Tl431 datasheet, tl431 схема включения

Содержание

Стабилитрон-3 (подбор сопротивлений для заданного напряжения)


Подстроечный резистор R3 включён по схеме потенциометра, поэтому его можно представить как резисторы R3.1 и R3.2, последовательно соединённые с R2 и R4. На этом и строится подбор всех сопротивлений в этом калькуляторе. Да-да, именно подбор, а не расчёт, и в этом главный минус такой схемы — надо потратить больше времени, чтобы получить результат.

Инструкция:1. Задать входное и выходное напряжения Uвх, Uвых, ток нагрузки Iнагр, собственный ток стабилизатора Iстаб (1…2 мА). 2. Установить R3max и R3.1 в нули. R3.2 обнулится автоматически. 3. Подобрать такие R2 и R4, чтобы рассчитанное Uвых было близким к нужному. Используйте таблицу стандартных номиналов резисторов. 4. Для точной регулировки укажите максимальное сопротивление подстроечного резистора R3max. 5. Калькулятор выдаст диапазон регулировки (Umin, Umax) и текущее значение Uвых. Последнее можно менять, увеличив сопротивление R2.1. 6. Сопротивление R1 и мощность PR1max рассчитываются по токам Iнагр, Iстаб, Iдел и максимальному напряжению на выходе Umax. 7. Мощность PVD1min рассеивается на TL431, когда к ней подключена нагрузка (штатный режим), мощность PVD1max — когда НЕ подключена. Следите, чтобы стабилизатор и R1 не перегревались, так как без нагрузки через них течёт сумма токов Iнагр, Iстаб, Iдел. 8. При сборке схемы R3.1 и R3.2 можно заменить постоянными.

Как и раньше, делитель на двух резисторах можно рассчитать, указав значения R2 и R4 при R3max и R3.1 = 0.

Технические параметры

Свойства

Предлагаем рассмотреть максимально допустимые рабочие свойства микросхемы. Если при его применении они будут превышены, то устройство будет неминуемо выходить из строя. Длительная эксплуатация с характеристиками, которые близки к предельному значению, тоже недопустимы. Рассмотрим их подробнее:

  • Напряжение выходного типа, катодное (VКА), по отношению к анодному выводу до 37 В.
  • Вероятные токовые значения – для катодного значения непрерывного на выходе (IКА) составляет 100-150 мА, а для обратного при вхождении от 50 до 10 мА.
  • Типичный импеданс бывает от 0.22 Ом.
  • Мощность рассеиваемого типа (для различных видов упаковки) РD: 0.75 Вт (SO-8); 0,33 Вт (SOT-23); 0,5 Вт (SOT-25); 0.8 Вт (SOT-89) и 0,78 Вт (ТО-92).
  • Кристаллическая температура (ТJ) – рабочая от -40 до +70 градусов (для определенных автомобильных версий).
  • Температура хранения составляет от -65 до +155 градусов.

Рекомендуемые эксплуатационные параметры

При рабочих условиях рекомендованные значения применения стабилизатора является входное напряжение опорного типа не более 36 В, катодный ток должен быть от 1 до 100 мА, а также соблюдение режимов температуры при применении. Следует учесть, что при IКА< 5мА эта микросхема может работать нестабильно. Ниже есть электрические параметры устройства, которые замерены при температурном уровне ТА=25 градусов.

Схемы подключения

Требуется разобраться, как работает элемент на примере простой схемы стабилизации, которая состоит непосредственно из стабилитрона и 1 резистора. В катод требуется подключить положительный, а в анод минусовой полюс для запитки. Для подключения микросхемы, на ее управляющий электрод требуется подавать опорное напряжение. Если значение стабилизатора ТL получится больше 2.5 В, то стабилитрон практически сразу откроется и начинает пропускать через себя электрический ток, которым можно запитывать требуемую нагрузку. Его значение начнет расти вместе с увеличением уровня Vin. А вот ток можно определить по формуле IKA = (Vin— Vref)/R. При этом напряжение выходного типа будет стабилизовано на уровне опорного, которое не более 2.5 В и вне зависимости от подаваемого на входе Vin. Максимальное значение IKA  у стабилизатора ограничено не просто 100 мА, но и мощностью корпусного рассеивания.

Расчет параметрической стабилизационной схемы

Регулирование напряжения стабилизации

Для выстраивания схем с возможность регулирования вручную напряжения на выходе, вместо простого первого резистора устанавливают потенциометр. Номинал резистора ограничительного типа, который оказывает сопротивление току на входу, требуется рассчитать по формуле R=(VIN-VКА)/ IIN. При этом IIN = IKA+ IL. Несмотря на преимущества микросхемы, у нее есть достаточно существенный минус – малый ток в нагрузке, который она может выдержать. Для решения такой проблемы в схему требуется подключать полевые или мощные биполярные транзисторы. Примеры разных схем можно увидеть в видео.

Аналоги стабилизатора

Есть микросхемы отечественного производства, которые похожи по своим свойствам на рассматриваемую. Это линейный российский стабилизатор КР142ЕН19. Больше всего подойдут IR943N, ТL432 и LМ431. К устройствам с такой цоколевкой, но немного иными остальными электрическими характеристиками можно отнести НА17431А и КIА431. В роли замены еще можно попробовать применять АРL1431.

Схема для блоков на 15 В

Стабилитрона TL431 схема включения через блок на 15 В осуществляется при помощи одноступенчатого преобразователя. В свою очередь, модулятор подходит с емкостью на уровне 5 пФ. Резисторы применяются исключительно селективного типа. Если рассматривать модификации с триггерами, то параметр порогового напряжения не превышает 3 Вт. Точность стабилизации находится в районе 3%. Фильтры для системы подходят как открытого, так и закрытого типа.

Также важно отметить, что в цепи может устанавливаться расширитель. На сегодняшний день модели выпускаются в основном коммутируемого типа. У модификаций с трансиверами проводимость тока не превышает 4 мк

В данном случае показатель чувствительности стабилитрона колеблется в районе 30 мВ. Выходное сопротивление при этом достигает примерно 80 Ом

У модификаций с трансиверами проводимость тока не превышает 4 мк. В данном случае показатель чувствительности стабилитрона колеблется в районе 30 мВ. Выходное сопротивление при этом достигает примерно 80 Ом.

Схема включения

Разберёмся, как работает TL431, для чего посмотрим на структурную схему включения. Если действующее напряжение на входе не превышает опорное (Vref), на выходе ОУ также небольшое напряжение, поэтому транзистор закрыт. Величина тока протекающего через него невелика, не больше 1 мА. Когда напряжение действующее на входе нарастает и превышает Vref, открывается ОУ. Таким образом через транзистор начинает течь ток.

Параметрический стабилизатор

Чтобы задать напряжение, в выходной цепи стабилизатора должен находиться делитель напряжения, состоящий из двух резисторов R1 и R2. Разность потенциалов на выходе устройства при этом равна:

Uвых=Vref(R1/R2+1),

где Vref – опорное напряжение, для рассматриваемой микросхемы TL431 равно 2,5 В.

При увеличении соотношения между резисторами R1/R2 растет выходное напряжение. Зная величину напряжения действующего на выходе и задавшись значением R2, можно определить сопротивление R1:

R1=R2(Uвых/Vref–1)

Величина сопротивления R3 подбирается также, как и для устройств с стабилитроном. Устанавливать конденсатор на выходе схемы не рекомендуется, чтобы предотвратить паразитную генерацию.

Компенсационный стабилизатор

Компенсационный стабилизатор работает же, как и при использовании стабилитрона. В них для уравновешивания разницы напряжений действующих на входе и выходе используется мощный транзистор. Однако точность стабилизации в устройствах с TL431 будет выше. Здесь величина сопротивления R1 рассчитывается на наименьший ток 5 мА. R2 и R3 рассчитываются так же, как и для параметрического стабилизатора.

Рассмотренный выше стабилизатор не может работать с выходными токами равными единицам или даже десяткам ампер. Чтобы построить мощный блок питания нужно использовать усилительный каскад с двумя транзисторами, включёнными как в схеме эмиттерного повторителя.

Ниже представлена схема работы стабилизатора напряжения TL431. Здесь R2 ограничивает ток, текущий через базу VT1. Резистор R3 нужен для компенсации обратного коллекторного тока VT2. Конденсатор С1 используется для увеличения стабильности работы на больших частотах.

Стабилизатор тока

Приведём схему  стабилизатора тока на TL431. Здесь на сопротивлении R2, при помощи обратной связи, установлено напряжение 2,5 В. Тогда ток на нагрузке будет равен Iн=2,5/R2 (током базы пренебрегаем). При подстановке в данную формулу величины сопротивления в омах получим ток в амперах, а если в килоомах, ток будет в миллиамперах.

Простое зарядное устройство для литиевого аккумулятора.

Главное отличие зарядного устройства от блока питания – четкое ограничение зарядного тока. Следующая схема имеет два режима ограничения:

Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается. На следующей схеме ограничение тока осуществляют транзисторы VT1, VT2 и резисторы R1-R3. Резистор R1 выполняет функцию шунта, когда напряжение на нем превышает 0,6 В (порог открывания VT1), транзистор VT1 открывается и закрывает транзистор VT2. Из-за этого падает напряжение на базе VT3 он начинает закрываться и следовательно снижается выходное напряжение, а это ведет к снижению выходного тока. Таким образом работает обратная связь по току и его стабилизация. Когда напряжение подбирается к уровню 4,2 В в работу начинает вступать DA1 и ограничивать напряжение на выходе зарядного устройства.

Читать также: Сборка культиватора для мотоблока

А теперь список номиналов компонентов схемы:

  • DA1 – TL431C;
  • R1 – 2,2 Ом;
  • R2 – 470 Ом;
  • R3 – 100 кОм;
  • R4 – 15 кОм;
  • R5 – 22 кОм;
  • R6 – 680 Ом (нужен для подстройки выходного напряжения);
  • VT1, VT2 – BC857B;
  • VT3 – BCP68-25;
  • VT4 – BSS138.

21 thoughts on “ TL431 схема включения, TL431 цоколевка ”

К1242ЕР1АП производства «Интеграл» Минск

Я бы не называл малоточность TL431 ее недостатком, это ведь не стабилизатор, как таковой, а источник опорного напряжения для него. Применяя различную периферию можно решать различные задачи по мощности, точности, надежности и т.д. Вот, внешние цепи могут быть любыми, а управляются одним и тем же устройством — TL431. Что и делает ее такой распространенной и востребованной. Понравилась схема зарядки, где необходима регулировка и по току и по напряжению, применены и биполярный и униполярный транзисторы — каждый в своем режиме.

Да, конденсатор между анодом и катодом этого «стабилитрона» ставить не следует ни в коем случае. Я так столкнулся с самовозбуждением схемы стабилизатора напряжения, когда по неопытности решил, что с конденсатором на выходе источника опорного напряжения на TL431 схема будет работать стабильнее. Поставил конденсатор на 10 нФ, и схема «завелась», выдавая на выходе «кашу» из импульсов вместо постоянного напряжения. Что неудивительно, для операционного усилителя входящего в состав TL431 такой параметр как максимальная емкость нагрузки нужно учитывать как и для всякого другого ОУ.

Уже писал выше, что использовать источник прецизионного опорного напряжения в виде стабилизатора странно. Еще более странно, какой стабильности можно добиться емкостью в десяток нан. Стабильности задаваемого напряжения, шунтируя и устраивая паразитную ОС? Или выходного? Конечно возбудится.

А что там было о источнике опорного в виде стабилизатора? Опорное в стабилизаторе применялось в своем прямом назначении, в качестве опорного, с которым сравнивалось выходное

Производители

Из-за своих хороших параметров, надежности и дешевизны, TL431 используется в различных технических решениях. Поэтому её производством занимаются многие зарубежных компаний. Существует даже полностью переведенный datasheet tl431 на русском от Texas Instruments (TI). А вот ссылки на некоторые даташит устройств продающихся в РФ: TI, ON Semiconductor, STMicroelectronics, Nexperia, HTC Korea, NXP Semiconductors. Есть еще изготовители этих изделий, но их трудно найти в российских магазинах. К ним относятся: Unisonic Technologies, Motorola, Fairchild Semiconductor, Diodes Incorporated, HIKE Electronics, Calogic, Sangdest Microelectronic (Nanjing), SeCoS Halbleitertechnologie GmbH, Hotchip Technology, Foshan Blue Rocket Electronics и др.

Советуем изучить Информация о плановом отключении электроэнергии: где и как искать?

Схемы применения TL431

Для того, чтобы правильно подключить, важно соблюдать технику безопасности и следовать последовательности, как, например, при применении схемы подключении двухклавишного выключателя или при применении схемы подключения узо

Работа микросхемы

Извне принцип работы аппарата выделяется довольно несложно. Если подать на контакт ref напряжение, которое превышает 2 В, тогда выходной транзистор проведёт электрически ток между анодом и катодом. Ток, который идёт к микросхеме, в блоке питания в таком случае увеличивается. Это вызывает уменьшение мощности блока питания. Затем происходит уменьшение напряжения до допустимого уровня. Следовательно, для блока питания применяют TL431 с целью того, чтобы поддерживалось стабильное выходное напряжение.

Одна из самых важных частей микросхемы – источник опорного напряжения. Он эквивалентен ширине запрещённой зоны. Основные составляющие есть на фото кристалла – пространство эммитера транзистора Q5 в восемь раз превышает Q4. Так, два транзистора имеют разные реакции на температуру. Объединение выходных сигналов с транзисторов происходит посредство объединения через резисторы R4, R3 и R2 в необходимой пропорции с целью компенсации эффектов температуры. Итого, формируется стабильный опорный сигнал.

В компаратор по температуре из стабилизированной запрещённой зоны посылается напряжение. Входом компаратора служат Q9 и Q8, Q1 и Q6. Выход же компатора идёт через Q10, чтобы управлять резистором Q11 (выходной).

Схема включения и контроля напряжения TL431A

Нередко терморезистор выполняет функцию датчика температуры, уменьшая степень своего сопротивления в случае возрастания температуры. Это происходит по причине отрицательного температурного коэффициента сопротивления (ТКС). Те резисторы, у которых сопротивление увеличивается вместе с увеличением температуры (с положительным значением ТКС), имеют название позисторы. В этом терморегуляторе в случае превышения температуры заданного лимита, заработает реле или любое другое устройство с подобными функциями. Оно сразу же отключит нагрузку или включит систему охлаждения в зависимости от ситуации.

Данная схема имеет малый гистерезис, и чтобы его увеличить, нужно ввести ООС (отрицательная обратная связь) между выводами 1-3. К примеру, подстроченный резистор с сопротивлением 1.0-0.5 мОм. Надо подобрать экспериментальным путём подобрать в зависимости от требуемого гистерезиса. Если требуется, чтобы устройство срабатывало во время температурного снижения, тогда следует поменять местами регуляторы и датчик. Иначе говоря, включить в верхнее плечо термистор, а в нижнее – переменное сопротивление с самим резистором.

Схемы включения TL431

Микросхема стабилитрон TL431 может использоваться не только в схемах питания. На базе TL431 можно сконструировать всевозможные световые и звуковые сигнализаторы. При помощи таких конструкций возможно контролировать множество разнообразных параметров. Самый основной параметр — контроль напряжения.

Переведя какой-нибудь физический показатель при помощи различных датчиков в показатель напряжения, возможно изготовить прибор, отслеживающий, например, температуру, влажность, уровень жидкости в емкости, степень освещенности, давление газа и жидкости. ниже приведем несколько схем включения управляемого стабилитрона TL431.

Стабилизатор тока на TL431

Данная схема является стабилизатором тока. Резистор R2 выполняет роль шунта, на котором за счет обратной связи устанавливается напряжения 2,5 вольт. В результате этого на выходе получаем постоянный ток равный I=2,5/R2.

Индикатор повышения напряжения

Работа данного индикатора организована таким образом, что при потенциале на управляющем контакте TL431 (вывод 1) меньше 2,5В, стабилитрон TL431 заперт, через него проходит только малый ток, обычно, менее 0,4 мА. Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм.

В случае превышения потенциала, поступающего на управляющий вывод, больше 2,5 В, микросхема TL431 откроется и HL1 начнет гореть. Сопротивление R3 создает нужное ограничение тока, протекающий через HL1 и стабилитрон TL431. Максимальный ток проходящий через стабилитрон TL431 находится в районе 100 мА. Но у светодиода максимально допустимый ток составляет всего 20 мА. Поэтому в цепь светодиода необходимо добавить токоограничивающий резистор R3. Его сопротивление можно рассчитать по формуле:

Что из себя представляет микросхема TL431

Эту микросхему, разработанную в 70-х годах ХХ века, часто называют «регулируемым стабилитроном», и на схеме обозначают, как стабилитрон с двумя классическими выводами – анодом и катодом. Также имеется третий вывод, о назначении которого позже. На вид микросборка стабилитрон совсем не напоминает. Выпускается, как обычная микросхема, в нескольких вариантах корпуса. Изначально изготавливались варианты только под плату с отверстиями (true hole), с развитием SMD-технологий TL431 стали «упаковывать» и в корпуса для поверхностного монтажа, включая популярные SOT с различным количеством выводов. Минимально необходимое для работы количество ног – 3. Некоторые корпуса содержат большее количество выводов. Излишние ножки либо никуда не подключены, либо задублированы.

Описание работы

Работа микросхемы lm324n основана на функционировании внутри неё одновременно четырех ОУ. Все усилители запитываеются от одного источника питания, имеют инвертирующий, не инвертирующий входы и одни выход. Источник питания может быть однополярным или двухполярным.

Рассмотрим внутреннюю схему одного из операционных усилителей c однополярным питанием. Возьмем её прямо из даташит на LM324.

Функционально каждый операционный усилитель состоит из: дифкаскада, а так же каскадов промежуточного и выходного усиления.

Дифференциальный каскад, выполняет функции усиления разности подаваемых на вход напряжений (V+ и V) и нейтрализации синфазных сигналов. Обеспечивает высокое сопротивление на входе.

Промежуточный каскад обеспечивает балансировку операционника (установку на выходе нулевого напряжения при замкнутых входах), согласование сопротивлений дифференциального и выходного каскадов, а так же частотную коррекцию (защиту от самовозбуждения).

Выходной каскад обеспечивает низкое выходное сопротивление, требуемую мощность в нагрузке, ограничение тока и защиту при коротком замыкании.

Маркировка

Серия LM основана на интегральных микросхемах производства National Semiconductor. Приставка LM изначально означала linear monolithic (линейный, монолитный) и применялась для обозначения усилителей общего назначения (General Purpose) к которым не предъявлялись жестких требований. Цифры “324” указывают на серийный номер микросхемы. «-N», в конце серийника, обозначаются устройства, приобретенные Texas Instruments у National Semiconductor. В сентябре 2011 году National Semiconductor была передана Texas Instruments, которая не изменила приставку LM в своей продукции. Поэтому в настоящее время маркировка LM является кодом производителя Texas Instruments, но её широко используют другие производители при выпуске своих аналогов этой микросхемы.

Следует также отметить, что фирмы-производители постоянно совершенствуют свою продукцию. В настоящее время появились превосходящие по ряду функций модификации, например:  LM324K, LM324KA с внутренней защитой от электрического разряда (HBM ESD); микромощные  LP324  с током потребления 21 мкА; низковольтные LMV324, с напряжением питания от 2,7 В до 5,5 В; LPV324, изготавливаемые по технологии BiCMOS  и током потребления 9 мкА и др. Усилители с символом «А» в маркировке, например “ LM324A-N ”,  будут иметь лучшие характеристики по VIO по сравнению c другими (без «A»).

Нестандартные варианты и функциональные аналоги

Микрофотографии кристаллов TL431 трёх разных производителей в одном масштабе. Крупнейшая светлая область каждого кристалла — ёмкость частотной компенсации, крупная гребенчатая структура рядом с ней — выходной транзистор, группы «лишних» контактных площадок — технологические контакты для ступенчатой подстройки на заводе-изготовителе

Микросхемы различных производителей, выпускаемые под именем TL431 или под близкими к нему именами (KA431, TS431 и т. п.), могут существенно отличаться от оригинальной TL431 производства Texas Instruments. Иногда различия вскрываются лишь опытным путём, при испытаниях ИС в недокументированных режимах; иногда они явно декларируются в документации производителей. Так, TL431 производства Vishay отличается аномально высоким, порядка 75 дБ, коэффициентом усиления напряжения на низких частотах. Спад коэффициента усиления этой ИС начинается на отметке 100 Гц. В диапазоне частот свыше 10 кГц частотная характеристика TL431 Vishay приближается к стандарту; частота единичного усиления, около 1 МГц, совпадает со стандартной. Микросхема ШИМ-контроллера SG6105 содержит два независимых стабилизатора, заявленные как точные аналоги TL431, но их предельно допустимые IKA и UKA составляют лишь 16 В и 30 мА; точностные характеристики этих стабилизаторов заводом-изготовителем не тестируются.

Микросхема TL430 — исторический функциональный аналог TL431 с опорным напряжением 2,75 В и предельно допустимым током катода 150 мА, выпускавшийся Texas Instruments только в корпусе для монтажа в отверстия. Встроенный бандгап TL430, в отличие от одновременно выпущенной TL431, не был скомпенсирован по температуре и был менее точен; в выходном каскаде TL430 не было защитного диода. Выпускаемая в XXI веке микросхема TL432 представляет собой обычные кристаллы TL431, упакованные в корпуса для поверхностного монтажа с нестандартной цоколёвкой.

В 2015 году Texas Instruments анонсировала выпуск ATL431 — функционального аналога TL431, оптимизированного для работы в экономичных импульсных стабилизаторах. Рекомендованный минимальный ток катода ATL431 составляет всего 35 мкА против 1 мА у стандартной TL431 при тех же предельных значениях тока катода (100 мА) и напряжения анод-катод (36 В). Частота единичного усиления сдвинута вниз, до 250 кГц, чтобы подавить усиление высокочастотных помех. Совершенно иной вид имеют и графики граничных условий устойчивости: при малых токах и напряжении анод-катод 15 В схема абсолютно устойчива при любых значениях ёмкости нагрузки — при условии использования высококачественных малоиндуктивных конденсаторов. Минимальное рекомендованное сопротивление «антизвонного» резистора — 250 Ом против 1 Ом у стандартной TL431.

Помимо микросхем семейства TL431, по состоянию на 2015 год широко применялись всего лишь две интегральные схемы параллельных стабилизаторов, имеющие принципиально иную схемотехнику, опорные уровни и предельные эксплуатационные характеристики:

  • Биполярная ИС LMV431 производства Texas Instruments имеет опорное напряжение 1,24 В и способна стабилизировать напряжения до 30 В при токе катода от 80 мкА до 30 мА;
  • Низковольтная КМОП-микросхема NCP100 производства On Semiconductor имеет опорное напряжение 0,7 В и способна стабилизировать напряжения до 6 В при токе катода от 100 мкА до 20 мА.

Схемотехника устройств на LMV431 и NCP100 аналогична схемотехнике устройств на TL431.