Ионисторы (суперконденсаторы)

Конденсаторы для силовой электроники

Конденсаторы для источников питания, стабилизаторов, преобразователей напряжения или частоты работают в условиях больших коммутируемых токов, реактивных нагрузок, с напряжением различной формы. Типичные области применения включают в себя:

  • Преобразователи напряжения в локомотивах, электропоездах, городском электротранспорте, промышленных источниках питания;
  • Источники питания постоянного тока;
  • Промышленные источники питания;
  • Системы тестирования высоковольтных линий;
  • Импульсные разрядники.

Предлагаемые Vishay конденсаторы для силовой электроники (рис. 2) отвечают требованиям стандартов IE C 61071, IEC 61881, также возможна адаптация продукции под спецификации заказчика.

Рис. 2. Конденсаторы для силовой электроники

Ассортимент конденсаторов позволяет сделать оптимальный выбор практически для любого типа приложений с переменным напряжением вплоть до 24 кВ, для постоянного напряжения — до 125 кВ с уровнями концентрации энергии в конденсаторе до 15 кДж.

Серия DCMKP — низкоиндуктивные конденсаторы (<30 нГн), способные выдерживать импульсные токи до 600 А, устойчивые к ударным и вибрационным нагрузкам. Предназначены для фильтрации напряжения, развязки по постоянному току, накопления энергии в промышленных и тяговых двигателях. Номиналы 50…20000 мкФ, работа с напряжением 900…4250 В.

Серии EC, ET — высоковольтные конденсаторы, выполненные по технологии комбинированного диэлектрика (полиэстер, полипропилен, конденсаторная ткань) с масляным наполнением в герметичном корпусе. Могут применяться в системах с охлаждением воздухом, маслом, охлаждающей жидкостью типа SF6. Разработаны специально для систем фильтрации высоковольтного напряжения:

  • Сглаживание пульсаций напряжения;
  • Контуры индукционных печей;
  • Источники питания радиопередатчиков;
  • Источники питания рентгеновских аппаратов.

Диапазон номинальных значений 1 нФ…2 мкФ; (от 500 пФ до 2 мкФ для серии ЕТ), диапазон напряжений 1000…100000 В.

EMKP — серия цилиндрических конденсаторов с малыми потерями на высоких частотах для применений:

  • Во входных/выходных фильтрах переменного тока;
  • В устройствах демпфирования и уменьшения переходных искажений;
  • В системах коммутации нагрузки;
  • Для гальванической развязки и фильтрации постоянного напряжения;
  • Защита от перенапряжения.

Номиналы 0,1…470 мкФ для рабочих напряжений 400…2400 В.

Серия EPR — высоковольтные конденсаторы, выполненные по технологии комбинированного диэлектрика (полиэстер/полипропилен, конденсаторная ткань) с масляным наполнением в герметичном полипропиленовом корпусе с креплениями на болт М10, устойчивы к механическим ударам и вибрациям.

Основное целевое применение:

  • Развязывающие конденсаторы;
  • Высоковольтные разрядники;
  • Импульсные источники;
  • Радары, лазеры, источники рентгеновского излучения.

Номиналы 2 нФ…2 мкФ, диапазон возможных рабочих напряжений 1000…300000 В (постоянное напряжение).

Конденсаторы для фильтров постоянного тока серии ER сочетают хорошие электрические характеристики с компактными размерами, устойчивы к механическим ударам и вибрациям, обладают широким температурным диапазоном -55…85°С.

Ориентированы на применение:

  • В аудиоаппаратуре;
  • В импульсных источниках питания;
  • В цепях генераторов;
  • При фильтрации радиопомех;
  • В настраиваемых фильтрах;
  • При сглаживании пульсаций напряжения.

Номиналы 10 нФ…100 мкФ при напряжениях до 30 кВ.

GLI…A — серия конденсаторов с низкой индуктивностью и низкими потерями на высоких частотах (4х10-4 на 2 кГц), предназначенная для конверторов напряжения и частоты, промышленных и тяговых двигателей, источников бесперебойного питания, медицинского оборудования. Номиналы 1 пФ…230 мкФ при напряжениях 700…2150 В.

HDKMP — конденсаторы для сетей постоянного тока с высоким уровнем среднеквадратичного тока до 150 А и пиковым током до 25 кА, обладают низкой индуктивностью и устойчивостью к механическим воздействиям. Основное целевое применение — фильтры питания в различных силовых установках (тяговые двигатели, ветровые турбины, источники бесперебойного питания).

Принцип работы и характеристики конденсаторов

Устройство конденсатора представляет собой две металлические пластинки-обкладки, разделенные тонким слоем диэлектрика. Соотношение размеров и расположения обкладок и характеристика материала диэлектрика определяет показатель емкости.

Разработка конструкции любого типа конденсатора преследует целью получение максимальной емкости в расчете на минимальные размеры для экономии пространства на печатной плате устройства. Одна из наиболее популярных по внешнему виду форм — в виде бочонка, внутри которого скручены металлические обкладки с диэлектриком между ними. Первый конденсатор, изобретенный в городе Лейдене (Нидерланды) в 1745 году, получил название «Лейденской банки».

Принципом работы компонента является способность заряжаться и разряжаться. Зарядка возможна благодаря нахождению обкладок на малом расстоянии друг от друга. Близкорасположенные заряды, разделенные диэлектриком, притягиваются друг к другу и задерживаются на обкладках, а сам конденсатор таким образом хранит энергию. После отключения источника питания компонент готов к отдаче энергии в цепи, разряду.

Параметры и свойства, определяющие рабочие характеристики, качество и долговечность работы:

  • электрическая емкость;
  • удельная емкость;
  • допускаемое отклонение;
  • электрическая прочность;
  • собственная индуктивность;
  • диэлектрическая абсорбция;
  • потери;
  • стабильность;
  • надежность.

Способность накапливать заряд определяет электрическую емкость конденсатора. При расчете емкости нужно знать:

  • площадь обкладок;
  • расстояние между обкладками;
  • диэлектрическую проницаемость материала диэлектрика.

Для повышения емкости нужно увеличить площадь обкладок, уменьшить расстояние между ними и использовать диэлектрик, материал которого обладает высокой диэлектрической проницаемостью.

Для обозначения емкости используется Фарад (Ф) — единица измерения, получившая свое название в честь английского физика Майкла Фарадея. Однако 1 Фарад — слишком большая величина. Например, емкость нашей планеты составляет менее 1 Фарада. В радиоэлектронике используются меньшие значения: микрофарад (мкФ, миллионная доля Фарада) и пикофарад (пФ, миллионная доля микрофарада).

Watch this video on YouTube

Удельная емкость рассчитывается из отношения емкости к массе (объему) диэлектрика. На этот показатель влияют геометрические размеры, и повышение удельной емкости достигается за счет снижения объема диэлектрика, но при этом повышается опасность пробоя.

Допускаемое отклонение паспортной величины емкости от фактической определяет класс точности. Согласно ГОСТу, существует 5 классов точности, определяющих будущее использование. Компоненты высшего класса точности применяются в цепях высокой ответственности.

Электрическая прочность определяет способность удерживать заряд и сохранять рабочие свойства. Заряды, сохраняющиеся на обкладках, стремятся друг к другу, воздействуя на диэлектрик

Электрическая прочность — важное свойство конденсатора, определяющее длительность его использования. В случае неправильной эксплуатации произойдет пробой диэлектрика и выход компонента из строя

Собственная индуктивность учитывается в цепях переменного тока с катушками индуктивности. Для цепей постоянного тока не берется в расчет.

Диэлектрическая абсорбция — появление напряжения на обкладках при быстром разряде. Явление абсорбции учитывается для безопасной эксплуатации высоковольтных электрических устройств, т.к. при коротком замыкании существует опасность для жизни.

Потери обусловлены малым пропусканием тока диэлектриком. При эксплуатации компонентов электронных устройств в разных температурных условиях и разной влажности свое влияние оказывает показатель добротности потерь. На него также влияет рабочая частота. На низких частотах сказываются потери в диэлектрике, на высоких — в металле.

Стабильность — параметр конденсатора, на который также оказывает влияние температура окружающей среды. Ее воздействия делятся на обратимые, характеризуемые температурным коэффициентом, и необратимые, характеризуемые коэффициентом температурной нестабильности.

Надежность работы конденсатора в первую очередь зависит от условий эксплуатации. Анализ поломок говорит о том, что в 80% случаев причиной выхода из строя является пробой.

В зависимости от назначения, типа и области применения различаются и размеры конденсаторов. Самые маленькие и миниатюрные, размерами от нескольких миллиметров до нескольких сантиметров, используются в электронике, а самые крупные — в промышленности.

Соединение конденсаторов: формулы

  1. Последовательное соединение
  2. Онлайн калькулятор
  3. Смешанное соединение
  4. Параллельное соединение
  5. Видео

В электронных и радиотехнических схемах широкое распространение получило параллельное и последовательное соединение конденсаторов. В первом случае соединение осуществляется без каких-либо общих узлов, а во втором варианте все элементы объединяются в два узла и не связаны с другими узлами, если это заранее не предусмотрено схемой.

Последовательное соединение

При последовательном соединении два и более конденсаторов соединяются в общую цепь таким образом, что каждый предыдущий конденсатор соединяется с последующим лишь в одной общей точке. Ток (i), осуществляющий зарядку последовательной цепи конденсаторов будет иметь одинаковое значение для каждого элемента, поскольку он проходит только по единственно возможному пути. Это положение подтверждается формулой: i = ic1 = ic2 = ic3 = ic4.

В связи с одинаковым значением тока, протекающего через конденсаторы с последовательным соединением, величина заряда, накопленного каждым из них, будет одинаковой, независимо от емкости. Такое становится возможным, поскольку заряд, приходящий с обкладки предыдущего конденсатора, накапливается на обкладке последующего элемента цепи. Поэтому величина заряда у последовательно соединенных конденсаторов будет выглядеть следующим образом: Qобщ= Q1 = Q2 = Q3.

Если рассмотреть три конденсатора С1, С2 и С3, соединенные в последовательную цепь, то выясняется, что средний конденсатор С2 при постоянном токе оказывается электрически изолированным от общей цепи. В конечном итоге величина эффективной площади обкладок будет уменьшена до площади обкладок конденсатора с самыми минимальными размерами. Полное заполнение обкладок электрическим зарядом, делает невозможным дальнейшее прохождение по нему тока. В результате, движение тока прекращается во всей цепи, соответственно прекращается и зарядка всех остальных конденсаторов.

Общее расстояние между обкладками при последовательном соединении представляет собой сумму расстояний между обкладками каждого элемента. В результате соединения в последовательную цепь, формируется единый большой конденсатор, площадь обкладок которого соответствует обкладкам элемента с минимальной емкостью. Расстояние между обкладками оказывается равным сумме всех расстояний, имеющихся в цепи.

Падение напряжения на каждый конденсатор будет разным, в зависимости от емкости. Данное положение определяется формулой: С = Q/V, в которой емкость обратно пропорциональна напряжению. Таким образом, с уменьшением емкости конденсатора на него падает более высокое напряжение. Суммарная емкость всех конденсаторов вычисляется по формуле: 1/Cобщ = 1/C1 + 1/C2 + 1/C3.

Главная особенность такой схемы заключается в прохождении электрической энергии только в одном направлении. Поэтому в каждом конденсаторе значение тока будет одинаковым. Каждый накопитель в последовательной цепи накапливает равное количество энергии, независимо от емкости. То есть емкость может воспроизводиться за счет энергии, присутствующей в соседнем накопителе.

Онлайн калькулятор, для расчета емкости конденсаторов соединенных последовательно в электрической цепи.

Параллельное соединение конденсаторов

Параллельным считается такое соединение, при котором конденсаторы соединяются между собой двумя контактами. Таким образом в одной точке может соединяться сразу несколько элементов.

Данный вид соединения позволяет сформировать единый конденсатор с большими размерами, площадь обкладок которого будет равна сумме площадей обкладок каждого, отдельно взятого конденсатора. В связи с тем, что емкость конденсаторов находится в прямой пропорциональной зависимости с площадью обкладок, общая емкость составить суммарное количество всех емкостей конденсаторов, соединенных параллельно. То есть, Собщ = С1 + С2 + С3.

Поскольку разность потенциалов возникает лишь в двух точках, то на все конденсаторы, соединенные параллельно, будет падать одинаковое напряжение. Сила тока в каждом из них будет отличаться, в зависимости от емкости и значения напряжения. Таким образом, последовательное и параллельное соединение, применяемое в различных схемах, позволяет выполнять регулировку различных параметров на тех или иных участках. За счет этого получаются необходимые результаты работы всей системы в целом.

electric-220.ru

Во всех электронных устройствах используются конденсаторы. При их конструировании или изготовлении своими руками параметры устройств рассчитываются по специальным формулам.

Немного теории

О суперконденсаторах нужно знать несколько вещей. Наиболее важные из них касаются зарядки, разрядки и подключения: последовательного и параллельного.

Зарядка суперконденсатора

Начнем с постоянной времени RC-цепи:

t=R*C

За время t суперконденсатор емкостью С, подключенный последовательно с резистором  R, зарядится примерно до 2/3 (точнее до 63,2%) напряжения питания. За время 5t суперконденсатор зарядится до значения очень близкое к напряжению питания (99,3%).

Эти интервалы обусловлены тем, что процесс зарядки конденсатора является не линейной функцией (экспоненциальной). Для определения его параметров можно использовать следующие формулы:

В приведенных выше формулах:

  • Q: мгновенный заряд, в момент t ;
  • C: емкость конденсатора ;
  • I: мгновенный зарядный ток ;
  • V0: напряжение зарядки ;
  • V: мгновенное напряжение на суперконденсаторе ;
  • R: сопротивление, подключенное последовательно с суперконденсатором ;
  • t: время .

Обратите внимание, что:

  1. По мере зарядки заряд на пластинах суперконденсатора растет, как и его напряжение.
  2. По мере продолжения зарядки ток заряда уменьшается: от V0\R до почти нуля.
  3. Время зарядки суперконденсатора зависит от его емкости C и сопротивления R.

Практический пример: зарядка суперконденсатора емкостью 1Ф через резистор сопротивлением 50 Ом от источника напряжения 5 В (зафиксированного на осциллографе):

На рисунке видно, что суперконденсатор достиг заряда 63,2% (3,16 В) примерно за 47 секунд. Это согласуется (более менее) с постоянной времени:

t = 50 Ом * 1 Ф = 50 сек

Закупка

Нашел в китайском магазине ионисторы на 350 фарад. Забил емкость в Yenk-у, оказалось, что их хватит на 2.5 секунды работы стартера. Заказал их, а также балансировочную плату.

Преобразователь сначала купил в китайском магазине повышающий, собрал схему, преобразователь сразу сгорел. Не учел то, что в нем не было ограничения по току, а у ионисторов практически нулевое сопротивление, вот и получилось короткое замыкание на выходе преобразователя. Ограничение по току бывает в повышающе-понижающих, купил — тоже сгорел, но не сразу. Купил третий другого исполнения — работает отлично!

Аккумулятор взял обычный от UPS на 7 Ач.

Разработки и перспективы

При разработке ионисторов все более и более повышается их удельная емкость, и по всей вероятности, рано или поздно это приведет к полной замене аккумуляторов на суперконденсаторы во многих технических сферах. Последние исследования группы ученых Калифорнийского университета в Риверсайде показали, что новый тип ионисторов на основе пористой структуры, где частицы оксида рутения нанесены на графен, превосходят лучшие аналоги почти в два раза. Исследователи обнаружили, что поры «графеновой пены» обладают наноразмерами, подходящими для удержания частиц оксидов переходных металлов. Суперконденсаторы на основе оксида рутения теперь являются самым перспективным из вариантов. Безопасно работающие на водном электролите, они обеспечивают увеличение запасаемой энергии и повышают допустимую силу тока вдвое по сравнению с самыми лучшими из доступных на рынке ионисторов. Они запасают больше энергии на каждый кубический сантиметр своего объёма, поэтому ими целесообразно будет заменить аккумуляторы. Прежде всего, речь идёт о носимой и имплантируемой электронике, но в перспективе новинка может обосноваться и на персональном электротранспорте.

На частицы никеля послойно осаживают графен, выступающий опорой для углеродных нанотрубок, которые вместе с графеном формируют пористую углеродную структуру. В полученные нанопоры последней из водного раствора проникают частицы оксида рутения диаметром менее 5 нм. Удельная ёмкость ионистора на основе полученной структуры составляет 503 фарад на грамм, что соответствует удельной мощности 128 кВт/кг.

Возможность масштабирования этой структуры уже положила начало и создала основу на пути создания идеального средства хранения энергии. Ионисторы на основе «графеновой пены» прошли успешно первые тесты, где показали способность к перезаряду более восьми тысяч раз без ухудшения характеристик.

Принцип работы ионистора

Как уже было сказано, ионистор сильно напоминает конденсатор, но в отличие от него он не имеет диэлектрического слоя вокруг себя. Обкладки представляют собой особые вещества, которые копят заряды противоположных знаков.

Известно, что емкостные характеристики конденсаторов, как и ионисторов, зависят от величины обкладок. Рассматриваемый элемент обладает обкладками из активированного угля или специально подготовленного вспененного углерода. Это обеспечивает повышенную площадь обкладок.

Вам это будет интересно Таблица мощности автоматов


Простая схема, демонстрирующая принцип работы

Ионистор обладает выводами, которые сепарированы разделителем, помещенным в электролиты. Нужно это для предотвращения вероятных коротких замыканий. Электролиты чаще всего представляют собой кислоты и щелочи в любом приемлемом агрегатном состоянии.

Обратите внимание! При использовании электролитического йода или серебра можно получить качественный ионистор со значительными емкостными характеристиками, способностью работать при низких температурах и малым саморазрядом. Во время протекания электрических и химических реакций часть электронов отделяется от полюсов приспособления и обеспечивает создание положительного заряда

Отрицательно заряженные ионы, которые находятся в электролите, притягиваются этими полюсами со знаком «плюс». В результате получается электрический слой

Во время протекания электрических и химических реакций часть электронов отделяется от полюсов приспособления и обеспечивает создание положительного заряда. Отрицательно заряженные ионы, которые находятся в электролите, притягиваются этими полюсами со знаком «плюс». В результате получается электрический слой.


Ионистор на плате магнитолы

Сам же заряд сосредотачивается на границах углеродных полюсов и электролитического вещества. Слой очень тонкий, всего 1-5 нанометров в толщину, а это значительно повышает емкость приспособления.

Перспективы использования

Ионисторы с каждым годом становятся все совершенней

Важным параметром, которому ученые уделяют особое внимание — является увеличение удельной емкости. Через какое – то время планируется подобными приборами заменить аккумуляторы

Такие элементы позволяют заменить батареи в различных технических сферах. Специалисты возлагают большие надежды на разработку графеновых устройств. Применение инновационного материала поможет уже в ближайшее время создать изделия с высокими показателями запасаемой удельной энергии.

Ионистор нового образца в несколько раз превосходит альтернативные варианты. Данные элементы имеют в своей основе пористую структуру. Применяется графен, на котором распределяются частицы рутения. Преимуществом графеновой пены является способность удержания частиц оксидов переходных металлов. Подобные суперконденсаторы работают на водном электролите, что позволяет обеспечить безопасность эксплуатации.

В перспективе новинки будут применяться в сфере изготовления персонального электрического транспорта. Приборы на основе графеновой пены могут перезаряжаться до 8000 раз без ухудшения качественных характеристик.

В сфере автомобильного строения проводятся разработки альтернативных разновидностей топлива и устройств накопления энергии высокой эффективности. Подобные приборы могут применяться для грузового транспорта, электрических автомобилей и поездов.

В автомобилестроении суперконденсаторные батареи находят следующие применения:

  1. Пусковое устройство  подсоединяется параллельно стартерным батареям. Применяется для повышения эксплуатационного срока и улучшения пусковых характеристик двигателя.
  2. Для стабильного питания акустических систем большой мощности в автомобиле.
  3. Буферные батареи подходят для применения в гибридном транспорте. Они характеризуются небольшой емкостью и значительной выходной мощностью.
  4. Тяговые батареи актуальны при использовании в качестве основного источника питания.

Суперконденсаторы обладают множеством преимуществ по сравнению с аккумуляторами в автомобильной промышленности. Они превосходно выдерживают перепады напряжения. Приборы характеризуются легкостью, поэтому можно устанавливать большое их количество.

Для сферы микроэлектроники разрабатываются новые технологии по производству компактных суперконденсаторов. При производстве электродов применяются специальные методы осаждения на тонкую подложку из диоксида кремния специальной углеродистой пленки.

Использование суперконденсаторов позволяет внедрить в жизнь экологические технологии экономии энергии. В перспективе предусмотрено расширение сфер применения таких приспособлений для отраслей автотранспорта, мобильной техники и средств связи.

Положительные и отрицательные стороны

К числу безусловных преимуществ этих устройств относятся следующие качества:

  • разрядка и заряд устройства не занимает много времени, что позволяет их использовать в тех случаях, когда аккумуляторы установить не представляется возможным из-за долгой подзарядки;
  • по сравнению с аккумуляторными батареями у ионисторов значительно больше циклов полного заряда-разряда устройства;
  • чтобы произвести подзарядку, не понадобится специальное зарядное оборудование, следовательно, упрощается обслуживание;
  • радиодетали этого типа гораздо легче аккумуляторов и меньше их по габаритам;
  • широкий диапазон рабочей температуры – от -40 до 70С°;
  • срок эксплуатации во много раз больше, чем его имеют силовые конденсаторы и аккумуляторные батареи.

Как бы ни были хороши эти радиодетали, но у них есть и недостатки, которые несколько усложняют эксплуатацию, а именно:

  • относительно высокая цена на ионисторы приводит к тому, что использование их в технике ведет к ее удорожанию. Как утверждают специалисты, в ближайшем будущем эта проблема будет решена, благодаря развитию новых технологий;
  • низкие параметры номинального напряжения устройств, решением может служить последовательное соединение нескольких элементов (принцип такой же, как при подключении нескольких батареек). В этом случае потребуется установить шунт в виде резистора на каждый компонент;
  • превышение температурного режима (нагрев более 70С°) становится причиной выхода из строя;
  • данный тип радиодеталей не позволяет накапливать достаточно энергии, помимо этого они обладают небольшой энергетической плотностью (то есть не столь мощные, как аккумуляторы), что несколько сужает сферу их применения. Параллельное подключение нескольких элементов позволяет частично справиться с этой проблемой.

Отдельно следует заметить, что суперконденсаторы относятся к элементам, подключение которых требует, чтобы была соблюдена полярность. Нельзя допускать короткое замыкание устройства, поскольку оно станет причиной, из-за  которой повысится температура, и радиоэлементу потребуется замена.