Статус
TL072CD | TL072CDE4 | TL072CDG4 | TL072CDR | TL072CDRE4 | TL072CDRG4 | TL072CP | TL072CPE4 | TL072CPSLE | TL072CPSR | TL072CPSRE4 | TL072CPSRG4 | TL072CPWR | TL072CPWRE4 | TL072CPWRG4 | TL072ID | TL072IDE4 | TL072IDG4 | TL072IDR | TL072IDRE4 | TL072IDRG4 | TL072IP | TL072IPE4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Статус продукта | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | Снят с производства | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве |
Доступность образцов у производителя | Да | Да | Да | Нет | Нет | Нет | Нет | Нет | Нет | Нет | Нет | Нет | Нет | Нет | Нет | Да | Да | Да | Нет | Нет | Нет | Нет | Нет |
2) Генератор импульсов.
С помощью микросхемы NE555 можно генерировать достаточно стабильные импульсы. Есть схемы на транзисторах, но по мне это сложнее и труднее в настройке.
Оптимально люди подобрали частоты 140-150 Гц. R3 я установил на 68 кОм. С помощью лог. анализатора я проверил, у меня вышло 194 Гц. Можно понизить еще, будет экономичнее расход заряда.
RV1 задает скважность, а PNP транзистор Q1 (я установил SS8550) инвертирует сигнал для управления N-канальным полевым транзистором IRF740. Я пробовал ставить IRFZ44, но он, недолго поработав, сгорел, так как выход с катушки может достигать сотен Вольт
Сейчас у меня установлен FQPN10N60. Это транзистор на 600В. Выбор транзистора думаю не принципиален для такой частоты, главное чтобы выдерживал напряжение. Можно взять от 400В и выше. R5, R6 подбираем чтобы транзистор быстро мог открыться, тут повлияет емкость затвора. Я установил R5 на 100 Ом и R6 на 150 Ом.
Когда на выходе 3 NE555 низкий уровень, транзистор Q1 открыт и открыт Q3. Таким образом в катушке L1 начинает накапливаться заряд. Чем дольше транзистор будет открыт тем больше потребление тока. Нет смысла держать его открытым очень долго, так как заряда не накопится больше чем может катушка. А вот батарею это посадит, да и сам транзистор может греться.
Я намотал две катушки для сравнения.
Первая катушка 15 см 32 витка проволокой примерно 0.5 мм (взял со старого телевизора для размагничивания кинескопа).
Вторая катушка 20 см 27 витков.
Мотал на внутренней часте от пяльцы для вышивания.
Залил все это дело с помощью термоклея для пистолета.
А потом обмотал полностью изолентой.
R7 можно установить на 220 — 390 Ом на 1 Вт. Он шунтирует катушку. Для максимальной дальности советуют настроить с помощью переменного резистора на 1 кОм 3 Вт. Я не стал этого делать, установил последовательно два резистора по 120 Ом в корпусе 1210. Встречал описание что для TL072 лучше вообще выкинуть этот резистор, и поставить небольшой, на пару десятков Ом, последовательно катушке, но я не проверял.
Когда транзистор закрывается, с катушки накопленный заряд течет через R8 в измерительную часть.
D1 можно заменить на пару 1n4148. Я установил BAV99 так как они были под рукой. Эта пара диодов служит для отсечения высоковольтных импульсов прилетевших с катушки.
Datasheets
OrderNow ProductFolder Support &Community Tools &Software TechnicalDocuments TL071, TL071A, TL071BTL072, TL072A, TL072B, TL074, TL074A, TL074B, TL072M, TL074MSLOS080N – SEPTEMBER 1978 – REVISED JULY 2017 TL07xx Low-Noise JFET-Input Operational Amplifiers1 Features 3 Description The TL07xx JFET-input operational amplifiersincorporate well-matched, high-voltage JFET andbipolar transistors in a monolithic integrated circuit.The devices feature high slew rates, low-input biasand offset currents, and low offset-voltagetemperature coefficient. The low harmonic distortionand low noise make the TL07x series ideally suitedfor high-fidelity and audio pre-amplifier applications.The TL071 device has offset pins to support externalinput offset correction. 1 Low Power ConsumptionWide Common-Mode and Differential VoltageRangesLow Input Bias and Offset CurrentsOutput Short-Circuit ProtectionLow Total Harmonic Distortion: 0.003% (Typical) …
Печатные платы и детали
Усилитель собран на двух печатных платах, — на одной предварительный усилитель 34 (рис.З.), на второй усилитель мощности ЗЧ (рис.4.).
Рис. 3. Печатная плата для схемы темброблока на микросхеме LM1036N.
Рис. 4. Печатная плата для усилителя мощности на микросхеме STK436.
Все конденсаторы, применяемые в предварительном усилителе должны быть на напряжение не ниже 12V. Конденсаторы в схеме УМЗЧ на напряжение не ниже 40V.
Горчук Н. В. РК-2015-11.
Этот проект представляет собой универсальный микрофонный усилитель, предназначенный для работы с популярным двухвыводным .
Для изготовления усилителя для электретного микрофона применен двухканальный JFET операционный усилитель TL072 с низким уровнем шумов. TL072 включен как с однополярным источником питания.
Конденсаторы С1 и С2 фильтруют напряжение питания. Микрофон подключен к входу IN. Коэффициент усиления плавно регулируется PR1. Контур, состоящий из конденсатора C5 и резистора R5, отсекает постоянную составляющую на выходе OUT.
Усилитель собран на небольшой двусторонней плате размером 10×25мм.
SMD элементы установлены на обоих сторонах платы, поэтому их монтаж требует немного внимания. Монтаж следует начать с установки операционного усилителя, резистора R5 и конденсатора C1. Эти элементы монтируем с верхней стороны. Остальные конденсаторы и резисторы необходимо установить на другой стороне платы.
В последнюю очередь устанавливаем разъем, микрофон и потенциометр PR1 (дополнительные площадки позволяют использовать также и SMD потенциометр).
Усилитель должен быть запитан от качественного стабилизированного источника питания с напряжением в диапазоне 6…16 В. Потребляемый ток схемы не превышает 5 мА.
Решил послушать как звучит усилитель класса Д на IRS2092. После недолгих
поисков на Али был сделан заказ. Ради интереса «как оно звучит» для него был так же заказан и темброблок.
Так как усилитель ещё в дороге а темброблок уже пришёл то решил
сделать обзор пока на него. Как придёт усилитель сделаю обзор и на
него с замерами.
Плата пришла в конверте с пупыркой. В комплект входит сама схема и
четыре ручки на резисторы. Флюс везе отмыт пайка более менее
аккуратная. Разводка платы средняя. Регуляторы на фото — с лева на право — ВЧ, СЧ, НЧ, Громкость.
На плате установлены ОУ NE5532P
Так же на плате расположены цепи стабилизации питания (L7812 и L7912) и выпрямитель.
Можно подавать переменное напряжение с трансформатора для питания
платы.
Принципиальная схема регулятора похожа на эту
Отличаются номиналы некоторых резисторов и отсутствие некоторых проходных
конденсаторов.
Теперь самое главное — тесты.
Тестировал на этой карте
Creative Sound Blaster X-Fi Titanium PRO с небольшой доработкой — полностью за экранирована обратная сторона печатной платы, заменён выходной ОУ на OPA2134, все конденсаторы по питанию шунтированы керамикой.
АЧХ (розовым цветом — со входа на выход миную темброблок, синим цветом
— через темброблок — все регуляторы тембра в среднем положении)
Виден небольшой подъём на на низких частотах (ниже 200Гц) и завал на
высоких (выше 6кГц)
Регуляторы НЧ в крайних положениях
Регуляторы СЧ в крайних положениях
Регуляторы ВЧ в крайних положениях
КНИ «THD», правый канал идёт минуя темброблок для сравнения (с выхода карты на
вход), КНИ темброблока 0.016%, хотелось бы поменьше конечно. Пробовал ставить OPA2134 вместо родных ОУ, искажения немного снизились но незначительно, скорее всего из за не совсем правильной разводки платы.
Зависимость КНИ от частоты (правый канал идёт минуя темброблок,
розовый цвет на графике)
Темброблок не инвертирует фазу сигнала (правый канал идёт минуя темброблок,
розовый цвет на графике)
Довольно средний по качеству блок, для домашних поделок пойдёт если устраивает КНИ.
Ставить в планируемый усилить вряд ли буду из за высоких
гармонических искажений. Буду разводить плату сам, и собирать темброблок.
Надеюсь инфа была полезна.
О настройке и возможных проблемах
Рекомендованный ток покоя для этого ПУ 20-22 мА, и рассчитывается он по падению напряжения на 15-ти омных резисторах R20, R21, R40, R42. Для тока 20-22 мА на этих резисторах должно падать 300-350 мВ (300:15=20, 350:15=22). Падение напряжения, а соответственно и ток можно регулировать в ту или иную сторону изменением номинала резисторов R9, R10, R30, R31 (в оригинале схемы 51 Ом). Большему току покоя соответствует большее сопротивление резистора и наоборот. В своем варианте, вместо постоянных резисторов 51 Ом, я впаял многооборотные подстроечные номиналом 100 Ом, что позволило без лишних усилий и с высокой точностью выставлять нужный ток покоя.
Две неприятности
, с которыми может столкнуться человек, решивший повторить данный предусилитель — это возбуд, и постоянка на выходе. Причем, как правило, первая проблема порождает вторую. Сначала нужно убедиться в наличии или отсутствии постоянной составляющей на выходе каждого буфера и каждого ОУ. Допускается небольшое количество постоянки, но именно небольшое, грубо говоря не более нескольких мВ.
Если постоянки нет, я вас поздравляю! Если есть – ищем в чем причина, а причин не так уж и много. Это либо ошибка в монтаже, либо «не та» деталь, либо где-то есть возбуд. Первым делом нужно внимательно осмотреть плату на предмет непропая или наоборот – слипшихся дорожек, перепроверить все ли детали нужного номинала вы используете, и если все правильно остается третий вариант, т.е. возбуд. Для его поиска вам понадобится осциллограф.
Сам я столкнулся с этой проблемой. Во всех четырех буферах была постоянка на выходе в размере 100-150 мВ. И причиной ее возникновения оказалась как раз-таки «не та» деталь. Дело в том, что вместо операционных усилителей OPA134 у меня были установлены NE5534, которые не совсем подходят для применения в этой схеме. Долго и безуспешно я боролся с этой проблемой, а проблема исчезла сама собой после замены ОУ на OPA134.
Сообщества › Кулибин Club › Блог › Самодельный усилитель для сабвуфера.
Всем привет, сегодня я хочу рассказать о самостоятельной постройке простого и бюджетного усилителя низких частот, предназначенного для работы с сабвуфером. Корпус хотел сделать компактным и без D-класса тут не обошлось. За основу взял проверенную и надёжную схему усилителя Алексея Королькова «Палник». Схема простая, при отсутствии ошибок в монтаже заводится с первого раза.
Прежде чем собирать, я стал искать необходимые детали для усилителя, и чтобы не переплачивать барыгам, решил комплектующие заказать из Китая через известный сайт. Меньше чем через месяц мне приходит вот такая коробка, набитая разными деталями, разложил их, посчитал, китайцы не доложили 2 транзистора, но ничего страшного, остальное было все в полном объёме.
Далее намотал силовые дроссели. Ну и напоследок изготовил выходной дроссель, без которого усилитель не сможет работать. Его также рассчитывал в программе и мотал на Ш-образном сердечника с зазором.
Проектирование и сборка печатной платы заняли у меня больше всего времени, я решил все элементы усилителя расположить на одной плате, как в заводских автоусилителях. Сложные элементы замерил штангель-циркулем и нарисовал в программе Sprint-Layot, потом скомпоновал элементы на плате и развел дорожки. На плате размером 130* 200мм удалось разместить преобразователь напряжения 12-2*55В, усилитель, фильтр и блок защит. Далее рисунок платы распечатал на лазерном принтере и перенес горячим утюгом на зачищенную медную поверхность текстолита. Смыл бумагу водой, плату вытравил в подогретом растворе хлорного железа, просверлил отверстия и все, плата готова.
О микросхемах для РГ
Интересно проявили себя микросхемы. Если менять по одной – звук на слух не меняется. Но если менять одновременно все четыре микросхемы, то ясно чувствуется разница в звучании. NJM4558, -4556 дают отвратительное звучание. TL072 чуть получше. NE5532 еще лучше, но все эти микросхемы слушать тяжело.
Более-менее ровный и качественный звук дают NJM4580, но и эту микросхему лучше не использовать. Совсем другое дело – ОУ LM4562 – самый качественный звук из имеющихся у меня ОУ.
Звук явно более чистый. Но эти ОУ и подороже. Слушая их даже не верится, что может быть ОУ с еще лучшим звуком, да и представляется, что и незачем более лучший ОУ, ведь даже с этой микросхемой все упирается в качество фонограммы.
У меня из сотни дисков СД только 3-4 % обладают приемлемым для оценки аппаратуры качеством. Все остальные СД имеют грязь. И где брать качественные СД? В Интернете во Флаке ничего качественного не слышал.
Кроме самого звука вторым критерием качества, видимо, является правильная передача пространства. Например в начале песни «Зима» Ю. Лозы звук поземки на LM4562 слышится ниже подбородка – можно представить что поземка под ногами. Здорово слушается, очень красиво.
Другие микросхемы дают звук поземки где-то под носом – уже не то. Так что в предлагаемом РТ ОУ рекомендую только LM4562. Этим методом можно проверять и наушники. Отбраковка наушников очень большая. Особых требований к переменным резисторам нет.
Те, что недорогие с Алиэкспресса вполне достаточны. Обусловлено это тем, что в среднем положении резистивный слой и бегунок вообще не участвуют в передаче сигнала. Характеристика переменных резисторов безразлична, так как глубина регулировки тембра небольшая.
Приводить типы использованных резисторов и конденсаторов нет смысла – все они б/у среднего качества, но чем качественнее Вы примените свои детали, тем, видимо, будет лучше.
О качестве радиоэлементов много написано в Интернете – тут я не советчик. Но именно дорогие аудиофильские детали не требуются.
Этим схема и хороша. Вероятно даже применение SMD компонентов в простых устройствах будет оправдано именно в данной схеме.
Приводить печатную плату то же нет смысла – ведь РТ вставляется внутрь устройства по месту. Это место и определяет компоновку, а из фотографий разводка предлагаемой платы итак ясна.
Рис. 12. Вид на монтаж радиоэлементов регулятора тембра (РТ).
Рис. 13. Вид на монтаж радиоэлементов РТ – 2.
Маленькие индуктивности развязки по питанию микросхем (L1… L4, рис. 3, 11) поставлены исходя из единственного условия (их номинал мне даже неизвестен) – минимального сопротивления, чтобы не терять напряжение питания (здесь 0,2 Ома).
То есть чтобы было минимальное падение напряжения на этих индуктивностях. Ведь питание ±12 В снижать-то нежелательно. По этой же причине не поставлены последовательные стабилизаторы напряжения – на них будет большое падение напряжения и получится в лучшем случае ±10 В. А это маловато для микросхем.
Поэтому точка нуля питания жестко стабилизируется стабилитронами D1, D2 с резисторами R51, R52 (параллельно питанию (рис.11). В процессе работы они потребляют приличный ток, греются.
Но зато нет никакого падения напряжения, как было бы на последовательных стабилизаторах. И еще в этом случае в устройстве пришлось поставить несколько завышенные емкости.
Если питание было бы трехпроводное (- 12 В, 0, + 12 В) и хорошо стабилизированное, то емкости на микросхемах (1000 мкФ) можно значительно уменьшить
Важно отметить, что иногда в статьях пишут, о необходимости соединять емкостью вывод + и – питания микросхемы
Этого делать нельзя. Только на землю и + и – через свой конденсатор. Естественно электролитический конденсатор должен быть в параллели с пленочным или керамическим. Ну и рекомендуют в фильтрах для импульсных блоков питания ставить параллельно керамические и пленочные конденсаторы (как на рис.11).
Конструкция самодельного усилителя
Это, пожалуй, был самый сложный момент в изготовлении, так как подходящего готового корпуса не нашлось и пришлось выдумывать возможные варианты:-)) Чтобы не лепить кучу отдельных радиаторов, решил использовать корпус-радиатор от автомобильного 4-канального усилителя, довольно больших размеров, примерно такой:
Все «внутренности» были, естественно, извлечены и компоновка получилась примерно такой (к сожалению фотографию соответствующую не сделал):
— как видно, в эту крышку-радиатор установились шесть плат оконечных УМЗЧ и плата предварительного усилителя-темброблока. Плата блока фильтров уже не влезла, поэтому была закреплена на добавленной затем конструкции из алюминиевого уголка (её видно на рисунках). Также, в этом «каркасе» были установлены трансформаторы, выпрямители и фильтры блоков питания.
Вид (спереди) со всеми переключателями и регуляторами получился такой:
Вид сзади, с колодками выходов на динамики и блоком предохранителей (поскольку никакие схемы электронной защиты не делались из-за недостатка места в конструкции и чтобы не усложнять схему):
В последующем каркас из уголка предполагается, конечно, закрыть декоративными панелями для придания изделию более «товарного» вида, но делать это будет уже сам «заказчик», по своему личному вкусу. А в целом, по качеству и мощности звучания, конструкция получилась вполне себе приличная. Автор материала: Андрей Барышев (специально для сайта сайт
).
Во многих современных аудиосистемах, будь то музыкальный центр, домашний кинотеатр или даже портативная колонка для телефона имеется эквалайзер, или, иначе говоря, темброблок. С его помощью можно регулировать АЧХ сигнала, т.е. менять количество высоких или низких частот в сигнале. Темброблоки существуют активные, построенные, в чаще всего, на микросхемах. Они требуют наличия питания, зато не ослабляют уровень сигнала. Другая разновидность темброблоков – пассивные, они слегка ослабляют общий уровень сигнала, зато не требуют питания и не вносят никаких дополнительных искажений в сигнал. Именно поэтому в высококачественной звуковой аппаратуре используются, чаще всего, именно пассивные темброблоки. В этой статье рассмотрим, как сделать простой 2-х полосный темброблок. Его можно совместить с самодельным усилителем, либо же использовать как отдельное устройство.
О схеме и деталях
предварительному усилителю
Потом обратил внимание на схему знаменитого предусилителя Солнцева, и уже во время поиска информации по ПУ Солнцева наткнулся на схему, напоминающую солнцевскую в связке с пассивным РТ Матюшкина. Это была
Это было как раз то, что мне надо!
Немного упростив схему предусилителя и, доработав ее под себя, получил вот такой результат. Переход на одноэтажное питание и удаление «лишних» деталей позволило несколько упростить разводку платы, сделать ее односторонней и главное немного уменьшить размеры ПП. В схеме ничего существенного не менял, что могло бы ухудшить качество звука, только убрал ненужные мне функции обхода регулятора тембра, баланса и блок тонкомпенсации.
В схему регулятора тембра
ничего своего не вносил, но все равно понадобилось разводить плату заново, т.к. не нашел в интернете готовую одностороннюю печатку нужного мне размера. Коммутация режимов темброблока сделана на отечественных реле РЭС-47. Для того, чтобы сделать нужное мне управление регулятором тембра и предусилителем на несколько дней погрузился в теорию принципов работы счетчиков и триггеров отечественных микросхем. Для предусилителя выбрал корпус от спутникового ресивера, отжившего свое, в котором имелось довольно большое окошко, и его нужно было заполнить чем-то красивым и полезным. Так вот, захотелось мне сделать так, чтобы была визуальная информация о режимах регулятора тембра, и лучше, если это будут не светодиоды, а привычные глазу и мозгу цифры. В результате нарисовалась такая схема из трех МС.К561ЛЕ5 задает импульсы, которые поступают на входы К174ИЕ4 и К561ИЕ9А. Счетчик на ИЕ9 управляет 4-мя ключами, переключающими реле на РТ Матюшкина. Одновременно с этим счетчик на ИЕ4 меняет показания на семисегментном индикаторе АЛС335Б1, указывая, в каком режиме находится регулятор тембра в данный момент. Цифра «0» соответствует режиму с минимальным уровнем низких частот, цифра «3» – максимальным. Еще один простой электронный переключатель выполнен на МС К155ТМ2. Одна половина микросхемы управляет релюшкой, переключающей режимы индикатора уровня сигнала, вторая половина отвечает за реле селектора входов. Ну, и типовая схема индикатора уровня сигнала на МС LM3915 отдельно для каждого канала.
Блок питания
сделан на базе трансформатора ТП-30, разумеется с перемотанной под нужные напряжения вторичной обмоткой. Все напряжения стабилизированные: +/- 15В — на / LM337 для питания платы предусилителя+9В на 7805 для питания реле и блока управления+5В опять же на для питания USB звуковой карты
Шаг 4: Делаем корпус
Скорее всего, вы захотите установить потенциометры на одной стороне коробки. Я использовал пластиковый корпус по размеру моей платы. Просверлил четыре отверстия спереди, чтобы просунуть через них оси потенциометра, которые затягиваются на небольшой пластиковой детали внутри корпуса.
Темброблок используется для выравнивания Амплитудно-Частотной Характеристики (АЧХ) усилителей низкой частоты. Так как многие УНЧ обладают нелинейной характеристикой в различных диапазонах частот: в диапазоне низких и высоких частот коэффициент усиления значительно хуже, чем в средне-частотном интервале. Поэтому для высококачественного звуковоспроизведения имеет смысл использовать специальные модули — «темброблоки», с помощью которых можно регулировать аудио сигнал по всему спектру диапазона.
По своей сути это фильтры СЧ диапазона, управляющие глубиной среза в заданной области частот не трогая НЧ и ВЧ частоты и поэтому АЧХ усилителя выравнивается, но при этом немного снижается амплитуда входного сигнала, и может потребоваться дополнительное усиление. Таким образом модули настройки тембра можно условно разделить на два класса: пассивные (только регулировка АЧХ) и активные (регулировка АЧХ + усилительный каскад для компенсации)
Это конструкция темброблока ослабляет сигнал в диапазоне средних частот где-то в 10 раз, и поэтому ее размещают между двумя усилителями — предварительным и оконечным.
Подбор радиокомпонентов зависит от сопротивления источника сигнала Rc и нагрузки Rн (входное сопротивление следующего усилительного каскада). Осуществим расчет номиналов радиоэлементов: Переменные резисторы всегда берут одинаковые с условием:
R c
Остальные компоненты вычисляются по упрощенным формулам:
R1= R4= 0.1R; R3= 0.01R; C3= 0.1/R; C1= 22C3; C2= 220C3; C4= 15C3
Транзистор в устройстве используется для компенсации потери сигнала. К нему особых требований не предъявляется можно взять даже морально устаревший КТ315.
Хочу сразу сказать, что данный регулятор тембра может смело посоревноваться с теми, что используются в современной аудиотехнике, его схема была скопирована из какого-то радиолюбительского журнала, но теперь уже не вспомню какого именно. Одно точно могу сказать этой конструкцией темброблока доволен как слон
Внешний вид радиолюбительской конструкции и размещение компонентов на печатной плате, смотри на рисунке вверху страницы
Здесь приводятся схемы пассивных тембров известных мировых брендов гитарной электроники, такими как Fender, Marshall и VOX. От самых простых с одним регулятором до более сложных трехполосных.
VOX AC30
Такая простейшая конструкция позволяет осуществлять только завал высоких частот. Она применяется в простейших ламповых комбо.
Fender Princeton
С помощью схемы темброблока Fender Princeton можно производить как подъем так и завал высоких частот.
Marshall 18 Watt
Данным темброблоком можно настраивать подъм в область низких и высоких частот.
VOX Top Boost
Данный тембр регулирует как высокие так и низкие частоты.
Ниже приведены несколько известных схем темброблоков — двухполюсников: Fender «BrownFace» Bandmaster 6G7, Ampeg SVT, Marshall JMC800 Mod.2001
Из этой троицы тембров каждый индивидуален и хорош по своему. На каком остоновиться вам и сделать окончательный выбор однозначного ответа не существует. Тут уж сами, экспериментируйте, схемы не сложные и легко повторяются навесным монтажом или на макетной плате.
Для чистоты статьи приведу также схемы трехполосных темброблоков. ИМХО самых популярных среди всех радиолюбителей.
Эти брендовые гитарные конструкции позволяют регулировать низкие, средние и высокие частоты. Marshall дает более утяжеленный звук чем темброблок фирмы Fender. Ниже приводятся номиналы радиокомпонентов в различных вариатах этих схем.
Корпус / Упаковка / Маркировка
TL072CD | TL072CDE4 | TL072CDG4 | TL072CDR | TL072CDRE4 | TL072CDRG4 | TL072CP | TL072CPE4 | TL072CPSLE | TL072CPSR | TL072CPSRE4 | TL072CPSRG4 | TL072CPWR | TL072CPWRE4 | TL072CPWRG4 | TL072ID | TL072IDE4 | TL072IDG4 | TL072IDR | TL072IDRE4 | TL072IDRG4 | TL072IP | TL072IPE4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pin | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Package Type | D | D | D | D | D | D | P | P | PS | PS | PS | PS | PW | PW | PW | D | D | D | D | D | D | P | P |
Industry STD Term | SOIC | SOIC | SOIC | SOIC | SOIC | SOIC | PDIP | PDIP | SOP | SOP | SOP | SOP | TSSOP | TSSOP | TSSOP | SOIC | SOIC | SOIC | SOIC | SOIC | SOIC | PDIP | PDIP |
JEDEC Code | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDIP-T | R-PDIP-T | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDIP-T | R-PDIP-T |
Package QTY | 75 | 75 | 75 | 2500 | 2500 | 2500 | 50 | 50 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 75 | 75 | 75 | 2500 | 2500 | 2500 | 50 | 50 | |
Carrier | TUBE | TUBE | TUBE | LARGE T&R | LARGE T&R | LARGE T&R | TUBE | TUBE | LARGE T&R | LARGE T&R | LARGE T&R | LARGE T&R | LARGE T&R | LARGE T&R | TUBE | TUBE | TUBE | LARGE T&R | LARGE T&R | LARGE T&R | TUBE | TUBE | |
Маркировка | TL072C | TL072C | TL072C | TL072C | TL072C | TL072C | TL072CP | TL072CP | T072 | T072 | T072 | T072 | T072 | T072 | TL072I | TL072I | TL072I | TL072I | TL072I | TL072I | TL072IP | TL072IP | |
Width (мм) | 3.91 | 3.91 | 3.91 | 3.91 | 3.91 | 3.91 | 6.35 | 6.35 | 5.3 | 5.3 | 5.3 | 5.3 | 4.4 | 4.4 | 4.4 | 3.91 | 3.91 | 3.91 | 3.91 | 3.91 | 3.91 | 6.35 | 6.35 |
Length (мм) | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 9.81 | 9.81 | 6.2 | 6.2 | 6.2 | 6.2 | 3 | 3 | 3 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 9.81 | 9.81 |
Thickness (мм) | 1.58 | 1.58 | 1.58 | 1.58 | 1.58 | 1.58 | 3.9 | 3.9 | 1.95 | 1.95 | 1.95 | 1.95 | 1 | 1 | 1 | 1.58 | 1.58 | 1.58 | 1.58 | 1.58 | 1.58 | 3.9 | 3.9 |
Pitch (мм) | 1.27 | 1.27 | 1.27 | 1.27 | 1.27 | 1.27 | 2.54 | 2.54 | 1.27 | 1.27 | 1.27 | 1.27 | 0.65 | 0.65 | 0.65 | 1.27 | 1.27 | 1.27 | 1.27 | 1.27 | 1.27 | 2.54 | 2.54 |
Max Height (мм) | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 | 5.08 | 5.08 | 2 | 2 | 2 | 2 | 1.2 | 1.2 | 1.2 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 | 5.08 | 5.08 |
Mechanical Data |
СТЕРЕО УСИЛИТЕЛЬ С САБВУФЕРОМ И ФНЧ
Представленный самодельный усилитель работает в стандарте 2+1 (стерео + сабвуфер). Он изготовлен на основе популярной (и главное дешёвой) микросхемы TDA2050, что дает выходную мощность около 30 Вт на канал с сопротивлением нагрузки АС 4 Ома и питании +/-22В. Схема подходит для работы с любым стандартным источником аудио сигнала: mp3-плеер, смартфон или компьютер, так как оснащена предусилителем с регулировками тембра. Сигнал на сабвуфер формируется через низкочастотный активный фильтр второго порядка. Составляющие сигнала выше 200 Гц обрезаются, после чего сигнал поступает на усилитель мощности НЧ. Схема может питаться напряжением не более +/-25 В.
Application Notes
-
Understanding Operational Amplifier Specifications
PDF, 273 Кб, Файл опубликован: 13 июл 1998Selecting the right operational amplifier for a specific application requires you to have your design goals clearly in mind along with a firm understanding of what the published specifications mean. This paper addresses the issue of understanding data sheet specifications.This paper begins with background information. First introductory topics on the basic principles of amplifiers are presen
-
Stability Analysis Of Voltage-Feedback Op Amps Including Compensation Technique (Rev. A)
PDF, 197 Кб, Версия: A, Файл опубликован: 12 мар 2001This report presents an analysis of the stability of voltage-feedback operational amplifiers (op amps) using circuit performance as the criteria to attain a successful design. It discusses several compensation techniques for op amps with and without internal compensation.