Глава 2 . электрические станции и их назначение

Основное оборудование электростанций

В целом, электростанция – это смешанное предприятие, которое состоит из комплекса сооружений и зданий со сложным оборудованием.

Некоторые агрегаты и установки, входящие в состав станции, могут размещаться непосредственно под открытым небом, на определённой, огражденной и охраняемой территории. К примеру, ветрогенераторы, ветроэлектростанции.

Электростанции, в зависимости от типа, оборудуются:

  • генераторами;
  • турбинами;
  • котлами;
  • трансформаторами;
  • распределительными устройствами;
  • двигателями;
  • линиями электропередач;
  • выключателями, разъединителями;
  • компенсаторами, средствами автоматики и защиты.

Характеристики и состав систем электроснабжения

Трехфазная система электроснабжения – это довольно сложный конгломерат, в который входит множество различных понятий, огромная ответственность и большое число электрических установок.

Что входит в состав СЭС?

  • Трансформаторные подстанции.
  • Групповые и распределительные сети.
  • Питающие линии.
  • Главный, распределительный и групповой щит.

Во время построения данных систем применяется исключительно высококачественное и надёжное оборудование.

Характеристики данных систем:

  • Условия функционирования. Относится это к окружающей среде. Входят сюда экономические и технические условия.
  • Количественные. Это число приёмников электрической энергии и их территориальное местоположение.
  • Качественные. С их помощью определяется работоспособность самой системы. Также они характеризуются структурой и свойствами СЭС.

Атомные электростанции с трехконтурным реактором:

Трехконтурная схема используется на атомных электростанциях с реакторами типа БН («быстрый натриевый»). Работа таких реакторов основана на быстрых нейтронах, в качестве теплоносителя используется радиоактивный жидкий натрий. Для исключения его контакта с водой в конструкции реактора предусмотрен дополнительный контур, в котором используется натрий без радиоактивных свойств; это обеспечивает трехконтурный тип схемы.

Современный 3-контурный реактор БН-800, разработанный в 80-х – 90-х годах прошлого столетия, обеспечил России передовые позиции в области производства быстрых реакторов. Его ключевой особенностью является защищенность от воздействий, проистекающих изнутри или извне. В этой модели сведен к минимуму риск возникновения аварии, при которой расплавляется активная зона и в ходе переработки облученного ядерного топлива выделяется плутоний.

В рассматриваемом реакторе могут применяться различные виды топлива — обычные с окисью урана или МОКС-топливо на основе урана и плутония. Использование последнего приносит ряд преимуществ: во-первых, в этом случае могут быть использованы запасы энергетического плутония, во-вторых, появляется возможность утилизации оружейного плутония и сжигания изотопов актиноидов, содержащихся в облученном топливе тепловых реакторов и являющихся долгоживущими.

Показатель электрической мощности модели — 880 мегаватт, тепловой мощности — 2100 мегаватт.

Важные аспекты

Применение энергии солнца оправдано только в тех климатических условиях, где слишком высока стоимость одного киловатта. К примеру, это северные районы России.

В России средняя цена на солнечные батареи мощностью 100 Вт составляет 5-6 тысяч рублей, мощностью в 200 Вт – около десяти тысяч рублей руб. Минимальная цена одного ватта электроэнергии, получаемой от солнечных батарей, находится в пределах 55-60 рублей. В основе многих энергетических систем используется солнечный коллектор. Он поглощает световую энергию Солнца, преобразует ее в тепло, которое подается теплоносителю (жидкости или воздуху) и далее применяется для обогрева жилых зданий, нагревания воды, производства электричества, просушивания сельскохозяйственных товаров либо приготовления пищи.

Реактор ВВЭР-1200

Флагманский продукт энергетического решения в составе интегрированного предложения Росатома – эволюционный реакторный дизайн ВВЭР-1200. Он был разработан на основе вариантов реактора ВВЭР-1000, которые строились для зарубежных заказчиков в 1990-е и 2000-е годы: АЭС «Бушер» (Иран), АЭС «Кунданкулам» (Индия), АЭС «Тяньвань» (Китай). Каждый параметр реактора постарались улучшить, а так же внедрить ряд дополнительных систем безопасности, позволяющих снизить вероятность выхода радиации при любых авариях и их сочетаниях за пределы герметичного реакторного отделения – контейнмента. 

В итоге ВВЭР-1200 отличается повышенной на 20% мощностью при сопоставимых с ВВЭР-1000 размерах оборудования, сроком службы в 60 лет, возможностью маневра мощностью в интересах энергосистемы, высоким КИУМ (90%), возможностью работать 18 месяцев без перегрузки топлива и другими улучшенными удельными показателями.

Научный руководитель проекта – РНЦ «Курчатовский институт» (г. Москва); разработчик — ОКБ «Гидропресс» (г. Подольск), основной изготовитель – «Атоммаш» (г. Волгодонск). 

Проект предусматривает выгорание топлива до 70 МВт•сут/кгU. Сейсмика (SL-2) —  ≤ 0,3 g. В качестве опций возможно использование тихоходной турбины и маневренного блока (диапазон 100-50-100). 

Довольно много переделок коснулось внутренних элементов реактора (шахты, выгородки, блока защитных труб, датчиков и т.д.), как в целях  предотвращения различных аварий, так и для обеспечения 60-летнего срока службы. В перспективе возможно использование МОКС-топлива.

В технологии ВВЭР используется двухконтурная ядерная паропроизводящая корпусная установка с реактором на тепловых нейтронах, в котором теплоносителем и замедлителем является обычная вода под давлением. Конструкция включает в себя четыре петли охлаждения с парогенератором, главным циркуляционным насосом (ГЦН), компенсатор давления, сбросная и аварийная арматура на паропроводах, емкости системы аварийного охлаждения активной зоны (САОЗ) реактора. Таким образом, ВВЭР-1200 сочетает в себе надежность давно проверенных инженерных решений с комплексом активных и пассивных систем безопасности, доработанных с учетом «постфукусимских» требований.

Технические решения, используемые в ВВЭР-1200 – такие как бассейн выдержки отработанного топлива внутри контайнмента, фильтры на выходе из межоболочного вентилируемого пространства, уникальная «ловушка расплава» с жертвенным материалом, не имеющая аналогов пассивная система отвода тепла, – позволяют называть его реакторной установкой поколения III+. 

Интересны проектные решения системы САОЗ. Это емкости с холодной борной кислотой под давлением. В случае разрыва корпуса или трубопроводов они обеспечивают ввод борной кислоты в реактор, глуша его и обеспечивая охлаждение. Применение этой, а также других систем в комплексе гарантирует высокий уровень внутренней безопасности реакторной установки.

Первый энергоблок с реактором ВВЭР-1200 – энергоблок №6 Нововоронежской АЭС-2 – был включен в энергосистему России в августе 2016 года. Энергоблоки поколения III+ в настоящее время сооружаются в США, Франции и других странах, однако именно шестой энергоблок Нововоронежской АЭС стал первым в мире блоком последнего поколения, который вышел на этап физического пуска и опытно-промышленную эксплуатацию. Там же строится ещё один аналогичный блок. 

ВВЭР-1200 также используется на площадке Ленинградской АЭС-2 (энергоблок №5 ЛАЭС уже построен) и на Белорусской АЭС (близ г. Островец Гродненской области). Генеральным подрядчиком сооружения всех этих новых энергоблоков является Группа компаний ASE.

Справочно:

В свое время идея реактора ВВЭР была предложена в Курчатовском институте С.М. Фейнбергом. Работы над проектом начались в 1954 году, в 1955 году ОКБ «Гидропресс» приступило к его разработке. Научное руководство осуществляли И.В. Курчатов и А.П. Александров. Общее название реакторов этого типа в других странах –  PWR, они являются основой мировой мирной ядерной энергетики. Первая станция с таким реактором была запущена в США в 1957 году (АЭС «Шиппингпорт»). Первый советский ВВЭР (модификации ВВЭР-210) был введен в эксплуатацию в 1964 году на энергоблоке №1 Нововоронежской АЭС. Первой зарубежной станцией с реактором ВВЭР стала введённая в работу в 1966 году АЭС «Райнсберг» (ГДР, позже – Федеративная республика Германия).

Солнечные батареи

Рассуждая над тем, какие виды электростанций существуют в нашей стране, нельзя оставить без внимания альтернативные установки для получения электрической энергии.

Солнце – это не только источник тепла и света, благодаря ему применяют многие другие виды энергии (например, нефть, вода, уголь, ветер).

Использование солнечных батарей в северных регионах страны не настолько выгодно, чем в теплых районах. И все-таки, многие жители Российской Федерации стараются использовать альтернативную энергетику. Для принятия правильного решения по поводу результативного применения альтернативного источника энергии необходимо задуматься о стоимости солнечных батарей на отечественном рынке. Трудно назвать точную цену одного киловатта, генерируемого солнечным коллектором.

Сегодня в России 1 ватт электрической энергии, полученной солнечными батареями, имеет намного более высокую цену, чем то же количество энергии, получаемое из традиционных источников.

Области использования солнечных коллекторов

Они востребованы там, где предполагается применение тепла. Технология производства солнечных коллекторов была создана в 1908 году. Уильям Бейли из компании Carnegie Steel Company разработал коллектор со специальным изолированным корпусом и медными трубками. Любой солнечный коллектор скапливает энергию в трубках и металлических пластинах, установленных на крыше здания. Для максимального поглощения радиации трубки выкрашены в черный цвет. Они располагаются в стеклянном либо пластмассовом корпусе, слегка наклонены к югу, чтобы в полной мере поглощать солнечный свет.

Коллектор можно представить в качестве небольшой теплицы, аккумулирующей тепло под стеклянной панелью. Так как солнечная радиация распределена равномерно по поверхности, коллектор должен обладать большой площадью. Солнечные коллекторы могут обеспечивать хозяйство горячей водой для стирки, мытья и приготовления пищи, либо использоваться для предварительного нагрева воды для существующих водонагревателей.

Краткая характеристика ТЭС

Принципиальная схема предполагает передачу тепла от теплоносителя на турбину, в результате чего тепловая энергия превращается в электрическую форму. Такие виды электростанций предусматривают наличие системы охлаждения отработанного теплоносителя, чтобы можно было установить температурный показатель, необходимый для осуществления повторного цикла. Для этого тепло отработанного теплоносителя применяется для нагрева воды в домах населенного пункта, располагающегося вблизи ТЭС.

Основным оборудованием таких станций является котел-парогенератор, конденсатор цикла, генератор, циркуляционный насос, турбина. Основные виды электростанций превращают механическую энергию в электрическую, подавая часть пара в централизованные тепловые магистрали.

Классификация систем электроснабжения

Системы электроснабжения для разных потребителей выглядят по-разному. Для промышленных объектов это более мощная система, для коммунальных и жилищных предприятий – более простая, с меньшей мощностью и количеством составляющих.

Классификация систем может осуществляться в зависимости от типа источника питания, конфигурации, роду и частоте тока, назначению и мобильности, а также по количеству фаз.

  • По типу источника выделяют дизель-генераторные, электрохимические, атомные.
  • По конфигурации системы могут быть централизованными, децентрализованными, а также комбинированными. Конфигурация – это особая схема включения в систему источников энергии, устройств ее распределения и передачи, то есть схема включения всех элементов системы.
  • По роду и частоте тока выделяют системы постоянного и переменного тока с нормальной частотой 50 Гц и более высокочастотные системы.
  • По назначению выделяют системы автономного, резервного и аварийного потребления.
  • По мобильности – стационарные, носимые, перевозимые, комбинированные.
  • По количеству фаз – одно- и многофазные системы.

Это упрощенная классификация систем электроснабжения, в реальности они делятся на категории по многим другим признакам.

Все системы электрообеспечения жилых домов и коммунальных предприятий также можно разделить на три основные категории:

  • К первой из них относятся системы бытового электроснабжения. Такие системы предусматривают работу с сетью, номинальное напряжение которой составляет 220/380 В. Это самые распространенные системы, которые установлены во всех жилых домах и общественных заведениях. В основе конфигурации – розеточная сеть и освещение, а также оборудование с малым потреблением электроэнергии.
  • Вторая категория – системы аварийного электроснабжения. В их состав входят генераторы и бесперебойные источники питания. Такие системы действуют в качестве резервных при авариях на основных.
  • Последняя категория – автономное электрообеспечение. В настоящее время такая система электроснабжения набирает популярность. В составе используются солнечные батареи, тепловые аккумуляторы или ветряные электростанции.

Автономная система электроснабжения очень выгодна для частных домов, в которых потребляемая энергия небольшая, а мощность всех нагрузок не превышает нескольких кВт. В этом случае создать автономную систему электроснабжения выгоднее, чем подключаться к основной сети.

Автономная система позволяет сэкономить на подключении, кроме того, владелец больше не зависит от цен на электроэнергию, а также сможет вырабатывать ровно столько электроэнергии, сколько ему необходимо.

На выставке «Электро», проходящей в Москве, постоянно представлены электрические машины нового поколения, которые используются в современных системах энергоснабжения.

Системы автономного электроснабженияРелейная защита и автоматика систем электроснабженияСолнечные системы электроснабжения

Оборудование электрических станций

Основным оборудованием на электростанции являются:

Электрогенератор – это электрическая машина, которая применяется на электростанциях для преобразования механической энергии движения в энергию электрического тока, используя принцип электромагнитной индукции.

Роль источника механической энергии для генератора могут исполнять паровая турбина, двигатель внутреннего сгорания, поток ветра или воды, который вращает колесо или даже мускульная сила человека.

Компенсатор – машина, предназначенная для генерации реактивной мощности. Он в электрической системе выполняет роль водонапорной башни в системе водоснабжения.

То есть, зависимо от величины тока, компенсатор может отдавать мощность в сеть или же забирать её оттуда.

Трансформатор – устройство для преобразования параметров электрического тока. Широко применяются на линиях электропередач, распределительных приборах.

Чаще всего, трёхфазные, реже – однофазные трансформаторы. Силовые трансформаторы используют на электрических подстанциях.

Производители и поставщики оборудования для электрических станций, подстанций и сетей

Среди российских предприятий и компанией есть и производители, и поставщики оборудования.

ОАО «Пермский моторный завод» серийно производит семейство газотурбинных блочно-модульных электростанций серии «Урал», а также газотурбинные электростанции ГТЭС-12П (ЭГЭС-12С), ГТЭС-16ПА , ГТЭС-25П и ГТЭС-25ПА блочно-модульного и зального исполнения;

ООО «СИНЕРГЕТИКА» является официальным мастером-дистрибутором электростанций SDMO и партнёром по продаже продукции Mitsubishi Heavy Industries.

ЗАО «ПФК «Рыбинсккомплекс» занимается проектированием, строительством и продажей газовых электростанций.

«НПО САТУРН» предлагает газовые турбины, которые используют в качестве резервных источников энергоснабжения.

Больше об оборудовании электрических станций, подстанций и сетей можно узнать на выставке «Электро».

Обмотчик элементов электрических машинОбмотчик электрических машинРегулирующая аппаратура

Солнечные батареи

Рассуждая над тем, какие виды электростанций существуют в нашей стране, нельзя оставить без внимания альтернативные установки для получения электрической энергии.

Солнце – это не только источник тепла и света, благодаря ему применяют многие другие виды энергии (например, нефть, вода, уголь, ветер).

Использование солнечных батарей в северных регионах страны не настолько выгодно, чем в теплых районах. И все-таки, многие жители Российской Федерации стараются использовать альтернативную энергетику. Для принятия правильного решения по поводу результативного применения альтернативного источника энергии необходимо задуматься о стоимости солнечных батарей на отечественном рынке. Трудно назвать точную цену одного киловатта, генерируемого солнечным коллектором.

Сегодня в России 1 ватт электрической энергии, полученной солнечными батареями, имеет намного более высокую цену, чем то же количество энергии, получаемое из традиционных источников.

Энергетика в России

Основные виды электростанций в нашей стране: тепловые, атомные, гидроэлектростанции. Больше половины энергии вырабатывают ТЭС. Они строятся в тех районах, где осуществляется добыча топлива, либо на местности с потреблением энергии. ГЭС целесообразно строить на горных полноводных реках, поэтому такие станции появились на Ангаре, Енисее.

Эти виды электростанций в России есть и на Волге. На долю ГЭС приходится около 67% вырабатываемой в стране электрической энергии.

Разные виды атомных электростанций в России располагаются в западной части страны, где наблюдается повышенное потребление энергии.

Важные аспекты

Применение энергии солнца оправдано только в тех климатических условиях, где слишком высока стоимость одного киловатта. К примеру, это северные районы России.

В России средняя цена на солнечные батареи мощностью 100 Вт составляет 5-6 тысяч рублей, мощностью в 200 Вт – около десяти тысяч рублей руб. Минимальная цена одного ватта электроэнергии, получаемой от солнечных батарей, находится в пределах 55-60 рублей. В основе многих энергетических систем используется солнечный коллектор. Он поглощает световую энергию Солнца, преобразует ее в тепло, которое подается теплоносителю (жидкости или воздуху) и далее применяется для обогрева жилых зданий, нагревания воды, производства электричества, просушивания сельскохозяйственных товаров либо приготовления пищи.

Аварийный источник энергии

Бензогенераторы конструктивно могут исполняться с алюминиевым или чугунным блоком цилиндров. В первом случае моторесурс двигателя незначителен и составляет около 600 мото/часов, а во втором приближается к ресурсу небольших дизель-генераторов, 3000 мото/часов, причем такие моторы характеризуются низким расходом топлива и пониженным уровнем шума. Однако бензиновые генераторы обладают несколько меньшей электровырабатывающей способностью (до 12 кВт), используют более дорогостоящее топливо. Как правило, моторы этих портативных или миниэлектростанций имеют воздушное охлаждение, скорость вращения вала двигателя 3000 оборотов в минуту, что ограничивает область их применения. Кроме того, следует иметь ввиду, что бензиновый мотор, имеющий воздушное охлаждение, не может работать непрерывно длительное время. Ему нужен обязательный «отдых», иногда через несколько часов эксплуатации или он перегреется и выйдет из строя.

Классификация

Все электростанции делят на следующие группы:

  • Тепловые электростанции. Виды природного топлива, применяемого на них, позволяют делить их на теплофикационные и конденсационные станции.
  • Гидроаккумулирующие и гидравлические электростанции функционируют за счет энергии падающей воды.
  • Атомные станции используют энергию ядерных превращений.
  • Дизельные электростанции.
  • ТЭС с парогазовыми или газотурбинными установками.
  • Солнечные электростанции.
  • ГЕОТЭС (геотермальные электрические станции).
  • Приливные станции.

Эти виды электростанций используют для работы тепло- и электроэнергетику.

Самым удобным видом является электрическая энергия. Превращение первичной энергии в нее осуществляется на электрических станциях.

Категории электроприемников

Первая категория потребителей

Является наиболее важной. Прерванное электроснабжение этих объектов представляет серьезную опасность для окружающих, наносит существенный ущерб промышленным и другим предприятиям

Отсутствие электричества приводит к повреждению оборудования, расстройству и прерыванию сложных технологических процессов, массовому браку выпускаемой продукции.

Для таких электроприемников должны быть предусмотрены два независимых источника питания. Их электроснабжение может прерываться только на период автоматического включения резерва. В качестве примера потребителей первой категории можно привести плавильные цехи, котельные производственного пара, главные насосные станции, разливочные краны, подъемники и установки водоотлива на горнорудных предприятиях и другие. Во многих промышленных отраслях доля нагрузок, относящихся к 1-й категории, невелика. Исключение составляют металлургические и химические предприятия, где количество таких потребителей может достигать 40-80%.

Существует так называемая особая группа нагрузок, требующая бесперебойной работы. В случае необходимости, именно они обеспечивают безаварийную остановку производства. Например, в результате остановки вентиляции, горючие или токсичные газы могут достигнуть опасной концентрации. Остановка насосов нередко приводит к пожару или взрыву. То же самое касается и аварийного освещения отдельных помещений.

Вторая категория потребителей

Является наиболее многочисленной

Они также имеют важное значение, однако перерыв их электроснабжения не вызывает опасных ситуаций и приводит лишь простою работников, оборудования и транспорта. Все это вызывает массовый недовыпуск и недоотпуск продукции

В связи с этим, требования к резервному питанию этих потребителей менее строгие, по сравнению с электроприемниками первой категории. Допускаются временные перерывы в электроснабжении, в течение которых персонал вручную включает резервное питание.

Требования к потребителям данной группы имеют существенные различия. Некоторые из них приближаются к 1-й категории, а ряд других, наоборот, стоят близко с 3-й категорией. Поэтому вопросы электроснабжения в таких случаях нужно рассматривать индивидуально, с учетом особенностей каждого потребителя, и не использовать без необходимости резервное питание.

Третья категория

Включает в свой состав все остальные потребители, которыми оборудуются вспомогательные цеха, неответственные склады и другие второстепенные объекты. Перерывы в их электропитании допускаются на период ремонта или замены неисправных элементов. Продолжительность таких перерывов не должна превышать одних суток.

Для того чтобы правильно определять степень резервирования и надежности электроснабжения, нужно точно выделить режимы и возможные ситуации, которые могут возникнуть во время аварий и сразу же в послеаварийный период. Аварийный режим представляется в виде кратковременного переходного периода, образовавшегося в результате нарушений нормальной работы всей системы или отдельных звеньев электроснабжения. Он продолжается до того момента, пока не будет отключено поврежденное звено или элемент. Аварийный режим продолжается в течение того промежутка времени, когда действует автоматика, релейная защита и телеуправление.

Послеаварийный режим возникает после ликвидации аварийной ситуации, когда отключены все поврежденные элементы системы электроснабжения. Он продолжается дольше, чем аварийный режим, до тех пор, пока не будут восстановлены нормальные условия работы. При наступлении послеаварийного режима вся система электроснабжения должна обеспечивать нормальное функционирование производства после того как выполнены все переключения и переподключения. Данные мероприятия проводятся с использованием всех дополнительных и резервных источников питания, в том числе и тех, которые не используются в нормальном режиме.

В период послеаварийного режима может быть частично ограничена подаваемая мощность, допускаются кратковременные перерывы электроснабжения потребителей третьей категории и частично – второй категории. Для того чтобы данная система работала четко и не давала сбоев, все необходимые мероприятия по надежному питанию электроприемников разрабатываются еще на стадии проектирования.

Тел: +7 (909) 926-36-83

Электроснабжение промышленных предприятий

Категории электроснабжения

Электроснабжение многоквартирного дома

Экономия электроэнергии на предприятии

Проект электроснабжения частного дома

Электроснабжение квартиры

Преимущества и недостатки атомных станций:

К плюсам и преимуществам АЭС следует отнести:

– отсутствие выбросов парниковых газов в атмосферу. Вредные выбросы присутствуют лишь в тех случаях, когда подключаются резервные дизельные генераторы, что происходит редко,

– существенное сокращение эмиссии углекислого газа. Согласно расчетам специалистов, в Европе атомные станции позволяют сократить выбросы углекислого газа примерно на 700 млн тонн в год,

– более низкий уровень радиоактивного излучения в сравнении с угольными электростанциями,

– отсутствие зависимости от источников топлива ввиду того, что для работы АЭС оно требуется в небольших объемах,

– высокую мощность (от 1000 до 1600 мегаватт на энергоблок) и круглосуточную работу,

– низкую стоимость производства энергии (что особенно относится к тепловой).

Недостатки атомных электростанций:

– опасность облученного топлива, переработка которого является сложной и дорогостоящей,

– весьма тяжкие последствия для окружающей среды в случае возникновения чрезвычайных ситуаций,

– необходимость высоких капиталовложений.

Несмотря на свои минусы, атомная энергетика на сегодняшний день рассматривается в качестве наиболее перспективного способа получения энергии.

Примечание:  Фото //www.pexels.com, //pixabay.com

Найти что-нибудь еще?

карта сайта

Коэффициент востребованности
6 047

Энергетика в России

Основные виды электростанций в нашей стране: тепловые, атомные, гидроэлектростанции. Больше половины энергии вырабатывают ТЭС. Они строятся в тех районах, где осуществляется добыча топлива, либо на местности с потреблением энергии. ГЭС целесообразно строить на горных полноводных реках, поэтому такие станции появились на Ангаре, Енисее.

Эти виды электростанций в России есть и на Волге. На долю ГЭС приходится около 67% вырабатываемой в стране электрической энергии.

Разные виды атомных электростанций в России располагаются в западной части страны, где наблюдается повышенное потребление энергии.

Заключение

Отдельного внимания заслуживает солнечная энергия. Именно этот альтернативный источник энергии вызывает интерес не только у отдельных граждан, но также и у государственных структур.

Солнечные дистилляторы позволяют не только нагревать воду, но и проводить ее дистилляцию. В качестве исходного сырья допускается не только пресная, но и морская вода. Основой их работы является испарение воды из незакрытого источника.

Горячее водоснабжение является распространенным вариантом прямого использования солнечной энергии. Типичная установка предполагает один либо несколько коллекторов, в которых происходит нагрев жидкости на солнце. Кроме того, есть бак для размещения нагретой жидкости.

Даже в регионах, для которых характерно незначительное количество солнечной радиации в год, например, в Архангельской области, с помощью солнечной установки можно обеспечить более половины потребности населения в горячей воде. Подогрев воды с помощью энергии Солнца — очень практичный и экономный способ, коэффициент полезного действия составляет 50-90 %.

Если иметь еще и небольшую деревосжигающую печь, можно удовлетворять бытовую потребность в горячей воде практически круглый год без применения ископаемых видов топлива.

Заключение

Отдельного внимания заслуживает солнечная энергия. Именно этот альтернативный источник энергии вызывает интерес не только у отдельных граждан, но также и у государственных структур.

Солнечные дистилляторы позволяют не только нагревать воду, но и проводить ее дистилляцию. В качестве исходного сырья допускается не только пресная, но и морская вода. Основой их работы является испарение воды из незакрытого источника.

Горячее водоснабжение является распространенным вариантом прямого использования солнечной энергии. Типичная установка предполагает один либо несколько коллекторов, в которых происходит нагрев жидкости на солнце. Кроме того, есть бак для размещения нагретой жидкости.

Даже в регионах, для которых характерно незначительное количество солнечной радиации в год, например, в Архангельской области, с помощью солнечной установки можно обеспечить более половины потребности населения в горячей воде. Подогрев воды с помощью энергии Солнца — очень практичный и экономный способ, коэффициент полезного действия составляет 50-90 %.

Если иметь еще и небольшую деревосжигающую печь, можно удовлетворять бытовую потребность в горячей воде практически круглый год без применения ископаемых видов топлива.