Лазерный инфракрасный термометр arduino

2Схема подключения датчика температуры и влажности DHT11

Рассмотрим схему подключения датчика температуры и влажности DHT11 к микроконтроллеру, в частности, к Arduino.

Схема подключения датчика температуры и влажности DHT11

Давайте посмотрим, что показано на рисунке.

Обозначение на рисунке Описание Примечание
MCU Микроконтроллер или одноплатный компьютер Arduino / Raspberry Pi и др.
DHT11 Датчик температуры и влажности Выводы 1Pin, 2Pin и 4Pin задействованы в схеме, один из выводов датчика – 3-ий пин 3Pin – ни к чему не подключается.
DATA Шина данных Если длина соединительного кабеля от датчика к микроконтроллеру не превышает 20 метров, то эту шину рекомендуется подтянуть к питанию резистором 5,1 кОм; если больше 20 метров – то другой подходящий номинал (меньший).
VDD Питание датчика Допустимы напряжения от ~3,0 до ~5,5 вольт постоянного тока; если используется питание ~3,3 В, то желательно использовать питающий провод не длиннее 20 см.

Соберём рассмотренную схему. Я также по традиции включу в цепь логический анализатор, чтобы можно было изучить временную диаграмму информационного обмена с датчиком.

Сенсор температуры и влажности DHT11 подключён к Arduino UNO

Сенсор DHT11 часто продаётся в виде готовой сборки с необходимой обвязкой – подтягивающими резистором и фильтрующим конденсатором (как на предыдущей фотографии). Для экспериментов с Arduino я рекомендую покупать именно такой.

Ардуино. Метеостанция на LCD 1602 и DHT11

Ардуино. Метеостанция с дисплеем LCD 1602 и DHT22

После сборки схемы, загрузите в микроконтроллер следующий скетч (здесь ссылка на скачивание архива со скетчем для метеостанции и необходимыми библиотеками). Информация с датчика DHT22 выводиться будет на монитор порта Arduino IDE и на жидкокристаллический дисплей 1602a, для отображения информации использован русский шрифт для LCD и символы (в скетче есть подробные комментарии).

Скетч для метеостанции с DHT11 на Ардуино

#include <Wire.h>                 // библиотека для протокола IIC 
#include <LiquidCrystal_I2C.h>    // подключаем библиотеку LCD IIC
LiquidCrystal_I2C lcd(0x27,20,2); // присваиваем имя lcd для дисплея

#include "DHT.h"   // подключаем библиотеку для DHT11
DHT dht(2, DHT11); // к какому порту подключаем датчик

// создаем символ градуса и присваиваем имя "gradus"
byte gradus = {
0b01100,0b10010,0b10010,0b01100,0b00000,0b00000,0b00000,0b00000
};

// создаем русскую букву "П"
byte P = {
0b11111,0b10001,0b10001,0b10001,0b10001,0b10001,0b10001,0b00000
};

// создаем русскую букву "У"
byte Y = {
0b10001,0b10001,0b10001,0b01111,0b00001,0b00001,0b01110,0b00000
};

// создаем русскую букву "Л"
byte L = {
0b00111,0b01001,0b10001,0b10001,0b10001,0b10001,0b10001,0b00000
};

// создаем русскую букву "Ж"
byte ZH = {
0b10101,0b10101,0b10101,0b01110,0b10101,0b10101,0b10101,0b00000
};

// создаем русскую букву "Ь"
byte znak = {
0b10000,0b10000,0b10000,0b11110,0b10001,0b10001,0b11110,0b00000
};

void setup() {
  Serial.begin(9600); // запуск последовательного порта
  lcd.init();         // инициализация LCD дисплея
  lcd.backlight();    // включение подсветки дисплея

  lcd.createChar(1, gradus);
  lcd.createChar(2, P);
  lcd.createChar(3, Y);
  lcd.createChar(4, L);
  lcd.createChar(5, ZH);
  lcd.createChar(6, znak);
}

void loop() {
  // если нужны точные значение, то используйте float, вместо byte
  byte h = dht.readHumidity();    // считываем значение температуры
  byte t = dht.readTemperature(); // считываем значение влажности

  Serial.print("Temperature: ");
  Serial.println(t);   // отправляем значение температуры на монитор

  Serial.print("Humidity: ");
  Serial.println(h);   // отправляем значение температуры на монитор

  Serial.println(" "); // пустая строка

  lcd.setCursor(0,0);  // ставим курсор на 1 символ первой строки
  lcd.print("TEM");    // используем латинские буквы
  lcd.print(char(2));  // выводим русскую букву "П"
  lcd.print("EPAT");   // используем латинские буквы
  lcd.print(char(3));  // выводим русскую букву "У"
  lcd.print("PA: ");   // используем латинские буквы
  lcd.print(t);        // выводим значение температуры на LCD
  lcd.print(char(1));  // выводим знак градуса

  lcd.setCursor(2,1);  // ставим курсор на 3 символ второй строки
  lcd.print("B");      // используем латинские буквы
  lcd.print(char(4));  // выводим русскую букву "Л"
  lcd.print("A");      // используем латинские буквы
  lcd.print(char(5));  // выводим русскую букву "Ж"
  lcd.print("HOCT");   // используем латинские буквы
  lcd.print(char(6));  // выводим русскую букву "Ь"
  lcd.print(": ");     // используем латинские буквы
  lcd.print(h);        // выводим значение влажности на LCD
  lcd.print("%");      // выводим знак процент
  
  delay(1000);
}

Пояснения к коду:

  1. в скетче можно использовать до 8 русских букв и символов, при необходимости заменяйте буквы из кириллицы — латинскими буквами;
  2. скорость обновления данных замените на необходимое значение.

Заключение. Мы рассмотрели, как сделать простую домашнюю метеостанцию на Ардуино c дисплеем 1602а и датчиком температуры и влажности воздуха DHT11. Данный проект можно доработать, добавив к схеме еще больше датчиков для анализа метеоусловий. Также можно сделать беспроводную метеостанцию на Arduino Uno, используя блютуз или радио модули для передачи информации на расстояние.

Замена датчика

Чтобы начать ремонт датчика охлаждающей жидкости, нужно определить его расположение. Чаще всего он установлен возле термостата или радиатора, в некоторых случаях бортовой компьютер использует показания с обоих датчиков или одного из них, в зависимости от марки авто и его модели. Например, так датчик расположен в Рено, Шевроле, Ситроен, Шкода, Чери, КИА, Субару Импреза.

Есть несколько способов, которые помогут узнать, что датчик нужно поменять. Если у Вас рабочие все остальные системы в авто, то на приборной панели о неисправности сообщит при помощи светового сигнала. Если в автомобиле компьютерное управление, то определить проблему можно будет при помощи расшифровки комбинации на мониторе.

Фото — датчик температуры на приборной панели

Зависимо от года выпуска машины, а также её марки, многие автолюбители отмечают возрастание затрат топлива у двигателя. Но при этом нужно понимать, что дизель так не определишь (УАЗ, ПАЗ и прочие). Если у Вас механика, а не компьютерная система управления, то вот сигналы того, что нужно купить новый датчик температуры охлаждающей жидкости:

  1. Автомобиль стал потреблять топлива больше, чем обычно;
  2. Когда машина заводится, и двигатель достигает своей максимальной температуры, он глохнет;
  3. Появились проблемы с запуском;
  4. Из трубы глушителя выходит черный дым.

Рассмотрим, как осуществляется замена датчика температуры охлаждающей жидкости типа G62 на автомобиле Kia Sportage с двигателем объемом 2 литра. Аналогичная инструкция также пригодится при ремонте Acura, BMW, Buick, Chevrolet, Ford, Toyota, Volkswagen, Ваз 2110/2112 инжектор, Рено Гранд Сценик и прочих.

  1. Чтобы добраться к датчику, Вам нужно снять воздуховод, который охлаждает корпус воздушного фильтра и присоединяется к радиатору при помощи двух болтовых соединений и шланга подачи воздуха. Открутите болты и снимите хомут, аккуратно достаньте всю систему. Отключите от датчика электрические провода, чтобы корректно провести замеры сопротивления. Установите мультиметр на режим омметра и задайте значение в 1000 Ом. Подключите контакты устройства к положительному и отрицательному контактам. Нормальное сопротивление должно быть в пределах 2700 Ом при выключенном моторе. Для проверки датчика при включенном движке, нужно убрать тестер подальше от вращающихся частей авто;

    Фото — проверка датчика мультиметром

  2. Убедившись, что датчику температуры необходим ремонт, нужно отсоединить его от двигателя. Чтобы продолжить снятие, Вы должны предварительно слить антифризную жидкость из радиатора при помощи сливного клапана. После проверить еще раз радиатор и контакты датчика и открутить регулирующий болт как на фото;

    Фото — снятие датчика

  3. Сборка производится в обратной форме. Нужно помнить, что практически основная характеристика датчика температуры охлаждающей жидкости – это материал шайбы. Если шайба медная, то резьбу сигнализатора не нужно обрабатывать герметиком, в противном случае обязательно смажьте устройство.

    Фото — медный температурный датчик

Совет от автолюбителей на форумах: если по какой-то причине Вы не можете сразу при поломке понять датчик температуры охлаждающей жидкости, то вместо него можно подключить дополнительный (такое подключение может по показателям температуры немного отличаться от основного).

Проверка датчика температуры является несложной процедурой, с которой может справиться даже начинающий автолюбитель. Датчик температуры охлаждающей жидкости (сокращенно — ДТОЖ) представляет собой термистор, то есть, резистор, изменяющий значение своего внутреннего сопротивления в соответствии с температурой, куда помещен его исполнительный элемент. Чаще всего для этого используют мультиметр (другое название — тестер, «цэшка»), который в состоянии измерять значение электрического сопротивления в цепи.

Как уменьшить стоимость бесконтактного термометра?

При ближайшем рассмотрении нам для изготовления бесконтактного термометра понадобятся инфракрасный датчик температуры, микроконтроллер, дисплей, драйвер дисплея и батарейка. Одним из самых дорогих устройств в этом списке будет бесконтактный инфракрасный датчик температуры. К сожалению, выбор среди доступных на рынке подобных датчиков невелик и придется выбирать между MLX90614 и MLX90615. Существенно сэкономить в этом плане можно с помощью аналогового датчика температуры (если вы умеете уверенно с ними работать), но общая схема термометра в этом случае немного усложнится и вам придется терпеть некоторые «муки», связанные с калибровкой подобного устройства. Но здесь выбор за вами. Мы же для нашего проекта решили использовать датчик MLX90615 от компании Melexis.

Когда датчик температуры выбран, нам осталось определиться с микроконтроллером, дисплеем и батареей. С целью удешевления проекта нашего термометра мы решили использовать в его составе смартфон потому что смартфоны сейчас уже не являются новинкой – они есть у большинства активного населения. Поэтому мы написали приложение на Android под названием “Easy Scan” (его можно скачать далее в статье), которое будет взаимодействовать с нашим термометром и выполнять ряд операций – вести лог данных температуры и захватывать изображения. С помощью данного подхода мы не только сможем просто хранить необходимые нам данные, но также мы сможем их передавать по электронной почте, по WhatsApp и т.п.

Поэтому теперь для нашего проекта бесконтактного термометра понадобятся лишь следующие компоненты:

Алгоритм работы программы термометра на ATmega и DS18B20

Все установки микроконтроллера заводские, FUSE-биты трогать не надо.

Для работы программы задействовано два таймера/счетчика микроконтроллера:- восьмиразрядный Т0- шестнадцатиразрядный Т1
С помощью восьмиразрядного таймера Т0 настроенного на вызов прерывания по переполнению, с внутренней частотой СК/8 (период 2 миллисекунды) организован:- расчет текущей температуры- динамический вывод результатов измерения температуры датчиком DS18B20
С помощью шестнадцатиразрядного таймера Т1 настроенного на вызов прерывания по переполнению, с внутренней частотой СК/64 (период 4 секунды) организованно:- подача команды датчику DS18B20 на измерение температуры- считывание измеренной температуры с датчика
В принципе, можно задействовать и один восьмиразрядный таймер/счетчик, также настроенный на вызов прерывания по переполнению, с внутренней частотой СК/8, и всю работу схемы организовать в процессе обработки прерывания. Но дело в том, что смысла в этом нет — датчику DS18B20 необходимо чуть меньше 1 секунды (при 12-ти битном разрешении) для конвертирования (определения) температуры, т.е., чаще чем 1 раз в секунду мы не сможем обновлять данные температуры. Кроме того, столь частое обновление температуры приведет к нагреву датчика и, соответственно, к искажению реальных данных. Использование второго счетчика позволяет отдельно задавать промежутки времени измерения температуры.

Вот так выглядит основная часть программы в Algorithm Builder:

Где:

— SP — настройка начального адреса стека 

— Timer 0 — настройка таймера T0:

— Timer 1 — настройка таймера Т1:

— TIMSK — настройка прерываний от таймеров:

— Init_Display — подпрограмма настройки разрядов портов, участвующих в динамической индикации вывода данных на трехразрядный семисегментный индикатор

— 1 —> I  —  глобальное разрешение прерываний

— далее программа уходит в бесконечный цикл, и вся работа программы происходит при вызове прерываний от таймеров.

Если возникнут вопросы, если что-то изложено не понятно или есть вопросы по программе, пишите — отвечу.

  Программа термометра в HEX файле (2,4 KiB, 7 712 hits)

  Программа термометра в Algorithm Builder (7,1 KiB, 5 472 hits)

Второй вариант программы, без 4-х секундной задержки измерения температуры. Температура измеряется непрерывно (интервал менее 1 секунды)

  Термометр 2 — HEX файл (2,4 KiB, 4 486 hits)

  Термометр 2 в AlgorithmBuilder (11,1 KiB, 4 219 hits)

Другие конструкции на микроконтроллерах1. Простые электронные часы на микроконтроллере ATyni26, с использование микросхемы часов реального времени DS13072. Двухканальный термометр на микроконтроллере ATmega8 и датчиках температуры DS18B203. Двухканальный термостат, терморегулятор на ATmega8 и датчиках DS18B204. Двухканальный термометр, термостат, терморегулятор с возможностью работы по времени, одноканальный таймер реального времени на ATmega8 и датчиках DS18B205. Двухканальный термометр, часы на ATmega8, датчиках температуры DS18B20, RTC DS1307, LCD 1602

Термометр на микроконтроллере ATmega8 и цифрового датчика температуры DS18B20Схема, программа очень простого термометра на микроконтроллере ATmega8 с использование датчика температуры DS18B20
Published by: Мир микроконтроллеров

Date Published: 05/07/2015

Общие принципы работы датчика температуры DS18B20

DS18B20 представляет собой однопроводный цифровой датчик температуры от компании Maxim IC. Выдает значение температуры в градусах Цельсия, способен измерять температуру с 9-12 битной точностью в диапазоне от -55 до 125 градусов Цельсия с точностью +/-0.5 градуса. Каждый датчик DS18B20 имеет 64-битный уникальный номер (Serial number), вытравленный на корпусе датчика, что позволяет подключать огромное число подобных датчиков к одной шине данных. С помощью данного датчика можно измерять температуру воздуха, жидкостей и земли. В некоторых магазинах датчик продается в комплекте с резистором сопротивлением 4,7 кОм.

Особенности датчика DS18B20:

  • однопроводный интерфейс (1-Wire interface), что позволяет использовать для подключения датчика только один контакт микроконтроллера (в нашем случае платы Arduino Uno);
  • каждый датчик имеет 64-битный уникальный последовательный код (номер), хранящийся в ПЗУ (ROM) датчика;
  • способность подключения к одной шине множества датчиков позволяет создавать на его основе приложения для распределенного (в пространстве) измерения температуры;
  • не требует никаких внешних компонентов;
  • может быть запитан от линии данных;
  • поддерживает напряжение питания от 3.0V до 5.5V;
  • способен измерять температуру в диапазоне от –55°C до +125°C (–67°F до +257°F) с точностью ±0.5°C (в диапазоне от –10°C до +85°C);
  • можно выбрать разрешающую способность (разрешение) датчика: от 9 до 12 бит;
  • преобразует значение температуры в 12-битное цифровое слово длительностью 750 мс (max.);
  • можно настраивать энергонезависимую (nonvolatile, NV) сигнализацию (сигнал тревоги);
  • опции сигнала тревоги позволяют идентифицировать и определить адрес датчика, чья температура не соответствует запрограммированным границам;
  • может применяться в устройствах термоконтроля, промышленных системах, потребительских продуктах, термометрах и в любых других системах, где требуется измерение температуры.

Более подробную информацию о принципах работы датчика DS18B20 вы можете посмотреть в следующей статье на нашем сайте.

1Технические характеристики датчика температуры и влажности DHT11

Итак, датчик DHT11 имеет следующие характеристики:

  • диапазон измеряемой относительной влажности – 20..90% с погрешностью до 5%,
  • диапазон измеряемых температур – 0..50°C с погрешностью до 2°C;
  • время реакции на изменения влажности – до 15 секунд, температуры – до 30 секунд;
  • минимальный период опроса – 1 секунда.

Габаритные размеры и внешний вид датчика температуры и влажности DHT11

Как видно, датчик DHT11 не отличается особой точностью, да и диапазон температур не охватывает отрицательные значения, что вряд ли подойдёт для наружных измерений в холодное время года при нашем климате. Однако малая стоимость, малый размер и простота работы с ним частично перекрывают эти недостатки. На рисунке приведён внешний вид датчика и его размеры в миллиметрах.

Асинхронный опрос пачки датчиков

// пример компактного асинхронного опроса датчиков на программном таймере
// https://alexgyver.ru/lessons/time/

// количество датчиков для удобства
#define DS_SENSOR_AMOUNT 5

// создаём двухмерный массив с адресами
uint8_t addr[] = {
  {0x28, 0xFF, 0x78, 0x5B, 0x50, 0x17, 0x4, 0xCF},
  {0x28, 0xFF, 0x99, 0x80, 0x50, 0x17, 0x4, 0x4D},
  {0x28, 0xFF, 0x53, 0xE5, 0x50, 0x17, 0x4, 0xC3},
  {0x28, 0xFF, 0x42, 0x5A, 0x51, 0x17, 0x4, 0xD2},
  {0x28, 0xFF, 0xCD, 0x59, 0x51, 0x17, 0x4, 0xFE},
};

#include <microDS18B20.h>
// указываем DS_ADDR_MODE для подключения блока адресации
// и создаём массив датчиков на пине D2
MicroDS18B20<2, DS_ADDR_MODE> sensor;

void setup() {
  Serial.begin(9600);
  // устанавливаем адреса
  for (int i = ; i < DS_SENSOR_AMOUNT; i++) {
    sensor.setAddress(addr);
  }
}

void loop() {
  // конструкция программного таймера на 1c
  static uint32_t tmr;
  if (millis() - tmr >= 1000) {
    tmr = millis();

    // выводим показания в порт
    for (int i = ; i < DS_SENSOR_AMOUNT; i++) {
      Serial.print(sensor.getTemp());
      Serial.print(',');
      //delay(5); // возможно понадобится дилей, у меня работает без него
    }
    Serial.println();

    // запрашиваем новые
    for (int i = ; i < DS_SENSOR_AMOUNT; i++) {
      sensor.requestTemp();
      //delay(5); // возможно понадобится дилей, у меня работает без него
    }
  }
}

Подключение датчика DS18B20

Подключение датчика DS18B20, как правило, происходит двумя-тремя простыми способами. Мы рассмотрим эти способы на примере подключений DS18B20 к плате Arduino и esp8266.

Подключение датчика DS18B20 к Arduino

Начнем с прямого подключения единичного датчика к Arduino:

Для начала необходимо прикрепить устройство непосредственно к плате Arduino: поэтому подаем «5V» к выводу «Vdd» устройства. Таким же способом связываем друг с другом выводной «GND». Затем срединный датчик DS18B20 фиксируем на каком-либо выходном регистре (по желанию). Допустим, это будет регистр «D2».

Подключение вывода данных «DQ» необходимо производить только после того, как вы записали номерной код Arduino на скетч. Кроме того, очень важным аспектом, о котором необходимо сказать, является присутствие номинального резистора «4,7k», который располагается между линиями устройства и блоками питания. Отметим, что данный резистор предназначен для обеспечения полного функционирования (то есть без сбоев) линий термодатчика.

Теперь перейдем к рассмотрению подключения несколькими датчиками DS18B20 к плате Arduino:

Мы возьмем в пример ситуацию с 5-ю датчиками DS18B20. Итак, как мы видим, все 5 датчиков в шине подсоединены параллельным образом, при этом, они стягиваются номинальным резистором «4,7k». Таким образом, действие платы Arduino будет определяться уникальным и точным кодом каждого из этих 5-ти датчиков.

Пришла очередь третьего способа подключения DS18B20 к плате Arduino при помощи паразитного питания:

В данном случае очевидно, что датчик/датчики принимает/принимают импульс линейных данных датчика, которые расположены между блоками «Vdd» и «GNG». А существенную роль и здесь играет все тот же номинальный резистор «4,7k», который не только стягивает линейные данные датчика, но и обеспечивает функционирование всей “буферной” системы и конструкции.

Подключение датчика DS18B20 к esp8266

Теперь перейдем к обсуждению подключения датчика DS18B20 к esp8266. Начнем, пожалуй, с прямого подключения:

Резистор 1 (R1) определяет сопротивление не более 2,2-х КОм. При наличии такого резистора, срединный вывод “DATA” прикрепляется к кабельному блоку, либо «GND», либо «VCC», а также соединяется с центральной трубкой, что и обеспечивает качественное: прочное, герметичное подключение.

Наконец, поговорим о последнем способе подключения датчика DS18B20 к esp8266:

Картинка выше почти идентичная, разница лишь в резисторе

Данный способ осуществляется с помощью номинального резистора «4,7k», который подтягивает всю систему к питанию, и с помощью трех контактов вывода датчика DS18B20, обеспечивающих, в свою очередь, подключение линий «DQ» к срединному «DATA».

3Считывание данных с сенсора DHT11 при помощи Arduino

Давайте пойдём таким путём: скачаем библиотеку для датчика DHT11 (также приложил её в конце статьи, т.к. у обновлённой библиотеки изменились вызываемые функции), установим её стандартным способом (распаковав в директорию \libraries\ среды разработки для Arduino).

Напишем вот такой простенький скетч. Он будет выводить в последовательный порт компьютера каждые 2 секунды сообщения об относительной влажности и температуре, считанные с датчика DHT11.

#include <dht11.h> // подключаем библиотеку
dht11 sensor; // инициализация экземпляра датчика
#define DHT11PIN 8 // вывод 8 будет шиной DATA

void setup() {
  Serial.begin(9600);
}

void loop() {
  int chk = sensor.read(DHT11PIN);

  Serial.print("h=");
  Serial.print(sensor.humidity);
  Serial.print("%\t");

  Serial.print("t=");
  Serial.print(sensor.temperature);
  Serial.println("C");
  
  delay(2000);
}

Загрузим этот скетч в Arduino. Подключимся к Arduino с помощью монитора COM-порта и увидим следующее:

Данные о температуре и влажности, полученные с датчика DHT11

Видно, что данные и о влажности, и о температуре считываются и выводятся в терминалку.

Калибровка температурного датчика lm35

Калибровка аналогового датчика нужна, для того чтобы получать показания с lm35 температурного датчика в градусах Цельсия, как это сделано на цифровом датчике температуры и влажности DHT11. Для этого в скетч следует добавить еще одну переменную и вставить формулу, которая преобразует аналоговый сигнал с датчика в градусы Цельсия. Для калибровки lm35 следует изменить формулу в программе.

Скетч для калибровки датчика lm35

int temp;    // освобождаем память для переменной "temp"
float grad; // освобождаем память для переменной "grad"

void setup() {
  pinMode(A0, INPUT); // сенсор LM35 подключим к аналоговому входу A0
  Serial.begin(9600);     // подключаем монитор порта
}

void loop() {
  temp = analogRead(A0); // переменная находится в интервале 0 - 1023
  grad = ( temp/1023.0 )*5.0*1000/10; // формулу можно изменять
  Serial.println(grad);              
      // выводим температуру на монитор

  delay(100); // ставим небольшую задержку
}

Пояснения к коду:

  1. переменная — это число с плавающей точкой, используется для аналоговых величин, т.к. позволяют описать их более точно, чем целые числа;
  2. в формуле можно менять значения чисел, чтобы точнее откалибровать температурный датчик;

Основные функциональные способности датчика DS18B20

Термодатчик DS18B20 имеет в своем функционале сразу несколько важнейших команд:

  1. Навык преобразования температур. (Данная способность может поместить температуру в двух-байтный блок оперативной памяти, после чего датчик переходит в состояние низкого потребления. В этом состоянии DS18B20 считывает код данных и определяет режим состояния процесса);
  2. Команда записи памяти. (Она дает возможность сохранить три байта данных в оперативной памяти DS18B20. При это, следует уточнить, что ведущий прибор перебрасывает информацию с наименьшего бита);
  3. Способность чтения памяти. (Применяется для прочтения оперативной памяти памяти прибора. Сброс данных осуществляется с самых наименьших битов или байтов, при этом, в случае необходимости, эта команда способна прекратить сброс данных);
  4. Команда копирования памяти. (Она помогает скопировать все данные внутренней памяти устройства в блок EEPROM, что приводит к осуществлению в дальнейшем питательной способности системы);
  5. Способность перезагрузки EEPROM. (Дает возможность регистрам передохнуть, перезагружая все значения на блоках. Кроме того, только после перезагрузки DS18B20 происходит процесс прочтения оперативной памяти памяти прибора и сообщается о ее состоянии).

Примеры работы для Arduino

Один датчик

Рассмотрим простой пример — подключения одного датчика.

Сенсор подключается к управляющей плате через один сигнальный пин.
При подключении к Arduino в компактном формфакторе, например Arduino Micro или Iskra Nano Pro, воспользуйтесь макетной платой и парочкой нажимных клеммников.

Между сигнальным проводом и питанием установите сопротивление 4,7 кОм.

При коммуникации сенсора со стандартными платами Arduino формата Rev3, Arduino Uno или Iskra Neo, используйте Troyka Slot Shield совместно с модулем подтяжки.

Код программы

Выведем температуру сенсора в Serial-порт.

simple.ino
// библиотека для работы с протоколом 1-Wire
#include <OneWire.h>
// библиотека для работы с датчиком DS18B20
#include <DallasTemperature.h>
 
// сигнальный провод датчика
#define ONE_WIRE_BUS 5
 
// создаём объект для работы с библиотекой OneWire
OneWire oneWire(ONE_WIRE_BUS);
 
// создадим объект для работы с библиотекой DallasTemperature
DallasTemperature sensor(&oneWire);
 
void setup(){
  // инициализируем работу Serial-порта
  Serial.begin(9600);
  // начинаем работу с датчиком
  sensor.begin();
  // устанавливаем разрешение датчика от 9 до 12 бит
  sensor.setResolution(12);
}
 
void loop(){
  // переменная для хранения температуры
  float temperature;
  // отправляем запрос на измерение температуры
  sensor.requestTemperatures();
  // считываем данные из регистра датчика
  temperature = sensor.getTempCByIndex();
  // выводим температуру в Serial-порт
  Serial.print("Temp C: ");
  Serial.println(temperature);
  // ждём одну секунду
  delay(1000);
}

Серия датчиков

Каждый сенсор DS18B20 хранит в своей памяти уникальный номер, такое решение позволяет подключить несколько датчиков к одному пину.

Добавим к предыдущем схемам подключения ещё по паре датчиков в параллель.

Код программы

Просканируем все устройства на шине и выведем температуру каждого сенсора отдельно в Serial-порт.

multipleSensors.ino
// библиотека для работы с протоколом 1-Wire
#include <OneWire.h>
// библиотека для работы с датчиком DS18B20
#include <DallasTemperature.h>
 
// сигнальный провод датчика
#define ONE_WIRE_BUS 5
 
// создаём объект для работы с библиотекой OneWire
OneWire oneWire(ONE_WIRE_BUS);
// создадим объект для работы с библиотекой DallasTemperature
DallasTemperature sensors(&oneWire);
// создаём указатель массив для хранения адресов датчиков
DeviceAddress *sensorsUnique;
// количество датчиков на шине
int countSensors;
 
// функция вывода адреса датчика
void printAddress(DeviceAddress deviceAddress){
  for (uint8_t i = ; i < 8; i++){
    if (deviceAddressi < 16) Serial.print("0");
    Serial.print(deviceAddressi, HEX);
  }
}
 
void setup(){
  // инициализируем работу Serial-порта
  Serial.begin(9600);
  // ожидаем открытия Serial-порта
  while(!Serial);
  // начинаем работу с датчиком
  sensors.begin();
  // выполняем поиск устройств на шине
  countSensors = sensors.getDeviceCount();
  Serial.print("Found sensors: ");
  Serial.println(countSensors);
  // выделяем память в динамическом массиве под количество обнаруженных сенсоров
  sensorsUnique = new DeviceAddresscountSensors;
 
  // определяем в каком режиме питания подключены сенсоры
  if (sensors.isParasitePowerMode()) {
    Serial.println("Mode power is Parasite");
  } else {
    Serial.println("Mode power is Normal");
  }
 
  // делаем запрос на получение адресов датчиков
  for (int i = ; i < countSensors; i++) {
    sensors.getAddress(sensorsUniquei, i);
  }
  // выводим полученные адреса
  for (int i = ; i < countSensors; i++) {
    Serial.print("Device ");
    Serial.print(i);
    Serial.print(" Address: ");
    printAddress(sensorsUniquei);
    Serial.println();
  }
  Serial.println();
  // устанавливаем разрешение всех датчиков в 12 бит
  for (int i = ; i < countSensors; i++) {
    sensors.setResolution(sensorsUniquei, 12);
  }
}
 
void loop(){
  // переменная для хранения температуры
  float temperature10;
  // отправляем запрос на измерение температуры всех сенсоров
  sensors.requestTemperatures();
  // считываем данные из регистра каждого датчика по очереди
  for (int i = ; i < countSensors; i++) {
    temperaturei = sensors.getTempCByIndex(i);
  }
  // выводим температуру в Serial-порт по каждому датчику
  for (int i = ; i < countSensors; i++) {
    Serial.print("Device ");
    Serial.print(i);
    Serial.print(" Temp C: ");
    Serial.print(temperaturei);
    Serial.println();
  }
  Serial.println();
  // ждём одну секунду
  delay(1000);
}

Исходный код программы

Полный код программы представлен в конце статьи, здесь же сначала рассмотрим его наиболее важные фрагменты.

Для выполнения математических операций в программе мы должны подключить заголовочный файл библиотеки “#include <math.h>”, а для работы с ЖК дисплеем – подключить библиотеку “#include <LiquidCrystal.h>». Далее в функции setup() мы должны инициализировать ЖК дисплей.

Arduino

Void setup(){
lcd.begin(16,2);
lcd.clear();
}

1
2
3
4

Voidsetup(){

lcd.begin(16,2);

lcd.clear();

}

Значение температуры мы будем рассчитывать в программе с помощью рассмотренного выше уравнения Стейнхарта-Харта.

Arduino

float a = 1.009249522e-03, b = 2.378405444e-04, c = 2.019202697e-07;
float T,logRt,Tf,Tc;
float Thermistor(int Vo) {
logRt = log(10000.0*((1024.0/Vo-1)));
T = (1.0 / (A + B*logRt + C*logRt*logRt*logRt));// рассчитываем значение температуры в кельвинах по формуле Stein-Hart
Tc = T — 273.15; // переводим температуру из кельвинов в градусы Цельсия
Tf = (Tc * 1.8) + 32.0; // переводим температуру в шкалу Фаренгейта
return T;
}

1
2
3
4
5
6
7
8
9

floata=1.009249522e-03,b=2.378405444e-04,c=2.019202697e-07;

floatT,logRt,Tf,Tc;

floatThermistor(intVo){

logRt=log(10000.0*((1024.0Vo-1)));

T=(1.0(A+B*logRt+C*logRt*logRt*logRt));// рассчитываем значение температуры в кельвинах по формуле Stein-Hart

Tc=T-273.15;// переводим температуру из кельвинов в градусы Цельсия

Tf=(Tc*1.8)+32.0;// переводим температуру в шкалу Фаренгейта

returnT;

}

Также в программе мы считываем значение с аналогового входа платы Arduino.

Arduino

lcd.print((Thermistor(analogRead(0))));

1 lcd.print((Thermistor(analogRead())));

Внешний вид работы нашего проекта показан на следующем рисунке – на ЖК дисплее выводятся значения температуры в кельвинах, градусах Цельсия и по шкале Фаренгейта.

Схему можно запитать по кабелю USB или использовать адаптер на 12 В.

Далее представлен полный текст программы.

Arduino

#include <math.h>
#include «LiquidCrystal.h»
LiquidCrystal lcd(44,46,40,52,50,48);
float A = 1.009249522e-03, B = 2.378405444e-04, C = 2.019202697e-07;
float T,logRt,Tf,Tc;
float Thermistor(int Vo) { // функция для расчета значения температуры
logRt = log(10000.0*((1024.0/Vo-1)));
T = (1.0 / (A + B*logRt + C*logRt*logRt*logRt)); // рассчитываем значение температуры в кельвинах по формуле Стейнхарта-Харта
Tc = T — 273.15; // переводим температуру из кельвинов в градусы
Tf = (Tc * 1.8) + 32.0; // переводим температуру в шкалу Фаренгейта
return T;
}
void setup(){
lcd.begin(16,2);
lcd.clear();
}
void loop()
{
lcd.setCursor(0,0);
lcd.print(«Temp:»);
lcd.print((Thermistor(analogRead(0))));
lcd.print(«k «);

lcd.setCursor(0,1);
lcd.print((Tc));
lcd.print(» C ;»);
lcd.setCursor(9,1);
lcd.print((Tf));
lcd.print(» F»);
delay(800);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#include <math.h>
#include «LiquidCrystal.h»

LiquidCrystallcd(44,46,40,52,50,48);

floatA=1.009249522e-03,B=2.378405444e-04,C=2.019202697e-07;

floatT,logRt,Tf,Tc;

floatThermistor(intVo){// функция для расчета значения температуры

logRt=log(10000.0*((1024.0Vo-1)));

T=(1.0(A+B*logRt+C*logRt*logRt*logRt));// рассчитываем значение температуры в кельвинах по формуле Стейнхарта-Харта

Tc=T-273.15;// переводим температуру из кельвинов в градусы

Tf=(Tc*1.8)+32.0;// переводим температуру в шкалу Фаренгейта

returnT;

}

voidsetup(){

lcd.begin(16,2);

lcd.clear();

}

voidloop()

{

lcd.setCursor(,);

lcd.print(«Temp:»);

lcd.print((Thermistor(analogRead())));

lcd.print(«k «);

lcd.setCursor(,1);

lcd.print((Tc));

lcd.print(» C ;»);

lcd.setCursor(9,1);

lcd.print((Tf));

lcd.print(» F»);

delay(800);

}