .
Z_{\ displaystyle {\ underline {Z}}}Z{\ displaystyle Z}Z_{\ displaystyle {\ underline {Z}}}

Значение соответствует коэффициенту мощности в синусоидальном режиме. У нас есть отношения:
потому что⁡φ{\ displaystyle \ cos \ varphi}

  • S2знак равноп2+Q2{\ Displaystyle S ^ {2} = P ^ {2} + Q ^ {2}}, откуда Sзнак равноп2+Q2{\ Displaystyle S = {\ sqrt {P ^ {2} + Q ^ {2}}}}
  • потому что⁡φзнак равнопS{\ displaystyle \ cos \ varphi = {\ frac {P} {S}}}
  • грех⁡φзнак равноQS{\ displaystyle \ sin \ varphi = {\ frac {Q} {S}}}
  • загар⁡φзнак равноQп{\ displaystyle \ tan \ varphi = {\ frac {Q} {P}}}.

Треугольник мощности для последовательной цепи RLC | Цепи силового треугольника

Давайте рассмотрим схему RLC, включенную последовательно, как указано выше.

Где резистор с сопротивлением R.

 индуктор с индуктивностью L.

конденсатор емкостью С.

Источник переменного напряжения Vmsin⍵t применяется.

V — действующее значение приложенного напряжения, а I — действующее значение полного тока в цепи. В катушка индуктивности и конденсатор производят XL и ХC противостояния соответственно в цепи. Теперь может быть три случая:

Случай 1: XL > XC

Случай 2: XL <XC

Треугольник мощности получается из векторной диаграммы, если мы умножим каждый из векторов напряжения на I, мы получим три компонента мощности.

Из векторного треугольника мы можем быстро получить треугольник мощности, умножив напряжения на I. Реальная мощность умножена на VR, что равно I2R. Реактивная мощность умножается на (ВC — VL), что равно I2(XC — ИКСL). Полная мощность V = I2Z рассчитывается на основе активной мощности и реактивной мощности для обоих случаев

Здесь мы принимаем во внимание другую величину, комплексную мощность. Комплексная мощность — это сумма активной мощности и реактивной мощности, представленных в комплексной форме, то есть с величиной «j»

Следовательно, комплексная мощность

S = P — jQ, когда XL <XC

S = P + jQ, когда XL > XC

Теперь для случая 1 индуктивное реактивное сопротивление меньше емкостного. Следовательно, реактивная мощность отрицательна, а угол ϕ также отрицателен. Для случая 2 значение индуктивного реактивного сопротивления больше, чем значение емкостного реактивного сопротивления, реактивная мощность равна + ve, а угол ϕ также равен + ve.