Суперпроводник

Сверхпроводимость

Свойство материала обладать нулевым электрическим сопротивлением при температуре ниже определенного значения получило название сверхпроводимости.

У некоторых проводящих веществ эта способность возникает при холодной температуре, близкой к химическому состоянию жидкого гелия.

В 1986 году произошло открытие веществ с высокотемпературной сверхпроводимостью. Например, керамика из кислорода, бария, меди, лантана не проводит ток в обычных условиях, а вследствие нагревания становится сверхпроводником.

На практике используют вещества, пропускающие электрический ток при 58 градусах Кельвина и более, то есть при температуре выше точки кипения азота.

Чаще всего находят применение твердые высокотемпературные сверхпроводники. Жидкие и газообразные используют реже. Все эти материалы необходимы для изготовления современных электротехнических устройств различной мощности.

Классификация сверхпроводников

Определение 2

Поверхностная энергия связана с наличием границ раздела между нормальной и сверхпроводящей фазами. Значение поверхностной энергии может быть положительным и отрицательным. Если оно больше нуля, то сверхпроводники получают название сверхпроводников первого рода, если меньше нуля – сверхпроводники второго рода.

Диаграмма состояния сверхпроводника 1 рода говорит о существовании только двух областей: сверхпроводящей и нормальной. Для сверхпроводника 2 рода имеются три области: сверхпроводящая, нормальная и смешанная, как показано на рисунке 1. Вид кривой равновесия принимает параболическую форму. На ней имеются критические точки Bk, Tk. Благодаря наличию данных кривых понятно, что магнитное поле должно понизить критическую температуру, чтобы перейти в сверхпроводящее состояние.

Для определения «нижнего» Bk1 и «верхнего» Bk2 критических полей изображают границы между областями. Tk – это значение критической температуры переходит в сверхпроводящее состояние при равном нулю внешнем магнитном поле.

Рисунок 1

Сверхпроводники второго рода могут применяться как соленоиды, которые служат для получения сильных магнитных полей. Сверхпроводники же первого рода использовать нельзя из-за низких критических магнитных полей.

Пример 1

Сила тока в сверхпроводнике формы бесконечно длинного цилиндра, равняется I. Проследить за изменением индукции магнитного поля с расстоянием от оси проводника.

Решение

Когда тело имеет форму бесконечно длинного цилиндра, то определение напряженности магнитного поля внешнего пространства идет при помощи значения полной силы тока:

H=I2πr.

Значение r является расстоянием от оси провода, где r≥R, R – радиус провода. Связь индукции с напряженностью выражается с формулой:

B=μH.

Когда В переходит внутрь провода, то по экспоненциальному закону происходит уменьшение до .

Рисунок 2 показывает изменение индукции. Расстояние λL от поверхности, при котором индукция магнитного поля уменьшается в е раз, получило название глубинного проникновения. Ее увеличение происходит за счет повышения температуры.

Рисунок 2

Пример 2

Произвести описание физической природы сверхпроводимости.

Решение

Главной особенностью поведения сверхпроводника считается свободное движение внутри вещества носителей заряда. Эффект является квантовым.

По закону Кулона между электронами металла действуют силы отталкивания. Этот процесс может быть ослаблен при помощи экранирующего действия ионов кристаллической решетки. Электроны движутся к ионам, даже при незначительном притяжении, но при наличии определенных условий притяжение превосходит отталкивание. Это характеризуется образованием пар электронов с нулевым спином. Они являются носителями тока в сверхпроводниках. Размер таких пар огромен, так как может достигать порядка микрон.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Опыт Х. Каммерлинг-Оннеса

Такие опыты были проведены начале XXв голландским физиком X. Каммерлинг-Оннесом в созданной им лучшей на то время криогенной лаборатории, где удалось получить температуры порядка 1К (-272⁰С).

Выяснилось, что электрическое сопротивление различных образцов действительно, плавно падает по мере уменьшения температуры, однако, падение это нелинейно, и сильно зависит от химической чистоты исследуемых материалов. Поскольку легче всего поддаются высокой очистке легкоплавкие металлы (ртуть, свинец, олово, висмут), для исследования использовались в первую очередь они.

И 8 апреля 1911 г было обнаружено, что электрическое сопротивление ртутного проводника при 3К не регистрируется приборами, уменьшаясь, фактически, до нуля.

Рис. 2. График сверхпроводимости ртути.

В дальнейшем были обнаружены и другие материалы, также резко уменьшавшие электрическое сопротивление при сверхнизких температурах.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Сила статуса

  • В некоторых случаях, когда вы прокаете элементальную реакцию — изначальный элемент не пропадает с соперника после реакции. (Особенно часто это можно заметить ударяя огнем по воде или льдом по огню. Это связано с различной силой элементальных статусов и реакций.
  • Сила статуса измеряется в единицах. Бывают силы статуса на 1ед., 2ед. и на 4ед., но 4 единицы есть только на ульте бэйдоу, поэтому если вы ей не играете для вас будут актуальны только 1ед. и 2ед. 
  •  У каждого навыка каждого персонажа есть своя сила статуса. 

Когда вы накладываете элементальный статус, его сила, то есть количество единиц влияет на 3 вещи: 

  • Количество единиц статуса на враге.
  • Длительность статуса на враге.
  • Необходимую силу статуса триггера для полного снятия статуса в процессе реакции.

Длительность статуса

  • 1ед. держится 9,5 секунд 
  • 2ед держаться 12 секунд (по 6 секунд каждая)
  • 4ед держаться 16,8 секунд (по 4,2 секунды каждая) (4ед есть только на ульте бейдоу, поэтому если вы ей не играете не обращайте внимания. 

К примеру статус от ешки дионы, имея значение в одну единицу, длиться 9.5 секунд. А статус ешки Кеи, который имеет значение 2 единицы длиться 12 секунд

Связано это с тем, что чем больше единиц имеет сила источника элемента — тем дольше он будет держаться на враге, но так же, тем быстрее будет сгорать каждая единица статуса. Важно то, что чем больше единиц в силе статуса — тем больше реакций можно произвести с этим статусом. 

Применение сверхпроводников

Сверхпроводники еще не получили широкое применение, однако разработки в этой области активно ведутся. Так благодаря эффекту Мейснера возможны «парящие» над дорогой поезда на магнитной подушке – маглевы.

На основе сверхпроводников уже создаются сверхмощные турбогенераторы, которые могут применяться на электростанциях.

Поезд на магнитном подвеске в Шанхае, Китай

Криотрон – еще одно применение сверхпроводимости, которое может быть полезно для техники и электронных приборов. Это такое устройство, которое может переключать состояние сверхпроводника из обычного в сверхпроводящее за очень короткое время (от 10⁻⁶ до 10⁻¹¹с). Криотроны могут быть использованы в информационных системах, связанных с запоминанием и кодированием. Так впервые они применялись как запоминающие устройства в ЭВМ. Также криотроны могут помочь в области криоэлектроники, среди задач которой – повысить чувствительность приемников сигнала и сохранить форму сигнала как можно лучше. Здесь достижению поставленных целей способствуют низкие температуры и эффект сверхпроводимости.

Также, в силу отсутствия сопротивления в сверхпроводниках, кабели из такого вещества доставляли бы электричество без потерь на нагревание, что значительно бы повысило эффективность электроснабжения. Сегодня такие кабели требуют охлаждения посредством жидкого азота, что повышает цену на их эксплуатацию. Однако, исследования в этой сфере ведутся, и первая электропередача на основе сверхпроводников была приведена в эксплуатацию в Нью-Йорке 2008-м году компанией American Superconductor. В 2015-м году Южная Корея объявила о намерении создать несколько тысяч километров сверхпроводящих линий электропередач. Если добавить к этому недавнее открытие сверхпроводимости графена при комнатной температуре, то в ближайшее время следует ожидать глобальные изменения в области электроснабжения.

Самая близкая к идеальной сфера из всех когда-либо созданных человеком — ротор гироскопа GP-B. Сфера сделана из кварцевого стекла и покрыта тонкой плёнкой сверхпроводящего ниобия. Поверхности кварца отполированы до атомарного уровня.

Кроме указанных областей применения, сверхпроводимость применяется в измерительной технике, начиная от детекторов фотонов и заканчивая измерением геодезической прецессии посредством сверхпроводящих гироскопов на космическом аппарате «Gravity Probe B». Это измерение подтвердило предсказание Эйнштейна о наличии таковой прецессии по причинам, изложенным в Общей теории относительности. Не углубляясь в механизм измерения, следует отметить, что данные о геодезической прецессии Земли позволяют точно калибровать искусственные спутники Земли.

Подводя итоги написанного выше, напрашивается вывод о перспективности эффекта сверхпроводимости во множестве областей, и большом потенциале сверхпроводников, в первую очередь в сферах электроснабжения и электротехники. Ожидаем в ближайшее время множество открытий в данной области.

https://youtube.com/watch?v=L8YEdHYhuLs

1. История открытия

Основой для открытия явления сверхпроводимости стало развитие технологий охлаждения материалов до сверхнизких температур. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте (англ.) независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски (англ.) и Кароль Ольшевски (англ.) выполнили сжижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород.

В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес. Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий. Позднее ему удалось довести его температуру до 1 градуса Кельвина. Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов, в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и совсем перестанут проводить ток. Эксперименты, проводимые Камерлингом-Оннесем со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 градусах Кельвина (около −270 °C) электрическое сопротивление ртути практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий скачок сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.

В 1912 году были обнаружены ещё два металла, переходящие в сверхпроводящее состояние при низких температурах: свинец и олово. В январе 1914 года было показано, что сверхпроводимость разрушается сильным магнитным полем. В 1919 году было установлено, что таллий и уран также являются сверхпроводниками.

Нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году.

Первое теоретическое объяснение сверхпроводимости было дано в 1935 году Фрицем (англ.) и Хайнцем Лондоном (англ.). Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Она получила широкое распространение и известна как теория Гинзбурга — Ландау. Однако эти теории имели феноменологический характер и не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость получила объяснение на микроскопическом уровне в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов.

Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.

Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока. Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb3Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл, пропускать ток плотностью до 100 кА/см².

В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя.

В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La—Sr—Cu—O) испытывают скачок проводимости практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y—Ba—Cu—O). По состоянию на 1 января 2006 года рекорд принадлежит керамическому соединению Hg—Ba—Ca—Cu—O(F), открытому в 2003 году, критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К.

Звукоизоляция

Звукоизоляционные и шумоизоляционные защищают помещение от шума, проникающего в жилое здание извне. Они являются необходимыми как при строительстве частного дома, так и при самостоятельном капитальном ремонте квартиры. Современные пленки делятся на:

  1. Акустические;
  2. Звуко-прокладочные.

Ключевым отличием между ними является их назначение. Акустические помогают улучшить слышимость внутри конкретного помещения, а прокладочные устраняют проблему шума улицы от авто и т. д. Такие свойства обеспечиваются определенной фактурой и конструкцией плит. Они могут быть представлены в виде минеральной ваты или пенопласта, где, с одной стороны, мягкая структура, а с другой – жесткий отражающий лист (например, алюминиевый или асбестоцементный). Сейчас также производятся полимерные пленки, которые имеют мембранную структуру. Они известны комбинированными свойствами за счет мягкого внутреннего слоя и пористого наружного, которые поглощают звук из помещения и отражают частоты с улицы.

Пароизоляция

В качестве гидро,- и пароизоляции используются следующие материалы:

  • полипропиленовые и полиэтиленовые гидро,- и пароизоляционные пленки;
  • мембраны;
  • фольгированный материал;
  • пароизоляционный картон;
  • пергамин;
  • жидкая резина (обмазочная)
  • изоляционный материал ВПЭ.

Зачем нужна пароизоляция? Это защита строительных конструкций и утеплителей, что необходимо для создания комфортного микроклимата помещения. Пароизоляция используется в том случае, когда есть вероятность контакта утеплителя с воздухом, чаще всего для кровли.

В случае попадания влаги на утеплитель дальнейшее его использование осложняется появлением грибка, плесени и снижением теплоизоляционных свойств. Стоит отдельно пояснить, для чего нужна пароизоляция кровли: пар всегда поднимается вверх, таким образом, крыша – наиболее уязвимый участок здания.

Наиболее простым способом при строительстве кровли считается оклеечная пароизоляция. Ее преимущества – небольшое количество швов и герметичность соединений

При использовании такой технологии важно правильно выбрать материал. Чаще всего используется пароизоляционная пленка разного вида. Так рулонная полипропиленовая пленка достаточно прочная, в то время как полиэтиленовую легко повредить при монтаже

Поврежденный полиэтилен теряет свойства гидро,- и пароизоляции. Для простоты монтажа лучше выбрать самоклеящийся материал

Так рулонная полипропиленовая пленка достаточно прочная, в то время как полиэтиленовую легко повредить при монтаже. Поврежденный полиэтилен теряет свойства гидро,- и пароизоляции. Для простоты монтажа лучше выбрать самоклеящийся материал.

Такой вид пароизоляции как пергамин сочетает в себе свойства гидроизоляционных материалов. Если использовать пергамин как гидро,- и пароизоляцию, это поможет сократить расходы при производстве работ. Чаще всего он используется при строительстве бань, которые эксплуатируются круглый год (кроме перекрытия помещения парилки). Благодаря эластичности пергамин как пароизоляция используется при строительстве скатных крыш.

Устройство прокладочной пароизоляции в один слой – наиболее бюджетный и востребованный вид защиты материалов конструкции от влаги и пара. Такой вариант используется в жилых помещениях, офисах и торговых строениях.

Свойства сверхпроводников. Эффекты сверхпроводимости:

1. Нулевое электрическое сопротивление.

Строго говоря, сопротивление сверхпроводников равно нулю только для постоянного электрического тока. Сопротивление у сверхпроводников при прохождении через них переменного тока отлично от ноля и возрастает с повышением температуры.

2. Критическая температура сверхпроводников.

3. Критическое магнитное поле сверхпроводников.

Это значение магнитного поля, выше которого сверхпроводник теряет свойство сверхпроводимости и переходит в обычном состояние, характерное для обычного проводника.

Значение критического магнитного поля различается в зависимости от материала сверхпроводника и может составлять от нескольких десятков гаусс до нескольких сотен тысяч гаусс. В таблице значений сверхпроводимости материалов указывается критическое магнитное поле при температуре абсолютного нуля  (0 К).

Критическое магнитное и критическая температура взаимосвязаны между собой. При повышении температуры сверхпроводника критическое магнитное поле уменьшается. При температуре перехода из сверхпроводящего состояния в нормальное состояние критическое магнитное поле равно нулю, а при абсолютном нуле оно максимально.

Зависимость величины критического поля от температуры с хорошей точностью описывается выражением:

Нс(Т) = Нсо · (1 – T2 / Tc2)

где  Нс(Т) – критическое магнитное поле при заданной температуре, Нсо – критическое поле при нулевой температуре, Т – заданная температура, Тс – критическая температура.

Для сверхпроводников II рода указываются два значения магнитного поля.  Также нетрудно заметить, какие гигантские поля способны выдерживать сверхпроводники второго рода  без разрушения сверхпроводимости.

4. Критический ток в сверхпроводниках.

Это значение максимального постоянного тока, который может выдерживать сверхпроводник без потери сверхпроводящего состояния. При превышении этого значения сверхпроводник теряет свойство сверхпроводимости.

Как и критическое магнитное поле, критический ток обратно пропорционально зависит от температуры, уменьшаясь при ее увеличении.

5. Выталкивание магнитного поля сверхпроводником из своего объёма.

Это явление было названо эффектом Мейснера по имени первооткрывателя.

Эффект Мейснера означает полное вытеснение магнитного поля из объёма проводника при его переходе в сверхпроводящее состояние.  Внутри сверхпроводника  намагниченность равна нулю. Впервые явление наблюдалось в 1933 году немецкими физиками В. Мейснером и Р. Оксенфельдом.

Однако не у всех сверхпроводников наблюдается полный эффект Мейснера. Вещества, проявляющие полный эффект Мейснера, называются сверхпроводниками первого рода, а частичный – сверхпроводниками второго рода. Для сверхпроводников второго рода магнитное поле в интервале значений Hc1 –  Hc2 проникает и действует в виде вихрей Абрикосова. Однако стоит отметить, что в низких магнитных полях (ниже значения Hc и Hc1 ) полным эффектом Мейснера обладают все типы сверхпроводников.

Отсутствие магнитного поля в объеме сверхпроводника означает, что электрический ток протекает только в поверхностном слое сверхпроводника.

6. Глубина проникновения.

Это расстояние, на которое магнитный поток проникает в сверхпроводник. Обычно данную величину называют лондоновской глубиной проникновения (в честь братьев Лондон).

Глубина проникновения оказывается функцией температуры, прямо пропорционально ей и различна в разных материалах.

Исходя из действия эффекта Мейснера магнитное поле выталкивается из сверхпроводника токами, циркулирующими в его поверхностном слое, толщина которого приблизительно равна глубине проникновения. Эти токи создают магнитное поле, которым компенсируется поле, приложенное извне, не позволяя ему проникнуть внутрь.

При  достижении магнитным полем критического значения оно полностью проникает через глубину проникновения и захватывает весь сверхпроводник.

7. Длина когерентности.

Это расстояние, на котором электроны взаимодействуют друг с другом, создавая сверхпроводящее состояние. Электроны в пределах длины когерентности движутся согласованно – когерентно (как бы «в ногу»).

8. Удельная теплоемкость.

Данная величина показывает количество теплоты, необходимое для того, чтобы повысить температуру 1 грамма вещества на 1 К.

Удельная теплоемкость сверхпроводника резко (скачкообразно) возрастает вблизи температуры перехода в сверхпроводящее состояние, и довольно быстро (скачкообразно)  уменьшается с понижением температуры. Иными словами, в области перехода для повышения температуры вещества в сверхпроводящем состоянии требуется больше теплоты, чем в нормальном состоянии, а при очень низких температурах – наоборот.

Эффект Мейснера

Помимо сверхпроводимости, сверхпроводники обладают еще одной отличительной чертой, а именно – эффектом Мейснера. Это явление быстрого затухания магнитного поля в сверхпроводнике. Сверхпроводник является диамагнетиком, то есть в магнитном поле в сверхпроводнике индуцируются макроскопические токи, которые создают собственное магнитное поле, которое полностью компенсирует внешнее.

Магнит, левитирующий над высокотемпературным сверхпроводником, охлаждаемым жидким азотом

Эффект Мейснера пропадает в сильных магнитных полях. В зависимости от типа сверхпроводника (об этом далее) сверхпроводящее состояние при этом либо пропадает полностью (сверхпроводники I-го рода), либо сверхпроводник сегментируется на нормальные и сверхпроводимые области (II-го рода). Именно этот эффект способен объяснить левитацию сверхпроводника над сильным магнитом, либо магнита над сверхпроводником.

История открытия

Одним из вопросов, которые интересовали Камерлинг-Оннеса, было изучение сопротивления металлов при сверхнизких температурах. Было известно, что с ростом температуры электрическое сопротивление также растет. Следовательно, можно ожидать, что с уменьшением температуры будет наблюдаться обратный эффект.

Экспериментируя с ртутью в 1911-м году, ученый довел ее до замерзания и продолжил понижать температуру. При достижении 4,2 К устройство перестало фиксировать сопротивление. Оннес заменял устройства в исследовательской установке, поскольку побаивался их неисправности, однако устройства неизменно показывали нулевое сопротивление, несмотря на то, что до абсолютного нуля оставалось еще 4 К.

После открытия сверхпроводимости ртути возникло большое количество вопросов. Среди них: «свойственна ли сверхпроводимость другим веществам, помимо ртути?» или «сопротивление снижается до нуля, либо оно настолько мало, что устройства, которые существуют, не могут его измерить.

Оннес предложил оригинальное исследование с непрямым измерением, до какого уровня понижается сопротивление. Возбужденный в полупроводниковой цепи электрический ток, который был измерен при помощи отклонения магнитной стрелки, не затухал несколько лет. Согласно результатам этого эксперимента, полученное посредством расчетов удельное электрическое сопротивление сверхпроводника равнялось 10−25 Ом•м. По сравнению с удельным электрическим сопротивлением меди (1.5۰10−8 Ом•м) данная величина меньше на 7 порядков, что делает ее практически нулевой.

Что деает каждая реакция в Genshin Impact

  • Пар и Таяние — с ними все понятно, это самые мощные реакции в плане урона. Они умножают урон триггера на определенный процент.
  • Перегрузка — самая мощная трансформативная реакция, она наносит урон по площади.
  • Разбитие — наносит дополнительный физ урон по замороженному противнику от тяжелых ударов и двуручного меча. 
  • Заряжен — периодически наносит электро урон. Так же статус заряжен может перепрыгнуть на рядом стоящих врагов если триггер электро и враги рядом под гидро статусом.
  • Рассеивание  — наносит доп урон и накладывает элемент на врагов поблизости.
  • Суперпроводник — наносит доп урон и снижает физ. резист врага.
  • Замерзание — обездвиживает цель, дает почву для разбития.
  • Кристаллизация — создает щит вокруг игрока, поглощает входящий урон.

Важно помнить, что чем больше статов мы вкладываем в мастерство стихии, тем меньше статов мы сможем вложить в урон, атаку и другие характеристики, которые напрямую влияют на усиление обычной атаки нашего персонажа. Поэтому я включил в калькулятор ко всем реакциям дополнительную строку, которая показывает урон атаки без учета реакций

Сделал я это для наглядности и для того чтобы вы не просто в вслепую гнались за уроном реакций, но и обращали внимание на атаки персонажа. Конечно же теперь у нас возникает вопрос — а что собственно лучше качать — реакции или урон атак? Зависит от каждого персонажа и каждого навыка. Оптимизировать и просчитывать статы нужно для каждого перса отдельно. 

Я уже начал работу над следующим калькулятором, который будет считать общий дпс реакции и атаки персонажей, но эта огромная тема для другого видео. Если же вы хотите сами поэкспериментировать и попробовать сравнить дпс и оптимизировать статы — то далее я расскажу как это сделать в теории. Практика и калькулятор будут в следующем видосе. А пока что вы можете просчитать на сколько вам нужно вложиться в те или иные статы чтобы получить определенный результат.

Теоретическое объяснение эффекта сверхпроводимости

Феноменологический подход. Хоть Камерлинг-Оннес и является первооткрывателем сверхпроводимости, первая теория сверхпроводимости впервые была предложена в 1935-м году немецкими физиками и братьями Фрицом и Гайнцом Лондонами. Ученые стремились математически записать такие свойства сверхпроводника как сверхпроводимость и эффект Мейснера, не вникая в микроскопические причины сверхпроводимости, феноменологически. Выведенные уравнения позволяли объяснить эффект Мейснера так, что внешнее магнитное поле могло проникать в сверхпроводник только на определенную глубину, зависящую от так называемой лондоновской глубины проникновения. Для объяснения сверхпроводимости, потребовалось предположение о том, что носителями тока в сверхпроводнике, как и в металле, являются электроны. При этом, нулевое сопротивление означает то, что электрон не испытывает столкновений во время своего движения. Так как это относится ко всем электронам проводимости, то имеет место ток электронов без сопротивления.

Очевидно, что данная теория не объясняет саму природу данного явления, а лишь описывает его и позволяет предсказывать его поведение в ряде случаев. Более глубокая, но также, феноменологическая теория была предложена в 1950-м году советскими физиками-теоретиками Левом Ландау и Виталием Гнизбургом.

Куперовская пара электронов, движущаяся сквозь решетку из положительных атомов. Первый электрон искажает решетку, создавая область повышенного положительного заряда, в которую втягивается второй электрон.

Теория БКШ. Первое качественное объяснение явлению сверхпроводимости было предложено в рамках так называемой теории БКШ, построенной американскими физиками Джоном Бардином, Леоном Купером и Джоном Шриффером. Эта теория выходит из предположения, что между электронами при определенных условиях может возникать притяжение. Притяжение, которое обусловлено различными возбуждениями, в первую очередь – колебаниями кристаллической решетки, способно создавать «куперовские пары» — связанные состояния двух электронов в кристалле. Такая пара может двигаться в кристалле, не рассеиваясь ни на колебания кристаллической решетки, ни на примеси. В веществах с температурой, далекой от нуля, достаточно энергии, чтобы «разорвать» такую пару электронов, в то время как при низких температурах система не обладает достаточной энергией. В результате этого возникает поток связанных электронов – куперовских пар, которые практически не взаимодействуют с веществом. В 1972-м году Д. Бардин, Л. Купер и Д. Шриффер получили Нобелевскую премию по физике.

Позднее советский физик-теоретик Николай Боголюбов усовершенствовал теорию БКШ. В своих работах ученый подробно описал условия, при которых могут образовываться куперовские пары (энергия близкая к энергии Ферми, определенные спины и др.) в результате квантовых эффектов. По отдельности электроны представляют собой частицы с полуцелым спином (фермионы), которые неспособны образовывать конденсат Бозе-Эйнштейна и переходить в сверхтекучее состояние. Когда же имеется куперовская пара электронов, то она представляет собой квазичастицу с целым спином и является бозоном. При определенных условиях бозоны способны формировать конденсат Бозе-Эйнштейна, то есть вещество, частицы которого занимают одно и то же состояние, что приводит к возникновению сверхтекучести. Такая сверхтекучесть электронов и объясняет эффект сврехпроводимости.