Транзисторные ключи: схема, принцип работы и особенности

Содержание

Устройство и принцип работы тиристора (тринистора)

Тринистор является управляемым прибором. Он содержит управляющий электрод (УЭ), подключаемый к полупроводнику р-типа или полупроводнику n-типа среднего перехода 2.

Структура, УГО и ВАХ тринистора (обычно называют тиристором) приведены на рисунке:

Напряжение Uвыкл, при котором начинается лавинообразное нарастание тока, может быть снижено введением неосновных носителей заряда в любой из слоев, прилегающих к переходу 2. В какой мере снижается Uвкл показано на ВАХ. Важным параметром является отпирающий ток управления Iу.от, который обеспечивает переключение тиристора в открытое состояние при напряжениях, меньших напряжения Uвкл. На рисунке показаны три значения напряжение включения UIвкл < Unвкл < Umвкл соответствует трем значениям управляющего тока UIу.от > Unу.от > Umу.от.

Рассмотрим простейшую схему с тиристором, нагруженным на резисторную нагрузку Rн

Iа – ток анода (силовой ток в цепи анод-катод тиристора ); Uак – напряжение между анодом и катодом; Iу – ток управляющего электрода ( в реальных схемах используют импульсы тока ); Uук – напряжение между управляющим электродом и катодом; Uпит – напряжение питания.
Для перевода тиристора в открытое состояние не управляющий электрод подается от схемы формирования импульсов кратковременный (порядка нескольких микросекунд) управляющий импульс.

Характерной особенностью рассматриваемого незапираемого тиристора, который очень широко используется на практике, является то, что его нельзя выключить с помощью тока управления.

Для выключения тиристора на практике на него подают обратное напряжение Uак < 0 и поддерживают это напряжение в течении времени, большего так называемого времени выключения tвыкл. Оно обычно составляет единицы или десятки микросекунд.

Транзистор в режиме ключа

Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:

  1. От микроконтроллера через переход «база — эмиттер».
  2. При этом канал «коллектор — эмиттер» открывается.
  3. Через канал «коллектор — эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.

Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов — около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.

Симисторный ключ

Для гальванической развязки цепей управления и питания лучше
использовать оптопару или специальный симисторный драйвер. Например,
MOC3023M или MOC3052.

Эти оптопары состоят из инфракрасного светодиода и фотосимистора. Этот
фотосимистор можно использовать для управления мощным симисторным
ключом.

В MOC3052 падение напряжения на светодиоде равно 3 В, а ток — 60 мА,
поэтому при подключении к микроконтроллеру, возможно, придётся
использовать дополнительный транзисторный ключ.

Встроенный симистор же рассчитан на напряжение до 600 В и ток до
1 А. Этого достаточно для управления мощными бытовыми приборами через
второй силовой симистор.

Рассмотрим схему управления резистивной нагрузкой (например, лампой
накаливания).

Таким образом, эта оптопара выступает в роли драйвера
симистора.

Существуют и драйверы с детектором нуля — например, MOC3061. Они
переключаются только в начале периода, что снижает помехи в
электросети.

Резисторы R1 и R2 рассчитываются как обычно. Сопротивление же
резистора R3 определяется исходя из пикового напряжения в сети питания
и отпирающего тока силового симистора. Если взять слишком большое —
симистор не откроется, слишком маленькое — ток будет течь
напрасно. Резистор может потребоваться мощный.

Нелишним будет напомнить, что 230 В в электросети (текущий стандарт для
России, Украины и многих других стран) — это значение
действующего напряжения. Пиковое напряжение равно .

Расчет транзисторного ключа

Для понимания привожу пример расчета, можете подставить свои данные:

1) Коллектор-эмиттер — 45 В. Общая рассеиваемая мощность — 500 mw. Коллектор-эмиттер — 0,2 В. Граничная частота работы — 100 мГц. База-эмиттер — 0,9 В. Коллекторный ток — 100 мА. Статистический коэффициент передачи тока — 200.

Эти силовые элементы, представленные полупроводниками, резисторами, трансформаторами и катушками или конденсаторами, подвергаются зарядам, которые иногда могут их уничтожить. В случае нагрузок необходимо включать интенсивные токи, так что они больше не могут нормально функционировать. Эта температура чаще всего является основной причиной смерти этих компонентов, фактически пропуская ток 15 А в цепи, предусмотренной для 10 А, обязательно приведет к повышению температуры и повреждению схем и компонентов, что также может быть вызвано климатическими условиями, которые выводят из эксплуатации компоненты, поэтому военное оборудование должно выдерживать самые суровые условия, поскольку театры операций находятся в все регионы земного шара.

2) Резистор для тока 60 мА: 5-1,35-0,2 = 3,45.

3) Номинал сопротивления коллектора: 3,45\0,06=57,5 Ом.

4) Для удобства берём номинал в 62 Ом: 3,45\62=0,0556 мА.

5) Считаем ток базы: 56\200=0,28 мА (0,00028 А).

6) Сколько будет на резисторе базы: 5 — 0,9 = 4,1В.

7) Определяем сопротивление резистора базы: 4,1\0,00028 = 14,642,9 Ом.

Расчёт транзисторного ключа

Рейтинг:  5 / 5

Подробности
Категория: Практические советы
Опубликовано: 27.11.2019 13:45
Просмотров: 2425

Для транзисторного ключа не нужно рассчитывать точное значение коэффициента усиления. При слишком большом коэффициенте усиления транзистор переходит в режим ограничения тока и выходной ток будет определяться сопротивлением нагрузки. Поэтому достаточно определить только минимальный коэффициент усиления по току. Рассчитаем этот коэффициент. Пусть для индикаторной лампы требуется ток 120 мА, а цифровая микросхема может выдать ток единицы около 4 мА (этот ток определяется по справочнику или datasheet на выбранную микросхему). Тогда минимальный коэффициент усиления h21э можно определить по формуле:

h21э=Iк/Iб Iк — ток колектора Iб — ток базы В нашем случае ток коллектора равен току, протекающему через лампу, а ток базы — это максимальный допустимый выходной ток цифровой микросхемы (Iвых1). Делим 120 мА на 4 мА. Получаем минимальный коэффициент усиления по току, равный 30. То есть в данном случае подойдёт практически любой маломощный транзистор, например КТ3107

Теперь следует обратить внимание на то, что транзистор управляется током, а цифровая микросхема является генератором напряжения. В простейшем случае для преобразования напряжения в ток можно использовать резистор

Эквивалентная схема подключения базовой цепи транзистора к цифровой ТТЛ микросхеме приведена на рисунке 1. Рисунок 1 – Эквивалентная схема подключения транзисторного ключа к цифровой ТТЛ микросхеме В приведенной схеме ток базы транзистора задаёт резистор R1. Рассчитаем его сопротивление. Для этого необходимо определить падение напряжения на этом резисторе. Минимальное напряжение высокого уровня на выходе ТТЛ микросхемы при максимальном допустимом токе единицы равно 2,4 В. Падение напряжения на базовом переходе транзистора можно считать постоянным и для кремниевых транзисторов равным 0,7 В. Тогда падение напряжения на сопротивлении R1 можно определить по формуле: UR1=U1-Uб=2,4В-0,7В=1,7В . Так как к цифровому выходу подключен только транзисторный ключ, то зададимся максимально возможным током цифровой микросхемы 4 мА. Тогда по закону Ома можно определить сопротивление резистора R1 как отношение падения напряжения на этом резисторе к току, протекающему через него: R1 = 1,7В/4мА = 425 Ом . При выборе резистора из 10% шкалы можно взять резистор 510 Ом (больше чем рассчитали, чтобы не превысить допустимый ток цифровой микросхемы). При работе транзисторного ключа при комнатной температуре расчет на этом заканчивается. Если же предполагается работа транзисторного ключа при повышенных температурах, то транзистор может самопроизвольно открываться обратным током коллектора. Эквивалентная схема цепи протекания этого тока приведена на рисунке 2. Рисунок 2 – Эквивалентная схема цепи протекания обратного коллекторного тока В схеме, приведённой на рисунке 9.7, видно, что на резисторе R1 обратный ток коллектора транзистора VT1 может создать падение напряжения 0,7 В и, тем самым, открыть транзистор. Для того чтобы уменьшить падение напряжения можно параллельно этому резистору подключить еще один резистор (как показано на рисунке 3) и, тем самым, уменьшить открывающее напряжение на базе транзистора. Рисунок 3 – Эквивалентная схема шунтирования цепи протекания обратного коллекторного тока Iко транзисторного ключа резистором. В схеме, приведённой на рисунке 3, можно задаться током, протекающим через резистор R2 в режиме выдачи цифровой микросхемой единичного уровня. Пусть этот ток будет в три раза меньше базового тока транзистора. Тогда ток через резистор R2 будет равен: IR2=4 мА/3 =1,3 мА . Определим сопротивление резистора R2. Для этого воспользуемся законом Ома. Учитывая, что падение напряжения на базовом переходе транзистора является константой и равно 0,7 В. R2 = Uб/IR2 = 0,7В/1,3мА = 510 Ом В режиме выдачи цифровой микросхемой логического нуля сопротивления R1 и R2 соединяются параллельно, и в рассчитанном случае падение напряжения уменьшается вдвое. Обратите внимание, что схема на входе транзистора очень похожа на делитель напряжения, однако не является им. Если бы это был делитель напряжения, то напряжение на базе транзистора уменьшалось бы в два раза, однако на самом деле напряжение уменьшается значительно больше!

Оставлять комментарии могут только зарегистрированные пользователи

Транзистор в режиме ключа

Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:

  1. От микроконтроллера через переход «база — эмиттер».
  2. При этом канал «коллектор — эмиттер» открывается.
  3. Через канал «коллектор — эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.

Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов — около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.

Использование транзисторов в конструкциях

Нужно изучать все требования к полупроводникам, которые собираетесь использовать в конструкции

Если планируете проводить управление обмоткой электромагнитного реле, то нужно обращать внимание на его мощность. Если она высокая, то использовать миниатюрные транзисторы типа КТ315 вряд ли получится: они не смогут обеспечить ток, необходимый для питания обмотки

Поэтому рекомендуется в силовой технике применять мощные полевые транзисторы или сборки. Ток на входе у них очень маленький, зато коэффициент усиления большой.

Не стоит применять для коммутации слабых нагрузок мощные реле: это неразумно. Обязательно используйте качественные источники питания, старайтесь напряжение выбирать таким, чтобы реле работало в нормальном режиме. Если напряжение окажется слишком низким, то контакты не притянутся и не произойдет включение: величина магнитного поля окажется маленькой. Но если применить источник с большим напряжением, обмотка начнет греться, а может и вовсе выйти из строя.

Обязательно используйте в качестве буферов транзисторы малой и средней мощности при работе с микроконтроллерами, если необходимо включать мощные нагрузки. В качестве силовых устройств лучше применять MOSFET-элементы. Схема подключения к микроконтроллеру такая же, как и у биполярного элемента, но имеются небольшие отличия. Работа транзисторного ключа с использованием MOSFET-транзисторов происходит так же, как и на биполярных: сопротивление перехода может изменяться плавно, переводя элемент из открытого состояния в закрытое и обратно.

Источник

Электромагнитное реле

Реле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии.

Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают.

Интеллектуальные силовые ключи верхнего уровня с аналоговым диагностическим выходом

Семейства AUIR331x, AUIR332x, AUIPS71xx (таблица 4) являются более совершенными по сравнению с вышеописанными ключами. Они обладают самой продвинутой системой диагностики. Аналоговый выход позволяет определять не только аварийные ситуации, но и величину протекающего тока (рисунок 9). Это может быть полезно, если необходимо контролировать броски тока, когда коммутируется, к примеру, лампа освещения или емкостная нагрузка. В этом случае управляющая система сама определяет, необходимо ли защитное отключение.

Таблица 4. Интеллектуальные ключи верхнего уровня с аналоговым диагностическим выходом

Наименование Число каналов Rси вкл., мОм U вых. макс, B Защита по току Корпус Применение Особенности
Тип защиты I выкл., А
AUIR3313 1 7 40 Подстраиваемое защитное отключение 10…90 TO220-5 D2PAK-5 Автомобильные системы подогрева стекол, кресел Подстройка величины защитного тока
AUIR3314 1 12 40 Подстраиваемое защитное отключение 6…60 TO220-5 D2PAK-5 Защита от перегрева
AUIR3315 1 20 40 Подстраиваемое защитное отключение 3…30 TO220-5 D2PAK-5 Диагностический аналоговый выход
AUIR3316 1 7 40 Подстраиваемое защитное отключение 10…90 TO220-5 D2PAK-5 Свечи накаливания Защита от обратной полярности напряжения питания
AUIR3317 1 7 40 Защитное отключение 120 TO220-5 D2PAK-5 Защитная функция WAIT
AUIR3320 1 4 40 Подстраиваемое защитное отключение 10…55 D2PAK-5 Замена силовых реле Функция активного ограничения тока
AUIPS7125 1 30 65 Защитное отключение 60 DPAK-5 Диагностический аналоговый выход

Рис. 9. Диагностика состояния ключа

Ключи имеют рекордно низкие значения сопротивлений открытого ключа (всего 4 мОм у AUIR3320, 7,5 мОм у AUIPS7111). Управляющее напряжение измеряется относительно напряжения питания, что делает возможным использовать внешний транзистор, обеспечивающий дополнительную защиту управляющих схем (рисунок 10).

Степень защиты данных ключей максимально высока. Ключи имеют защиту от перегрузки по току, от перегрева, неправильной полярности питающего напряжения. Реализована функция активного ограничения тока.

Защита от обратной полярности батареи требует наличия обратного диода на входе. Если используется полевой транзистор, то будет достаточно встроенного диода. Если используется биполярный транзистор — нужен внешний диод (рисунок 10).

Рис. 10. Схема включения IPS верхнего уровня с аналоговым диагностическим выходом

Ключи AUIR331x (кроме AUIR3317) и AUIR3320 имеют программируемое значение тока защитного отключения. Величина этого тока определяется резистором обратной связи Rос (рисунок 11). Кроме того, для дополнительной гарантированной защиты от перегрева реализована защитная функция WAIT (рисунок 4б). Минусом реализации функции WAIT является ограничение использования данных ключей в ШИМ-режиме.

Рис. 11. Установка тока защитного отключения

Ключи AUIR71xx ограниченно могут применяться для ШИМ-приложений, так как не имеют функции WAIT и имеют малое собственное сопротивление. Однако стоит остерегаться использования слишком высоких значений частот, чтобы не перегреть кристалл (рисунок 4а).

IPS данного семейства, обладая низким значением сопротивления, идеально подходят для реализации внутреннего и внешнего автомобильного освещения, систем подогрева зеркал и сидений, питания активной подвески, питания электромагнитных клапанов системы впрыска топлива. Эти ключи представляют идеальную замену для реле в цепях с большими протекающими токами.

Схема

Схема ключа на полевого транзистора представлена ниже:

Резистор R1 в ней является токоограничивающим, он нужен для того, чтобы уменьшить ток, потребляемый затвором в момент открытия, без него транзистор может выйти из строя. Номинал этого резистора можно спокойно изменять в широких пределах, от 10 до 100 Ом, это не скажется на работе схемы.

Резистор R2 подтягивает затвор к истоку, тем самым уравнивая их потенциалы тогда, когда на затвор не подаётся напряжение. Без него затвор останется «висеть в воздухе» и транзистор не сможет гарантированно закрыться. Номинал этого резистора также можно менять в широких пределах – от 1 до 10 кОм.

Транзистор Т1 – полевой N-канальный транзистор. Его нужно выбирать исходя из мощности, потребляемой нагрузкой и величины управляющего напряжения. Если оно меньше 7-ти вольт, следует взять так называемый «логический» полевой транзистор, который надёжно открывает от напряжения 3.3 – 5 вольт. Их можно найти на материнских платах компьютеров. Если управляющее напряжение лежит в пределах 7-15 вольт, можно взять «обычный» полевой транзистор, например, IRF630, IRF730, IRF540 или любые другие аналогичные

При этом следует обратить внимание на такую характеристику, как сопротивление открытого канала. Транзисторы не идеальны, и даже в открытом состоянии сопротивление перехода Сток – Исток не равно нулю

Чаще всего оно составляет сотые доли Ома, что совершенно не критично при коммутации нагрузки небольшой мощности, но весьма существенно при больших токах. Поэтому, чтобы снизить падение напряжения на транзисторе и, соответственно, уменьшить его нагрев, нужно выбирать транзистор с наименьшим сопротивлением открытого канала.

«N» на схеме – какая-либо нагрузка.

Недостатком ключа на транзисторе является то, что он может работать только в цепях постоянного тока, ведь ток идёт только от Стока к Истоку.

Вспомогательная информация

Распространение Arduino, Raspberry Pi, TI MSP430 LaunchPad и других различных встраиваемых платформ разработки привело к соответствующему распространению простейшей схемы ключа/драйвера на базе биполярного NPN транзистора. Эта схема позволяет выходному выводу микроконтроллера безопасно и удобно управлять сильноточными нагрузками. На следующем рисунке изображены два стандартных применения этой схемы – управление светодиодом и реле.

Рисунок 1 – Примеры применения схемы ключа/драйвера на биполярном транзисторе

Эта схема, безусловно, имеет свои преимущества:

  • она простая и использует легкодоступные компоненты;
  • она гибкая – при выборе подходящего транзистора можно использовать широкий диапазон напряжений и токов нагрузки;
  • вы можете легко перейти на гальванически изолированную реализацию, используя оптопару вместо биполярного транзистора.

Однако она также сопряжена с риском: самоуспокоение. Она проста и широко распространена, и это может побудить нас просто взять схему, найденную в интернете, и предположить, что она будет работать.

Как обычно бывает в жизни, один размер подходит не всем. Ниже приведены важные параметры, которые необходимо учесть при разработке схемы ключа/драйвера на биполярном транзисторе:

  1. ток базы биполярного транзистора (IБ), источником которого является вывод GPIO микроконтроллера;
  2. коэффициент усиления по току биполярного транзистора в активном режиме (β);
  3. ток коллектора биполярного транзистора (IК), который также является током нагрузки.

Ниже показано визуальное представление этих параметров:

Рисунок 2 – Параметры ключа на биполярном транзисторе

IБ не должен превышать максимальный выходной ток вывода, управляющего базой. Чтобы проверить это, предположим, что на переходе база-эмиттер постоянное падение напряжения составляет 0,7 В. Это дает вам следующую формулу:

\

где VGPIO – напряжение питания для схемы ввода/вывода микросхемы (распространенные значения 5 В и 3,3 В).

Далее мы должны подтвердить, что ток коллектора 1) достаточно высок, чтобы правильно управлять нагрузкой, и 2) не настолько высок, чтобы вызвать сбой в работе нагрузки. Первым шагом является вычисление приблизительного минимального тока коллектора с использованием минимального значения коэффициента усиления по току биполярного транзистора в активной области.

\

Если он меньше, чем минимально допустимый ток нагрузки, то вы не сможете быть уверены, что схема будет работать правильно. Чтобы исправить это, увеличьте ток базы с помощью уменьшения резистора базы или выберите транзистор с более высоким β.

Следующим шагом является расчет приблизительного максимального тока коллектора с использованием максимального значения для β. Если IК,max слишком велик для вашей нагрузки, вам нужен резистор для ограничения тока коллектора. Всякий раз, когда вы заставляете IК быть меньше, чем β × IБ, вы перемещаете биполярный транзистор в область насыщения – дополнительное падение напряжения (создаваемое резистором) понижает напряжение коллектора и приводит к тому, что переход база-коллектор становится недостаточно смещен в обратном направлении для работы в активной области.

На самом деле, нецелесообразно устанавливать ток коллектора, используя формулу IК = β × IБ, потому что β очень изменчив; таким образом, вам сначала необходимо гарантировать, что транзистор имеет более чем достаточный коэффициент усиления по току, а затем вы добавляете сопротивление для ограничения IК.

Когда вы находитесь в режиме насыщения, вы предполагаете, что напряжение коллектор-эмиттер имеет фиксированное значение, называемое VКЭ,нас; для определения его величины посмотрите техническое описание на транзистор или используйте общее, но неточное значение 0,2 В. Затем вам необходимо воспользоваться законом Ома в сочетании с VCC и VКЭ,нас для расчета тока коллектора и подтверждения того, что он находится в допустимом диапазоне для вашей нагрузки.

Схема цифрового ключа на МДП-транзисторе с нагрузочным МДП-транзистором

Изобразим схему цифрового ключа на МДП-транзисторе с нагрузочным МДП-транзистором (с динамической нагрузкой) (рис. 3.19).

Отметим, что при использовании интегральной технологии такой ключ, как ни странно на первый взгляд, изготовить проще в сравнении с рассмотренным выше (ССЫЛКА), имеющим нагрузочный резистор. Транзистор Т1 называют активным, а транзисторТ2 — нагрузочным.

Вначале рассмотрим закрытое состояние ключа. При этом uвх < Uзи.nopoгl , где Uзи.nopoгl — пороговое напряжение для транзистора T1. В этом случае транзистор Т1 закрыт и через оба транзистора протекает очень малый ток (обычно не более 1 нА). При этом напряжение uси1близко к напряжению Ес, а напряжение uси1 близко к нулю.

По крайней мере очевидно, что напряжение uси2не может быть больше порогового напряжения Uзu.nopoг2 для транзистора Т2, иначе бы транзистор Т2 открылся и напряжение на нем уменьшилось.

Теперь рассмотрим открытое состояние ключа. При этом uвх> uзи.порог1. Транзистор Т1 открыт и напряжение uси1 близко к нулю, а напряжение на транзисторе Т2 близко к напряжению питания.

В рассматриваемом состоянии транзистор Т2 также открыт, при этом uзи2= uси2= Ес. Но транзисторы конструируют таким образом, чтобы удельная крутизна транзистора Т2 была намного меньше, чем удельная крутизна транзистора T1 .Именно поэтому в открытом состоянии ключа uси1 = 0 (часто это напряжение лежит в пределах 50…100 мВ). Так как удельная крутизна транзистора Т2 мала, ток, протекающий через открытый ключ, сравнительно мал.

Ключ на биполярном транзисторе. Нагрузочная прямая.

Приветствую всех снова на нашем сайте Мы продолжаем активно погружаться в нюансы работы биполярных транзисторов и сегодня мы перейдем к практическому рассмотрению одной из схем использования БТ – схеме ключа на транзисторе!

Суть схемы довольно проста и заключается в том, что как и любой переключатель, транзистор должен находиться в одном из двух состояний – открытом (включенном) и закрытом (выключенном). То есть либо транзистор пропускает ток, либо не пропускает. Давайте разбираться!

И, первым делом, давайте саму схему и рассмотрим:

Здесь у нас используется n-p-n транзистор. А вот вариант для p-n-p:

И по нашей уже устоявшейся традиции будем разбирать все аспекты работы на примере n-p-n транзистора Суть и основные принципы остаются неизменными и для p-n-p. Так что работаем с этой схемой (здесь мы добавили протекающие по цепи токи):

Как вы уже заметили, схема очень напоминает включение транзистора с общим эмиттером. И действительно именно схема с ОЭ чаще всего используется при построении ключей. Только здесь у нас добавились два резистора ( R_б и R_к ). Вот с них и начнем!

Зачем же нужен резистор в цепи базы?

Таким образом, получаем, что при 3.3 В на входе напряжение на резисторе R_б составит:

А теперь вспоминаем, что управление биполярным транзистором осуществляется изменением тока базы – а как его менять? Верно – изменяя сопротивление этого самого резистора! То есть, варьируя сопротивление резистора, мы меняем ток базы и, соответственно, этим самым вносим изменения в работу выходной цепи нашей схемы. Чуть позже мы рассмотрим практический пример для конкретных номиналов и величин и посмотрим на деле, как это работает.

Мы уже несколько раз использовали термины “транзистор открыт” и “закрыт”. Понятно, что это означает наличие, либо отсутствие коллекторного тока, но давайте рассмотрим эти понятия применительно к режимам работы транзистора. И тут все достаточно просто:

То есть при проектировании ключа на биполярном транзисторе мы преследуем цель переводить транзистор то в режим отсечки, то в режим насыщения в зависимости от управляющего сигнала на входе!

Переходим к рассмотрению коллекторной цепи разбираемой схемы. В данном резистор R_к выполняет роль нагрузки, а также ограничивает ток в цепи во избежания короткого замыкания источника питания E_ . И вот теперь пришло время вспомнить выходные характеристики, которые мы совсем недавно обсуждали

Но в данном случае выходные параметры схемы определяются помимо всего прочего еще и нагрузкой (то есть резистором R_к ). Для коллекторной цепи мы можем записать:

Этим уравнением задается так называемая нагрузочная характеристика цепи. Поскольку резистор – линейный элемент ( U_R = I_R R ), то характеристика представляет из себя прямую (которую так и называют – нагрузочная прямая). Наносим ее на выходные характеристики транзистора и получаем следующее:

Рабочая точка в данной схеме будем перемещаться по нагрузочной прямой. То есть величины U_ и I_к могут принимать только те значения, которые соответствуют точкам пересечения выходной характеристики транзистора и нагрузочной прямой. Иначе быть не может

И нам нужно обеспечить, чтобы в открытом состоянии рабочая точка оказалась в положении 1. В данном случае падение напряжения U_ на транзисторе будет минимальным, то есть почти вся полезная мощность от источника окажется на нагрузке. В закрытом же состоянии рабочая точка должна быть в положении 2. Тогда почти все напряжение упадет на транзисторе, а нагрузка будет выключена.

Теперь, когда мы разобрались с теоретическими аспектами работы ключа на транзисторе, давайте рассмотрим как же на практике производятся расчеты и выбор номиналов элементов!

Пример работы

Давайте рассмотрим более детально, как функционирует простой транзисторный ключ. Коммутируемый сигнал передаётся с одного входа и снимается с другого выхода. Чтобы запереть ключ, на затвор транзистора используют подачу напряжения, которое превышает значения истока и стока на величину, большую в 2-3 В

Но при этом следует соблюдать осторожность и не выходить за пределы допустимого диапазона. Когда ключ закрыт, то его сопротивление относительно большое — превышает 10 Ом

Такое значение получается благодаря тому, что дополнительно влияет ещё и ток обратного смещения p-n перехода. В этом же состоянии емкость между цепью переключаемого сигнала и управляющим электродом колеблется в диапазоне 3-30 пФ. А теперь откроем транзисторный ключ. Схема и практика покажут, что тогда напряжение управляющего электрода будет близиться к нулю, и сильно зависит от сопротивления нагрузки и коммутируемой характеристики напряжения. Это обусловлено целой системой взаимодействий затвора, стока и истока транзистора. Это создаёт определённые проблемы для работы в режиме прерывателя.

Поэтому остальная часть компонента изолирована. Тогда достаточно небольшой механической силы, чтобы отделить кусок олова с компонентом. Это типичный случай трансформаторов, для которых лак эмалированных проволок не был должным образом удален. Это также относится к старым окисленным компонентам.

Этот случай включает в себя компоненты, которые часто довольно тяжелые или которые вынуждены разбираться. Опора компонента через изоляционную цепь вынуждает медь печатной схемы отслаиваться, а электрическое соединение меди заканчивается. Здесь вы также должны смотреть на эту линию перпендикулярно дорожке, которая сделает тень в соответствии с освещением, которое вы примете. Никогда не нажимайте компонент на сторону меди!

В качестве решения данной проблемы были разработаны различные схемы, которые обеспечивают стабилизацию напряжения, что протекает между каналом и затвором. Причем благодаря физическим свойствам в таком качестве может использоваться даже диод. Для этого его следует включить в прямое направление запирающего напряжения. Если будет создаваться необходимая ситуация, то диод закроется, а р-n-переход откроется. Чтобы при изменении коммутируемого напряжения он оставался открытым, и сопротивление его канала не менялось, между истоком и входом ключа можно включить высокоомный резистор. А наличие конденсатора значительно ускорит процесс перезарядки емкостей.

На снимке этой старой схемы точка 1 представляет собой простое снятие меди без нарушения, тогда как для точки 2 трек сломан. Этого недостаточно, потому что влажность занимает центральное место в самой цепи, в компонентах и ​​под компонентами. Эта влажность тем более вредна, потому что текущие компоненты потребляют очень мало тока, и поэтому эти следы влаги достаточны, чтобы вызвать их сбой, создавая нежелательные искусственные электрические соединения. Мы должны «время от времени» выполнять свою работу.

Эти контуры должны быть высушены на радиаторе центрального отопления при низкой температуре в течение нескольких дней. Только после этого можно будет восстановить аккумулятор или сеть и проверить, что они работают снова. Это не будет выигрываться каждый раз, потому что определенные ссылки, созданные искусственно, могут быть фатальными для определенных компонентов. Кроме того, если схема не запускается снова, то существует вероятность разрушения компонентов.

Проводимость транзисторов

Один из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:

К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n.

Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n.