Требования к монтажу термометров сопротивления

Класс допуска

Согласно действующим нормам допускается определенное отклонение от линейной характеристики «температура-сопротивление». Ниже представлена таблица соответствия класса точности.

Таблица 1. Классы допуска.

Класс точности Нормы допуска °C |t | Диапазон измерения температуры
Платиновые датчики Медные Никелевые
Проволочные Пленочные
AA ±0,10+0,0017 -50°C …250°C -50°C …150°C x x
A ±0,15+0,002 -100°C …450°C -30°C …300°C -50°C …120°C x
B ±0,30+0,005 -196°C …660°C -50°C …500°C -50°C …200°C х
С ±0,60+0,01 -196°C …660°C -50°C …600°C -180°C …200°C -60°C …180°C

Приведенная в таблице погрешность отвечает текущим нормам.

Сравнение термопар

Таблица ниже описывает свойства нескольких различных типов термопар. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью В±0,0025 Г—T имела бы точность В±2,5 В°C в 1000 В°C.

термопары

IEC (МЭК)

Материал

положительного

электрода

Материал

отрицательного

электрода

Темп.

коэффициент,

μV/°C

Темп.

диапазон, °C

(длительно)

Темп.

диапазон,°C

(кратковременно)

Класс точности 1 (°C) Класс точности 2 (°C) IEC (МЭК)

Цветовая маркировка

K
Хромель

Cr—Ni

Алюмель

Ni—Al

40…41
0 до +1100
−180 до +1300
±1,5 от −40 °C до 375 °C ±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C ±0,0075×T от 333 °C до 1200 °C
Зелёный-белый

J
Железо

Fe

Константан

Cu—Ni

55.2
0 до +700
−180 до +800
±1,5 от −40 °C до 375 °C ±0,004×T от 375 °C до 750 °C
±2,5 от −40 °C до 333 °C ±0,T от 333 °C до 750 °C
Чёрный-белый

N
Нихросил

Ni—Cr—Si

Нисил

Ni—Si—Mg

0 до +1100
−270 до +1300
±1,5 от −40 °C до 375 °C ±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C ±0,0075×T от 333 °C до 1200 °C
Сиреневый-белый

R
Платинородий

Pt—Rh (13 % Rh)

Платина

Pt

0 до +1600
−50 до +1700
±1,0 от 0 °C до 1100 °C ± от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C ±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый

S
Платинородий

Pt—Rh (10 % Rh)

Платина

Pt

0 до 1600
−50 до +1750
±1,0 от 0 °C до 1100 °C ± от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C ±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый

B
Платинородий

Pt—Rh (30 % Rh)

Платинородий

Pt—Rh (6 % Rh)

+200 до +1700
0 до +1820
±0,0025×T от 600 °C до 1700 °C
Отсутствует

T
Медь

Cu

Константан

Cu—Ni

−185 до +300
−250 до +400
±0,5 от −40 °C до 125 °C ±0,004×T от 125 °C до 350 °C
±1,0 от −40 °C до 133 °C ±0,0075×T от 133 °C до 350 °C
Коричневый-белый

E
Хромель

Cr—Ni

Константан

Cu—Ni

68
0 до +800
−40 до +900
±1,5 от −40 °C до 375 °C ±0,004×T от 375 °C до 800 °C
±2,5 от −40 °C до 333 °C ±0,0075×T от 333 °C до 900 °C
Фиолетовый-белый

Медные датчики (ТСМ)

ТК медных измерительных приборов – 0,00428°С-1, диапазон измеряемых температур немного уже, чем у никелевых аналогов (от -50,0°С до 150°С). К несомненным преимуществам медных измерителей следует отнести их относительно невысокую стоимость и наиболее близкую к линейной характеристику «температура-сопротивление». Но, узкий диапазон измеряемых температур и низкие параметры удельного сопротивления существенно ограничивают сферу применения термопреобразователей ТСМ.

Внешний вид термопреобразователя ТСМ 1088 1

Но, тем не менее, медные датчики рано списывать, есть немало примеров удачных реализаций, например, ТХА Метран 2700, который предназначен как для различных видов промышленности, но также удачно используется в ЖКХ.

Учитывая, что платиновые терморезисторы наиболее востребованы, рассмотрим варианты их конструктивного исполнения.

Сплиттер или размножитель сигнала.

Сплиттер или так называемый размножителя сигнала «размножает» один сигнал RTD в два независимых изолированных сигнала напряжения или тока. Гальваническая изоляция выходов друг от друга и от входа гарантирует, что не возникнет проблем с взаимным влиянием приборов друг на друга при подключении одного датчика к двум и более различным устройствам. Получается своего рода рассмотренный выше вариант с нормирующим преобразователем, но лишенный негативного взаимного влияния приборов друг на друга.

В качестве размножителя можно применить сплиттер модели APD 1393 RTD с двумя изолированными выходами.

Принцип работы

Работа любой термопары основывается на термоэлектрическом эффекте, который был открыт Т.И. Зеебеком в далёком 1821 году. Данный эффект заключается в том, что если последовательно соединить друг с другом два разнородных металлических проводника, образуя таким образом замкнутую электрическую цепь, и в одном месте соединения проводников произвести нагрев, то в цепи возникает электродвижущая сила (ЭДС). Данную электродвижущую силу называют термо-ЭДС. Под действием термо-ЭДС в замкнутой цепи начинает протекать электрический ток.

Как работает термопара.

Место нагрева обычно называют горячим спаем. Место, где нет нагрева – холодный спай. Если в разрыв цепи подключить гальванометр или микровольтметр, то можно измерить величину термо-ЭДС, которая будет составлять несколько мили- или микровольт. Значение термо-ЭДС будет зависеть от величины нагрева в месте соединения проводников и от величины температуры в месте соединения проводников, где нагрев не происходит. Т.е. значение термо-ЭДС зависит от разности температур между холодным и горячим спаем. Также термо-ЭДС зависит и от рода самих проводников.

Будет интересно Чему равна электроемкость конденсатора?

Таким образом, если место соединения разнородных проводников термопары нагреть, то между несоединёнными (свободными) концами проводников возникнет разность потенциалов, которую можно измерить электроизмерительным прибором. Благодаря современным преобразователям возникающую разность потенциалов можно преобразовать в определённое цифровое значение, т.е. вполне реально узнать значение температуры нагрева в месте соединения проводников термопары. Для того чтобы измерения были точными, температура холодного спая должна быть неизменной. Т.к. это не всегда возможно, используются специальные компенсационные схемы для компенсации температуры холодного спая.

Устройство термопары.

Конструкция устройства

Современные термопары изготавливаются различной формы и длины. По конструктивному исполнению их можно разделить на две группы:

  • бескорпусные термопары;
  • термопары с защитным кожухом.

Первые представляют собой изделие, у которого место соединения двух проводников не закрыто и не защищено от внешних воздействий. Такое исполнение позволяет достичь быстрого времени измерения температуры и низкой инертности. Второй тип термопары выпускается в виде зонда. Зонд представляет собой металлическую трубку с внутренним изолятором, выдерживающим высокую температуру. Внутрь зонда помещается термоэлектрический элемент термопары. Благодаря такой конструкции термоэлемент защищён от влияния агрессивных сред различных технологических процессов.

Термопара типа J.

Холодный спай

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору. В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры. Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Термопара газовой плиты.

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Из чего состоит термопара.

Виды и их характеристика

Основное различие между термометрами – устройство датчика. Они сделаны из разных материалов, отличаются толщиной чувствительного элемента и имеют различную стоимость.

Металлические

Они бывают платиновые, никелевые и медные. Рассмотрим подробнее элементы их этих металлов.

Платина. Самый дорогой материал, из нее изготавливаются самые точные лабораторные и эталонные приборы. Достоинства – очень высокая точность и широкий диапазон измерений, стабильность работы, практически линейная зависимость электропроводности от температуры (номинальная статическая характеристика, НСХ). Недостаток – высокая стоимость, хотя сейчас развитие технологий уменьшает количество платины, а значит, и цену. Все плюсы при этом сохраняются. Приборы с датчиком из платины обозначаются как ТСП (Термометр Сопротивления с платиновым датчиком).

Также существуют различные конструкции чувствительного элемента.

Проволочный. Чувствительный элемент – проволока, намотанная на каркас из металла, керамики, кварца, слюды или пластмассы. Во избежание потерь на индукцию намотка бифилярная (это когда провод складывается вдвое и только затем наматывается). Между витками есть мелкодисперсный наполнитель из Al2O3, который нужен для дополнительной изоляции витков и амортизации при колебаниях. Катушка заключена в металлический корпус и загерметизирована.

Полупроводниковые

Обычно они изготавливаются из германия и кремния. В качестве легирующей добавки выступает сурьма. Также есть кобальто-марганцевые (КМТ) и медно-марганцевые (ММТ) приборы, работающие в пределах от -90 до +180 градусов. Благодаря большому внутреннему сопротивлению датчика проводимостью соединителей можно пренебречь. Чувствительный элемент расположен в защитном корпусе.

Преимущества – высокое быстродействие, возможность работы в сверхнизких температурах – от -270 градусов по Цельсию. Точность и стабильность измерений большие. Недостатки – нелинейная характеристика НСХ и невоспроизводимость градуировочной характеристики.

Благодаря нелинейной зависимости «температура-сопротивление» такие устройства скачкообразно меняют проводимость при определенной температуре. Это называется релейным эффектом и позволяет использовать данные приборы в системах сигнализации. Датчики по-разному крепятся на поверхность. Варианты креплений делятся на:

  • ввинчивающиеся;
  • поверхностные;
  • вставные;
  • с присоединительными проводами;
  • с байонетными соединениями (это осевое перемещение и поворот, как в боксах для дисков).

Расшифровка обозначений термометров сопротивления не составит труда. Обычно латиницей или кириллицей указывается его тип, далее цифрами – сопротивление в Ом при температуре 0 градусов Цельсия. Например, Pt100 – термометр платиновый, сопротивление термопреобразователя – 100 Ом при 0 градусов. Также есть несколько общепринятых сокращений:

  • ТПТ – технический платиновый термометр;
  • ТСПН – термометр, предназначенный для регистрации низких температур;
  • ЭТС – эталонные термометры сопротивления, которые используются для калибровки других датчиков.

Конструкции термопар

Существует две основные разновидности конструкций термопар.

  • С применением изоляционного слоя. Данная конструкция термопары предусматривает изолирование рабочего слоя устройства от электрического тока. Подобная схема позволяет использовать термопару в технологическом процессе без изоляции входа от земли.
  • Без применения изоляционного слоя. Такие термопары могут подключаться лишь к измерительным схемам, входы которых не имеют контакта с землей. Если данное условие не соблюдается, в устройстве возникнет две независимых замкнутых схемы, в результате чего показания, полученные с помощью термопары, не будут соответствовать действительности.

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Цепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Рабочий спай и холодный спай

Виды датчиков и их характеристики

Измерение температуры термометром сопротивления происходит с помощью одного или нескольких чувствительных элементов сопротивления и соединительных проводов, которые надежно спрятаны в защитном корпусе.

Классификация ТС происходит именно по типу чувствительного элемента.

Металлический термометр сопротивления по ГОСТ 6651-2009

Согласно ГОСТ 6651-2009 выделяют группу металлических термометров сопротивления, то есть ТС, чей чувствительный элемент — это небольшой резистор из металлической проволоки или пленки.

Платиновые измерители температуры

Платиновые ТС считаются самым распространёнными среди других видов, поэтому их часто устанавливают для контроля важных параметров. Диапазон измерения температуры лежит от -200 °С до 650 °С. Характеристика близка к линейной функции. Один из самых распространённых видов — Pt100 (Pt — платиновый, 100 — означает 100 Ом при 0 °С).

Никелевые термометры сопротивления

Никелевые ТС почти не используются в производстве за счет узкого температурного диапазона (от -60 °С до 180 °С) и сложностей эксплуатации, однако, следует отметить, что именно они имеют самый высокий температурный коэффициент 0,00617 °С-1.

Ранее такие датчики использовались в кораблестроении, однако, сейчас в этой отрасли их заменили на платиновые ТС.

Медные датчики (ТСМ)

Казалось бы, у медных датчиков диапазон использования еще уже, чем у никелевых (всего от -50 °С до 170 °С), но, тем не менее, именно они являются более популярным типом ТС.

Секрет в дешевизне прибора. Медные чувствительные элементы просты и неприхотливы в использовании, а также отлично подходят для измерения невысоких температур или сопутствующих параметров, например, температуры воздуха в цехе.

Срок службы такого устройства невелик, однако, и средняя стоимость медной ТС не слишком бьет по карману (около 1 тыс. рублей).

Терморезисторы

Терморезисторы — это термометр сопротивления, чей чувствительный элемент сделан из полупроводника. Это может быть оксид, галогенид или другие вещества с амфотерными свойствами.

Преимуществом данного прибора является не только высокий температурный коэффициент, но и возможность придать любую форму будущему изделию (от тонкой трубки до устройства длиной в несколько микрон). Как правило терморезисторы рассчитаны для измерения температуры от -100 °С до +200 °С.

Различают два вида терморезисторов:

  • термисторы — имеют отрицательный температурный коэффициент сопротивления, то есть при росте температуры, сопротивление уменьшается;
  • позисторы — имеют положительный температурный коэффициент сопротивления, то есть при увеличении температуры, сопротивление также возрастает.

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Где используются термопары

ТП чаще, чем другие датчики применяют для оборудования, связанного с высокими плюсовыми температурами: топливные котлы и плиты, иное оснащение с горелками, бойлеры, паяльники, пирометры, печи, металлургия.

Термин «термоэлектрический преобразователь» отображает природу сенсора — дифференциальный измеритель, который делает замеры, преобразовывая тепло в электричество.

Термопары — это простые и эффективные сенсоры для высокоточных термоэлектрических термометров, работающих в повышенных температурных рамках.

Яркий пример применения: в составах автоматики топливных котлов и отопления. Сработка оснащения инициируется электросигналом от сенсорного узла с ТП.

Термопары наряду с NTC и PTC термисторами — самые популярные измерители температуры для оборудования, последние имеют свои достоинства (считаются более точными в своих диапазонах), но не охватывают настолько широкие температурные рамки, как ТП.

Кабельные термопары

В своем производстве, «ПК»Тесей» использует кабельные термопары. Она представляет собой гибкую металлическую трубку с размещёнными внутри нее одной, двумя или тремя парами термоэлектродов, расположенными параллельно друг другу. Пространство вокруг термоэлектродов заполнено уплотненной мелкодисперсной минеральной изоляцией. Термоэлектроды кабельной термопары со стороны рабочего торца попарно сварены между собой, образуя один, два или три рабочих спая. Рабочий торец заглушен с помощью сварки, либо имеет открытый спай. Свободные концы термоэлектродов подключаются к клеммам головки датчика температуры или к удлиняющим проводам. Высокая плотность изоляции кабельной термопары позволяет навивать её на цилиндр радиусом, равным пятикратному диаметру кабеля, без изменения технических характеристик термопары. Например, термопару диаметром 3 мм можно навить на трубу диаметром 30 мм. При этом не происходит замыкания электродов между собой или с оболочкой. Надежная изоляция обусловлена технологией изготовления тер-мопарного кабеля. Из окиси магния или алюминия методом сухого прессования изготавливают двухканальные бусы, в которые вставляют термоэлектроды, сборку помещают в трубу диаметром около 20 мм и многократно протягивают через фильеры, проводя промежуточный отжиг в среде водорода или аргона.

Главные преимущества кабельных термопар.

  • широкий диапазон рабочих температур. Это самый высокотемпературный из контактных датчиков;
  • малый показатель тепловой инерции, позволяющий применять их для регистрации быстропротекающих процессов;
  • универсальность применения для различных условий эксплуатации, хорошая технологичность, малая материалоемкость;
  • способность выдерживать большие рабочие давления;
  • изготовление на их основе термопреобразователей в защитных чехлах блочно-модульного исполнения, обеспечивающих дополнительную защиту термоэлектродов от воздействия рабочей среды и создающих возможность оперативной замены термочувствительного элемента.

Датчик температуры выполненный на основе термопарного кабеля удобен в эксплуатации, его конструкцияпозволяет изгибать кабель, монтировать в труднодоступных местах, в кабельных каналах, при этом длина ТП может достигать нескольких сотен метров. Термопары можно приваривать, припаивать или просто прижимать к поверхности для измерения ее температуры.

Общие советы по выбору термопар из неблагородных металлов

  • ниже нуля – тип Т
  • комнатные температуры – тип К, Т
  • до 300 °С – тип К
  • от 300 до 600°С – тип N
  • выше 600 °С – тип К или N

Подключение термопары.

Рабочий конец термопары погружается в среду, температуру которой требуется измерить. Свободные концы подключаются ко вторичному прибору. Для подключения термопары к модулю ввода используют специальные термопарные провода, выполненные из того же материала, что и сама термопара. Для этой цели можно использовать и обычные медные провода, однако в этом случае необходим выносной датчик температуры холодного спая, который должен измерять температуру в месте контакта термопары с медными проводами.

Рисунок 4. Схема подключения термопары

Схема подключения термопар к клеммам головки для одной (Рис.5) и двух пар (Рис.6) термоэлектродов.

Рисунок5

Рисунок6

Принцип действия измерительного устройства

     Действие термопреобразователя основывается на свойстве различных материалов изменять свое электрическое сопротивление при разных температурных условиях – этот параметр называется температурным коэффициентом электрического сопротивления.

     Измененная температура влечет за собой смену теплового колебания кристаллической решетки металла и изменение электрического сопротивления сенсора. Таким образом, чем выше температура чувствительного сенсора, тем значительнее колебания кристаллической решетки, и тем выше уровень электрического сопротивления.

     Как вторичный температурный датчик, термоперобразователь нуждается в тщательной калибровке перед началом измерительного процесса. Это выполняется с помощью замеров сопротивления в реперных точках и последующем выстраивании временной зависимости от сопротивления. Сам термопреобразователь, при этом, должен приобрести температурный показатель, аналогичный среде измерения.

     На точность показателей могут повлиять наличие примеси в металлах сенсора и возможные дефекты конструкции. Их неоднородная структура способна изменить сопротивление и скорость выхода на стационарные показатели для определенной температуры.

     Для правильного измерения температур важно обеспечить грамотный тепловой контакт с измеряемым объектом

Габариты сенсора должны находиться на минимально необходимом уровне, что исключит вероятность увеличения срока замера и позволит зафиксировать быстроизменяющиеся процессы.

Соотношение сопротивления / температуры металлов

Обычные чувствительные элементы RTD, изготовленные из платины, меди или никеля, имеют повторяемую зависимость сопротивления от температуры ( R vs T ) и диапазон рабочих температур . R против T отношений определяется как величина изменения сопротивления датчика на градус изменения температуры. Относительное изменение сопротивления ( температурный коэффициент сопротивления) незначительно изменяется в пределах полезного диапазона датчика.

Платина была предложена сэром Уильямом Сименсом в качестве элемента термометра сопротивления на лекции в Бейкериане в 1871 году: это благородный металл, имеющий наиболее стабильную зависимость сопротивления от температуры в самом широком диапазоне температур. Никелевые элементы имеют ограниченный температурный диапазон, потому что величина изменения сопротивления на градус изменения температуры становится очень нелинейной при температурах выше 300 ° C (572 ° F). Медь имеет очень линейную зависимость сопротивления от температуры; однако медь окисляется при умеренных температурах, и ее нельзя использовать при температуре выше 150 ° C (302 ° F).

Важной характеристикой металлов, используемых в качестве резистивных элементов, является линейная аппроксимация зависимости сопротивления от температуры между 0 и 100 ° C. Этот температурный коэффициент сопротивления обозначается α и обычно выражается в единицах Ω / (Ω · ° C):

αзнак равнор100-р100∘C⋅р,{\ displaystyle \ alpha = {\ frac {R_ {100} -R_ {0}} {100 \, {\ rm {^ {\ circ} C}} \ cdot R_ {0}}},}

куда

р{\ displaystyle R_ {0}} сопротивление датчика при 0 ° C,
р100{\ displaystyle R_ {100}} сопротивление датчика при 100 ° C.

Чистая платина имеет α = 0,003925 Ом / (Ом · ° C) в диапазоне от 0 до 100 ° C и используется при создании термометров сопротивления лабораторного уровня. И наоборот, два широко признанных стандарта для промышленных RTD IEC 60751 и ASTM E-1137 определяют α = 0,00385 Ом / (Ом · ° C). До того, как эти стандарты получили широкое распространение, использовалось несколько различных значений α. По-прежнему можно найти более старые датчики, сделанные из платины, которые имеют α = 0,003916 Ом / (Ом · ° C) и 0,003902 Ом / (Ом · ° C).

Эти разные значения α для платины достигаются путем легирования — осторожного введения примесей, которые внедряются в структуру решетки платины и приводят к другой кривой зависимости R от T и, следовательно, к значению α.