Применение диодов
Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).
Выпрямительные диоды.
С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.
Будет интересно Как устроен туннельный диод?
Параметры диодов
Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.
Таблица основных параметров выпрямительных диодов.
В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются. Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:
- U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
- U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).
Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.
Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.
- I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
- I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
- U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.
Будет интересно SMD транзисторы
Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.
Диоды высокого тока.
Классификация
Полупроводниковые диоды, выпускаемые промышленностью, по их назначению можно разделить на следующие основные группы:
- силовые,
- опорные (стабилитроны),
- фотодиоды,
- импульсные,
- высокочастотные,
- параметрические.
Особый интерес представляют туннельные диоды. Маркировку полупроводниковых диодов, производство которых освоено после 1965 г., определяют четыре элемента. Первым элементом обозначения является буква, которая указывает материал используемого полупроводника: Г — германий; К — кремний; А — арсенид галлия. Если первым элементом обозначения является цифра (1 вместо Г, 2 вместо К и 3 вместо А), то это указывает, что приборы могут работать при повышенных температурах (например, приборы с кремниевым основанием, обозначенные цифрой 2, могут работать при температуре до 120°С).
Вторым элементом маркировки является буква, определяющая назначение прибора: А — сверхвысокочастотные диоды; Д — выпрямительные универсальные, импульсные диоды; В — выпрямительные столбы (последовательное соединение ряда диодов); С — стабилитроны; И — туннельные диоды; Ф—фотодиоды и т. д. Третий элемент маркировки (число) характеризует электрические свойства прибора. Выпрямительные низкочастотные диоды обозначаются цифрами от 101 до 399, универсальные — от 401 до 499, импульсные — от 501 до 599, усилительные туннельные диоды —от 101 до 199, генераторные туннельные диоды — от 201 до 299, переключающие туннельные диоды — от 301 до 399, стабилитроны — от 101 до 999.
Четвертый элемент маркировки (буква) определяет разновидность типа прибора из данной группы приборов. Например, 1Д505Б — германиевый импульсный диод, разновидность типа Б, или 3И302Б — арсенид-галлиевый туннельный диод, разновидность типа Б. Полупроводниковые диоды, разработка которых была закончена до 1965 г., обозначаются тремя элементами: первым элементом является буква Д; вторым элементом — число, указывающее диапазоны частот и исходный материал, из которого изготовлен диод; третий элемент определяет разновидность прибора.
Стабилитронами (опорными диодами) называются полупроводниковые диоды предназначенные для стабилизации постоянного напряжения. Для стабилизации напряжения в стабилитронах используют обратную ветвь вольт-амперной характеристики в области электрического пробоя, для этого их включают в обратном направлении. При изменении тока протекающего через стабилитрон от значения Iстmin до Iстmax напряжение на нем почти не изменяется.
Стабилитроны стабилизируют напряжение от 3,5 В, а для стабилизации меньшего напряжения используют стабисторы. В стабисторах используют прямую ветвь вольт-амперной характеристики, поэтому их включают в прямом направлении. Импульсным называется диод, который предназначен для работы в импульсных схемах. В прямом направлении импульсный диод хорошо проводит электрический ток. При обратном включении такого диода, обратный ток в нем резко увеличивается, а через короткий промежуток времени исчезает. Таким образом получается электрический импульс.
Что такое стабилитрон, где используется и какие бывают
Стабилитрон, или диод Зенера (по имени американского ученого, первым изучившим и описавшим свойства этого полупроводникового прибора), представляет собой обычный диод с p-n переходом. Его особенность – работа на участке характеристики с отрицательным смещением, то есть, когда напряжение прикладывается в обратной полярности. Используется такой диод в качестве самостоятельного стабилизатора, поддерживающего напряжение потребителя постоянным вне зависимости от изменения тока нагрузки и колебаний входного напряжения. Также узлы на стабилитронах применяются в качестве источников опорного напряжения для других стабилизаторов с развитой схемой. Реже диод с обратным включением используется в качестве элемента формирования импульсов или защитного ограничителя от перенапряжений.
Существуют обычные стабилитроны и двуханодные. Двуханодный стабилитрон — это два диода, включенные встречно в одном корпусе. Его можно заменить двумя отдельными приборами, включив их по соответствующей схеме.
Выбор устройства
При выборе стабилизатора учитывают следующие характеристики:
- Размеры. Выбранный стабилизатор должен компактно размещаться в запланированном для него месте для установки с возможностью нормального доступа.
- Вид. Из имеющихся в продаже устройств наиболее надежными, компактными и недорогими являются стабилизаторы на основе небольших микросхем.
- Возможность самостоятельного ремонта. Так как даже самые надежные устройства выходят из строя, необходимо отдавать предпочтение ремонтопригодным стабилизаторам, радиодетали к которым имеются в продаже в достаточном количестве и по доступной цене.
- Надежность. Выбранный стабилизатор должен обеспечивать постоянное значение напряжения без значительных отклонений от заявленного их производителем диапазона.
- Стоимость. Для электрической системы автомобиля достаточно приобрести устройство стоимостью до 200 рублей.
Напряжение стабилизации
Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?
Давайте возьмем стакан и будем наполнять его водой…
Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.
Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.
Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.
Маркировка стабилитронов
Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:
Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.
Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:
5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?
Катод у зарубежных стабилитронов помечается в основном черной полосой
Виды диодов
Диоды подразделяются на полупроводниковые и не полупроводниковые.
Не полупроводниковые — это газонаполненные и ламповые.
Полупроводниковые — являются в современном мире электроники самыми востребованными на настоящий момент. Такие элементы подразделяются между собой по множественным характеристикам.
По размеру токового перехода— различаются выпрямительные, точечные и микросплавные диоды.
Выпрямительные диоды — имеют возможность эксплуатироваться в условиях влажности при значительном напряжении прямого тока. Они устанавливаются в блоках питания и выполняют роль выпрямителей переменного тока.
Точечные модели — отличаются малой площадью и участвуют в преобразовании колебаний значительной частоты.
Микросплавные диоды — по характеру применений аналогичны точечным моделям.
- По частотному диапазону, подразделяются на элементы с высокой, низкой и сверхвысокой частотностью.
- По области применения:
- Диодный мост или выпрямитель используется практически во всех блоках питания и автомобильных генераторах.
- В радиоприемниках и телевизорах используют разработанную схему диодов с конденсаторами или диодные детекторы.
- Для работы с высокочастотными сигналами используют диодные переключатели. Они помогают мгновенно изменять частоту высокочастотных сигналов при помощи переменного тока.
- Для защиты от скачков напряжения используют ограничительные диоды и искрозащитные.
Также выделяются параметрические, сместительные, генераторные, настоечные и умножительные радиоэлементы.
Для стабилизации напряжения требуются диоды, которые способны стабилизировать действия переменного тока. Называются эти диоды стабилитронами, и они могут при электрическом пробое сохранять свои рабочие функции.
Для оформления светящихся рекламных баннеров или вывесок используют специально разработанные светодиоды. Лампы для освещения изготовленные на основе светодиодов потребляют минимальное количество тока и считаются экономичными. Работа токового прибора зависит от номинального тока, а не от напряжения. Кроме того, они в свою очередь также подразделяются на индикаторные, с легким свечением и осветительные, они применяются в LED-лампах и фонариках.
Те диоды, проводимость у которых управляется с помощью дополнительного электрода, называют тиристорами. Они применяются для управления высокой мощностью при помощи сигнала, который подается дополнительному электроду. Они в свою очередь подразделяются на диоды, которые пропускают через себя ток в двух направлениях, поэтому их используют в цепях с переменным током и в одном направлении.
Если человек запутался в характеристиках диодов и не знает какой диод для чего приспособлен, то это легко исправить. Дело в том, что на всех диодах имеется необходимая маркировка, которую будет весьма нетрудно расшифровать.
Первый знак на маркировке будет означать заглавную букву того вещества, из которого был изготовлен диод. Например, буква К, означает что исходным материалом для изготовления был кремний.
Второй знак — означает подкласс. Например, буква С — стабилизатор, Г — генератор шумов.
Третьим знаком обычно является цифра, которая обозначает функции диода. Например, выпрямительные или импульсивные.
Четвертый знак — порядковый номер партии.
Пятый знак — классификация, к которой принадлежит данное изделие.
Импортные стабилитроны
Стабилитрон 4.3V 0.5W BZX55C 4V3, BZX79 C4V3
Стабилитрон 4.3V 1.3W 1N4731A, BZV85C-4V3
Стабилитрон 4.7V 0.5W BZX55C 4V7, BZX79 C4V7
Стабилитрон 4.7V 1.3W 1N4732A, BZV85C-4V7
Стабилитрон 5.1V 0.5W BZX55C 5V1, BZX79 C5V1
Стабилитрон 5.1V 1.3W 1N4733A, BZV85C-5V1
Стабилитрон 5.6V 0.5W BZX55C 5V6, BZX79 C5V6
Стабилитрон 5.6V 1.3W 1N4734A, BZV85C-5V6
Стабилитрон 6.2V 0.5W BZX55C 6V2, BZX79 C6V2
Стабилитрон 6.2V 1.3W 1N4735A, BZV85C-6V2
Стабилитрон 6.8V 0.5W BZX55C 6V8, BZX79 C6V8
Стабилитрон 6.8V 1.3W 1N4736A, BZV85C-6V8
Стабилитрон 7.5V 0.5W BZX55C 7V5, BZX79 C7V5
Стабилитрон 7.5V 1.3W 1N4737A, BZV85C-7V5
Стабилитрон 8.2V 0.5W BZX55C 8V2, BZX79 C8V2
Стабилитрон 8.2V 1.3W 1N4738A, BZV85C-8V2
Стабилитрон 9.1V 0.5W BZX55C 9V1, BZX79 C9V1
Стабилитрон 9.1V 1.3W 1N4739A, BZV85C-9V1
Стабилитрон 10V 0.5W BZX55C,79 10V, 1N5240, 1N758
Стабилитрон 10V 1.3W 1N4740A, BZV85C-10V
Стабилитрон 11V 0.5W BZX55C 11V, BZX79 C11V
Стабилитрон 12V 0.5W BZX55C 12V, BZX79 C12V
Стабилитрон 12V 1.3W 1N4742A, BZV85C-12V
Стабилитрон 13V 0.5W BZX55C 13V, BZX79 C13V
Стабилитрон 13V 1.3W 1N4743A, BZV85C-13V
Стабилитрон 15V 0.5W BZX55C 15V, BZX79 C15V
Стабилитрон 15V 1.3W 1N4744A, BZV85C-15V
Стабилитрон 18V 0.5W BZX55C 18V, BZX79 C18V
Стабилитрон 18V 1.3W 1N4746A, BZV85C-18V
Стабилитрон 20V 0.5W BZX55C 20V, BZX79 C20V
Стабилитрон 20V 1.3W 1N4747A, BZV85C-20V
Стабилитрон 22V 0.5W BZX55C 22V, BZX79 C22V
Стабилитрон 22V 1.3W 1N4748A, BZV85C-22V
Стабилитрон 24V 0.5W BZX55C 24V, BZX79 C24V
Стабилитрон 24V 1.3W 1N4749A, BZV85C-24V
Стабилитрон 27V 0.5W BZX55C 27V, BZX79 C27V
Стабилитрон 27V 1.3W 1N4750A, BZV85C-27V
Стабилитрон 30V 0.5W BZX55C 30V, BZX79 C30V
Стабилитрон 30V 1.3W 1N4751A, BZV85C-30V
Стабилитрон 33V 0.5W BZX55C 33V, BZX79 C33V
Стабилитрон 33V 1.3W 1N4752A, BZV85C-33V
Стабилитрон 36V 0.5W BZX55C 36V, BZX79 C36V
Стабилитрон 36V 1.3W 1N4753A, BZV85C-36V
Стабилитрон 39V 1.3W 1N4754A, BZV85C-39V
Стабилитрон 43V 1.3W 1N4755A, BZV85C-43V
Стабилитрон 47V 0.5W BZX55C 47V, BZX79 C47V
Стабилитрон 47V 1.3W 1N4756A, BZV85C-47V
Стабилитрон 51V 1.3W 1N4757A, BZV85C-51V
Стабилитрон 56V 1.3W 1N4758A, BZV85C-56V
Стабилитрон 75V 1.3W 1N4761A, BZV85C-75V
Стабилитрон 82V 1.3W 1N4762A, BZV85C-82V
Стабилитрон 91V 1.3W 1N4763A, BZV85C-91V
Стабилитрон 100V 0.5W BZX55C 100V, BZX79 C100V
Стабилитрон R2K 150v do-201
Стабилитрон R2KN Vz=150-170 V
Стабилитрон R2KY Vz=130-155 V
Стабилитрон R2M Vz=135-180 V
Вольт-амперная характеристика стабилитрона
Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:
где
Iпр – прямой ток, А
Эти два параметра в стабилитроне не используются
Uобр – обратное напряжение, В
Uст – номинальное напряжение стабилизации, В
Iст – номинальный ток стабилизации, А
Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.
Imax – максимальный ток стабилитрона, А
Imin – минимальный ток стабилитрона, А
Iст, Imax, Imin – это сила тока, которая течет через стабилитрон при его работе.
Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.
Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).
стабилитрон 3 вольта — Как понизить 5 вольт до 3 вольт что впаять (диод, резистор или еще что-нибудь) пожалуйсто ссылку на ресурс — 22 ответа
В разделе Железо на вопрос Как понизить 5 вольт до 3 вольт что впаять (диод, резистор или еще что-нибудь) пожалуйсто ссылку на ресурс заданный автором . лучший ответ это Резистор и стабилитрон на 3, 3 В, если ток нагрузки небольшой ( до 50 мА) . А вообще забей в Яндексе- «Электроника для начинающих«- схемы стабилизации. Там кучу статей по этой теме найдешь Для будильника пойдет резистор от 82 до 100 Ом и стабилитрон 3v3. Припаиваешь стабилитрон ножкой, где черная полоска к резистору и от этой точки соединяшь на » + » будильника. Свободную ножку резистора припаиваешь к » + » блока питания, а свободную ножку стабилитрона ( без полоски) к минусу будильника и туда же минус блока питания.
Привет! Вот подборка тем с ответами на Ваш вопрос: Как понизить 5 вольт до 3 вольт что впаять (диод, резистор или еще что-нибудь) пожалуйсто ссылку на ресурс
Ответ от Ётрелок»СОПРОТИВЛЕНИЕ» впаяйте — по слову сами гуглите…
Ответ от Макс ЗвягинЗакон Ома и Правила Кирхгофа отмечают, что на впаянной нагрузке будет оседать тем большее напряжение, чем больший пойдет ток по цепи. Чтобы дать совет, надо знать примерное входное сопротивление нагрузки.
Ответ от Єизег_78L33 тебе поможет
Ответ от Ўрий Евсе зависит от нагрузки, и что ты 3 вольтами питать собрался
Ответ от BBKпри помощи стабилизатора напряжения, подбирается и используется микросхема специальная, точнее сказать не могу!!
Ответ от Alexey Eternal.Romanticпоставить делитель напряжения.Определи, какой суммарно ток нужен, подбери два резистора так, чтобы на одном падало 2 вольта, на в тором 3 вольта. К тому, на котором 3 вольта — подключай нагрузку.Есть еще вариант — поставить стабилитрон на 3 вольта. Он все лишнее отсечет
Привет! Вот еще темы с нужными ответами:
Интегральный стабилизатор и стабилитрон
На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!
Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:
Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать здесь.
U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения ;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений ;-).
Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:
Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.
Теперь берем стабилитрон на Uстабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.
Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.
Классическая модель
Классические стабилизаторы – это большой класс устройств, собираемых на основе таких полупроводниковых деталей, как биполярные транзисторы и стабилитроны. Среди них основную функцию по поддержанию напряжения на уровне 12 В выполняют стабилитроны – разновидность диодов, подключаемых в обратной полярности (к катоду такого полупроводникового прибора подключается плюс источника питания, к аноду – минус), работающих в режиме пробоя. Суть работы данных полупроводниковых деталей заключается в следующем:
- При напряжении подключенного к стабилитрону источника питания меньше 12 В он находится в закрытом положении и не участвует в регулировке данной характеристики электрического тока.
- При превышении порога в 12 Вольт стабилитрон «открывается» и поддерживает данное значение в заданном его характеристиками диапазоне.
В случае превышения напряжения, подаваемого на стабилитрон, относительно заявленного как максимальное производителем прибор очень быстро выходит из строя из-за эффекта теплового пробоя.
В зависимости от подключения различают два варианта классического стабилизатора: линейный – регулировочные элементы подключаются последовательно нагрузке; параллельный – стабилизирующие напряжение устройства располагаются параллельно запитываемым приборам.
Основные характеристики стабилитрона
Чтобы подобрать диод Зенера под существующие цели, надо знать несколько важных параметров. Эти характеристики определят пригодность выбранного прибора для решения поставленных задач.
Номинальное напряжение стабилизации
Первый параметр зенера, на который надо обратить внимание при выборе – напряжение стабилизации, определяемое точкой начала лавинного пробоя. С него начинают выбор прибора для использования в схеме
У разных экземпляров ординарных стабилитронов, даже одного типа, напряжение имеет разброс в районе нескольких процентов, у прецизионных разница ниже. Если номинальное напряжение неизвестно, его можно определить, собрав простую схему. Следует подготовить:
- балластный резистор в 1…3 кОм;
- регулируемый источник напряжения;
- вольтметр (можно использовать тестер).
Надо поднимать напряжение источника питания с нуля, контролируя по вольтметру рост напряжения на стабилитроне. В какой-то момент он остановится, несмотря на дальнейшее увеличение входного напряжения. Это и есть фактическое напряжение стабилизации. Если регулируемого источника нет, можно использовать блок питания с постоянным выходным напряжением заведомо выше Uстабилизации. Схема и принцип измерения остаются теми же. Но есть риск выхода полупроводникового прибора из строя из-за превышения рабочего тока.
Стабилитроны применяются для работы с напряжениями от 2…3 В до 200 В. Для формирования стабильного напряжения ниже данного диапазона, используются другие приборы – стабисторы, работающие на прямом участке ВАХ.
Диапазон рабочих токов
Ток, при котором стабилитроны исполняют свою функцию, ограничен сверху и снизу. Снизу он ограничен началом линейного участка обратной ветви ВАХ. При меньших токах характеристика не обеспечивает режима неизменности напряжения.
Вольт-амперная характеристика стабилитрона и его принцип работы
Чтобы разобраться с принципом работы стабилитрона, надо изучить его типовую вольт-амперную характеристику (ВАХ).
Если к зенеру приложить напряжение в прямом направлении, как к обычному диоду, то он и вести себя будет подобно обычному диоду. При напряжении около 0,6 В (для кремниевого прибора) он откроется и выйдет на линейный участок ВАХ. По теме статьи более интересно поведение стабилитрона при приложении напряжения обратной полярности (отрицательная ветвь характеристики). Сначала сопротивление его резко возрастет, и прибор перестанет пропускать ток. Но при достижении определенного значения напряжения произойдет резкий рост тока, называемый пробоем. Он носит лавинный характер, и исчезает после снятия питания. Если продолжать увеличивать обратное напряжение, то p-n переход начнет нагреваться и выйдет в режим теплового пробоя. Тепловой пробой необратим и означает выход стабилитрона из строя, поэтому вводить диод в такой режим не следует.
Виды диодов
Стабилитроны
Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.
Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.
Выглядят стабилитроны точно также, как и обычные диоды:
На схемах обозначаются вот так:
Светодиоды
Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.
Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.
Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.
Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.
На схемах светодиоды обозначаются так:
Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления
Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах
Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:
Как проверить светодиод можно узнать из этой статьи.
Тиристоры
Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор – (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.
а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:
На схемах триодные тиристоры выглядят вот таким образом:
Существуют также разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.
Разновидности 12В стабилизаторов
В зависимости от конструкции и способа поддержания 12-ти вольтного напряжения выделяют две разновидности стабилизаторов:
- Импульсные – стабилизаторы, состоящие из интегратора (аккумулятора, электролитического конденсатора большой емкости) и ключа (транзистора). Поддержание напряжения в заданном интервале значений происходит благодаря циклическому процессу накопления и быстрой отдачи заряда интегратором при открытом состоянии ключа. По конструктивным особенностям и способу управления такие стабилизаторы подразделяются на ключевые устройства с триггером Шмитта, выравниватели с широтно-импульсной и частотно-импульсной модуляцией.
- Линейные – стабилизирующие напряжение устройства, в которых в качестве регулирующего устройства применяются подключаемые последовательно стабилитроны или специальные микросхемы.