Маркировка резисторов

Как себя проверить

Если в навыке расшифровки кодов вы пока неуверены, есть два способа проверить сопротивление резистора. Первый — программный, второй — при помощи мультиметра. Второй — более надежный, так как вы видите реальное положение вещей, а заодно и проверяете сопротивление элемента.

Одна из программ по расшифровке кодов резисторов «Резистор 2.2»: цветовая маркировка

Найти программу расшифровки кодов резисторов просто — по запросу выскакивает не один десяток. Они несложные, отличаются только масштабами баз данных. Не в каждой можно найти все варианты кодов, но популярные есть везде. В этих программах сначала выбирается тип кодировки (буквы или полоски), а затем вносятся все данные. То, что вы вводите отображается в специальном окошке — чтобы можно было визуально проверить правильность введенной информации. После ввода данных нажимаете кнопку, программа выдает вам номинал и допуск. Сравниваете с тем, что получилось у вас.

Проверяем сопротивление при помощи мультиметра

Проверить насколько правильно вы по кодировке определили сопротивление резистора можно и при помощи мультиметра. Для этого его выставляем в режим «изменение сопротивлений». Диапазон подбираем в зависимости от того, что насчитали. Один щуп прикладываем к одному выводу, второй — к другому. На экране высвечивается сопротивление. Оно может отличаться от высчитанного. Разница зависит от допуска. Чем больше допуск, тем больше может быть разница. Но в любом случае показания должны быть сравнимы с найденным номиналом. Подробности смотрите в видео.

Калькулятор цветовой маркировки резисторов поможет расшифровать по цветным кольцам на резисторе его номинал и допустимое отклонение сопротивления от его номинального значения. Цветную маркировку на резисторах следует читать слева направо. Как правило, первое кольцо расположено ближе к одному из выводов или шире чем остальные.

Термостат для климат-контроля

с дисплеем и удобным управлением. Кликните чтобы узнать подробнее.

Маркировка советских резисторов

Первым делом давайте разберемся с советскими резисторами.

Хоть ты что делай, а от советской электроники не убежишь. Поэтому, немного теории вам не повредит.

Первым взглядом мы должны оценить, какую максимальную мощность может рассеивать резистор. Сверху вниз, внизу на фото, резисторы по мощностям: 2 Ватта, 1 Ватт, 0.5 Ватт, 0.25 Ватт, 0.125 Ватт. На резисторах мощностью 1 и 2 Ватта пишут МЛТ-1 и МЛТ-2 соответственно.

МЛТ – это разновидность самых распространенных советских резисторов, от сокращенных названий Металлопленочный, Лакированный, Теплоустойчивый. У других же резисторов мощность можно прикинуть по габаритам. Чем больше резистор по габаритам, тем больше мощности он может рассеять в окружающее пространство.

Единицы измерения в МЛТэшках – Омы – обозначают как R или E. Килоомы – буковкой “К”, Мегаомы буковкой “М”. Здесь все просто. Например, 33Е (33 Ома); 33R (33 Ома); 47К (47 кОм); 510К (510 кОм); 1.0М (1 МОм). Есть также фишка такая, что буквы могут опережать цифры, например, K47 означает, что сопротивление равно 470 Ом, M56 – 560 Килоом. А иногда, чтобы не заморачиваться с запятыми, тупо толкают туда буковку, например. 4K3 = 4.3 Килоом, 1М2 – 1.2 Мегаома.

Давайте рассмотрим нашего героя. Смотрим сразу на обозначение. 1К0 или словами ” один ка ноль”. Значит, его сопротивление должно быть 1,0 Килоом.

Давайте убедимся, так ли это на самом деле?

Ну да, все сходится с небольшой погрешностью.

Цветовая маркировка резисторов

Чтобы определить значение сопротивления резистора с цветовой маркировкой, сначала надо повернуть его таким образом, чтобы его серебряная или золотая полосы находились справа, а группа других полосок — слева. Если же вы не можете найти серебряную или золотую полоску, то надо повернуть резистор таким образом, чтобы группа полосок находилась с левой стороны.

Параллельное и последовательное соединение

В электрике элементы соединяются либо последовательно — один за другим, либо параллельно — это когда к одной точке подключены несколько входов, к другой — выходы от тех же элементов.

Закон Ома для параллельного и последовательного соединения

Последовательное соединение

Как работает закон Ома для этих случаев? При последовательном соединении сила тока, протекающая через цепочку элементов, будет одинаковой. Напряжение участка цепи с последовательно подключенными элементами считается как сумма напряжений на каждом участке. Как можно это объяснить? Протекание тока через элемент — это перенос части заряда с одной его части в другую. То есть, это определенная работа. Величина этой работы и есть напряжение. Это физический смысл напряжения. Если с этим понятно, двигаемся дальше.

Последовательное соединение и параметры этого участка цепи

При последовательном соединении приходится переносить заряд по очереди через каждый элемент. И на каждом элементе это определенный «объем» работы. А чтобы найти объем работы на всем участке цепи, надо работу на каждом элементе сложить. Вот и получается, что общее напряжение — это сумма напряжений на каждом из элементов.

Точно так же — при помощи сложения — находится и общее сопротивление участка цепи. Как можно это себе представить? Ток, протекая по цепочке элементов, последовательно преодолевает все сопротивления. Одно за другим. То есть чтобы найти сопротивление, которое он преодолел, надо сопротивления сложить. Примерно так. Математический вывод более сложен, а так понять механизм действия этого закона проще.

Параллельное соединение

Параллельное соединение — это когда начала проводников/элементов сходятся в одной точке, а в другой — соединены их концы. Постараемся объяснить законы, которые справедливы для соединений этого типа. Начнем с тока. Ток какой-то величины подается в точку соединения элементов. Он разделяется, протекая по всем проводникам. Отсюда делаем вывод, что общий ток на участке равен сумме тока на каждом из элементов: I = I1 + I2 + I3.

Теперь относительно напряжения. Если напряжение — это работа по перемещению заряда, тоо работа, которая необходима на перемещение одного заряда будет одинакова на любом элементе. То есть, напряжение на каждом параллельно подключенном элементе будет одинаковым. U = U1=U2=U3. Не так весело и наглядно, как в случае с объяснением закона Ома для участка цепи, но понять можно.

Законы для параллельного соединения

Для сопротивления все несколько сложнее. Давайте введем понятие проводимости. Это характеристика, которая показывает насколько легко или сложно заряду проходить по этому проводнику. Понятно, что чем меньше сопротивление, тем проще току будет проходить. Поэтому проводимость — G — вычисляется как величина обратная сопротивлению. В формуле это выглядит так: G = 1/R.

Для чего мы говорили о проводимости? Потому что общая проводимость участка с параллельным соединением элементов равна сумме проводимости для каждого из участков. G = G1 + G2 + G3 — понять несложно. Насколько легко току будет преодолеть этот узел из параллельных элементов, зависит от проводимости каждого из элементов. Вот и получается, что их надо складывать.

Теперь можем перейти к сопротивлению. Так как проводимость — обратная к сопротивлению величина, можем получить следующую формулу: 1/R = 1/R1 + 1/R2 + 1/R3.

Что нам дает параллельное и последовательное соединение?

Теоретические знания — это хорошо, но как их применить на практике? Параллельно и последовательно могут соединяться элементы любого типа. Но мы рассматривали только простейшие формулы, описывающие линейные элементы. Линейные элементы — это сопротивления, которые еще называют «резисторы». Итак, вот как можно использовать полученные знания:

Если в наличии нет резистора большого номинала, но есть несколько более «мелких», нужное сопротивление можно получить соединив последовательно несколько резисторов. Как видите, это полезный прием.
Для продления срока жизни батареек, их можно соединять параллельно. Напряжение при этом, согласно закону Ома, останется прежним (можно убедиться, измерив напряжение мультиметром). А «срок жизни» сдвоенного элемента питания будет значительно больше, нежели у двух элементов, которые сменят друг друга

Только обратите внимание: параллельно соединять можно только источники питания с одинаковым потенциалом. То есть, севшую и новую батарейки соединять нельзя

Если все-таки соединить, та батарейка которая имеет больший заряд, будет стремиться зарядить менее заряженную. В результате общий их заряд упадет до низкого значения.

В общем, это наиболее распространенные варианты использования этих соединений.

Таблица кодов SMD резисторов и их значений

Код smd Значение Код smd Значение Код smd Значение Код smd Значение
R10 0.1 Ом 1R0 1 Ом 100 10 Ом 101 100 Ом
R11 0.11 Ом 1R1 1.1 Ом 110 11 Ом 111 110 Ом
R12 0.12 Ом 1R2 1.2 Ом 120 12 Ом 121 120 Ом
R13 0.13 Ом 1R3 1.3 Ом 130 13 Ом 131 130 Ом
R15 0.15 Ом 1R5 1.5 Ом 150 15 Ом 151 150 Ом
R16 0.16 Ом 1R6 1.6 Ом 160 16 Ом 161 160 Ом
R18 0.18 Ом 1R8 1.8 Ом 180 18 Ом 181 180 Ом
R20 0.2 Ом 2R0 2 Ом 200 20 Ом 201 200 Ом
R22 0.22 Ом 2R2 2.2 Ом 220 22 Ом 221 220 Ом
R24 0.24 Ом 2R4 2.4 Ом 240 24 Ом 241 240 Ом
R27 0.27 Ом 2R7 2.7 Ом 270 27 Ом 271 270 Ом
R30 0.3 Ом 3R0 3 Ом 300 30 Ом 301 300 Ом
R33 0.33 Ом 3R3 3.3 Ом 330 33 Ом 331 330 Ом
R36 0.36 Ом 3R6 3.6 Ом 360 36 Ом 361 360 Ом
R39 0.39 Ом 3R9 3.9 Ом 390 39 Ом 391 390 Ом
R43 0.43 Ом 4R3 4.3 Ом 430 43 Ом 431 430 Ом
R47 0.47 Ом 4R7 4.7 Ом 470 47 Ом 471 470 Ом
R51 0.51 Ом 5R1 5.1 Ом 510 51 Ом 511 510 Ом
R56 0.56 Ом 5R6 5.6 Ом 560 56 Ом 561 560 Ом
R62 0.62 Ом 6R2 6.2 Ом 620 62 Ом 621 620 Ом
R68 0.68 Ом 6R8 6.8 Ом 680 68 Ом 681 680 Ом
R75 0.75 Ом 7R5 7.5 Ом 750 75 Ом 751 750 Ом
R82 0.82 Ом 8R2 8.2 Ом 820 82 Ом 821 820 Ом
R91 0.91 Ом 9R1 9.1 Ом 910 91 Ом 911 910 Ом
Код smd Значение Код smd Значение Код smd Значение Код smd Значение
102 1 кОм 103 10 кОм 104 100 кОм 105 1 МОм
112 1.1 кОм 113 11 кОм 114 110 кОм 115 1.1 МОм
122 1.2 кОм 123 12 кОм 124 120 кОм 125 1.2 МОм
132 1.3 кОм 133 13 кОм 134 130 кОм 135 1.3 МОм
152 1.5 кОм 153 15 кОм 154 150 кОм 155 1.5 МОм
162 1.6 кОм 163 16 кОм 164 160 кОм 165 1.6 МОм
182 1.8 кОм 183 18 кОм 184 180 кОм 185 1.8 МОм
202 2 кОм 203 20 кОм 204 200 кОм 205 2 МОм
222 2.2 кОм 223 22 кОм 224 220 кОм 225 2.2 МОм
242 2.4 кОм 243 24 кОм 244 240 кОм 245 2.4 МОм
272 2.7 кОм 273 27 кОм 274 270 кОм 275 2.7 МОм
302 3 кОм 303 30 кОм 304 300 кОм 305 3 МОм
332 3.3 кОм 333 33 кОм 334 330 кОм 335 3.3 МОм
362 3.6 кОм 363 36 кОм 364 360 кОм 365 3.6 МОм
392 3.9 кОм 393 39 кОм 394 390 кОм 395 3.9 МОм
432 4.3 кОм 433 43 кОм 434 430 кОм 435 4.3 МОм
472 4.7 кОм 473 47 кОм 474 470 кОм 475 4.7 МОм
512 5.1 кОм 513 51 кОм 514 510 кОм 515 5.1 МОм
562 5.6 кОм 563 56 кОм 564 560 кОм 565 5.6 МОм
622 6.2 кОм 623 62 кОм 624 620 кОм 625 6.2 МОм
682 6.8 кОм 683 68 кОм 684 680 кОм 685 6.8 МОм
752 7.5 кОм 753 75 кОм 754 750 кОм 755 7.5 МОм
822 8.2 кОм 823 82 кОм 824 820 кОм 815 8.2 МОм
912 9.1 кОм 913 91 кОм 914 910 кОм 915 9.1 МОм

Типы маркировки SMD-резисторов

Резисторы для поверхностного монтажа – детали очень маленьких размеров, поэтому стандартная система, применяемая на проволочных сопротивлениях, для данного случая не подходит. Детали 0402 не маркируются, а резисторы остальных типоразмеров обозначаются различными, специально для них разработанными способами. Выбор конкретного варианта зависит от типоразмера и допуска.

Маркировка из трех или четырех цифр

Резисторы с допусками 2 %, 5 %, 10 % всех типоразмеров имеют обозначения, в которых первые две или три цифры характеризуют численное значение номинального сопротивления. Последняя – это множитель, показывающий, в какую степень необходимо возвести 10, чтобы получить окончательный результат. Например, 103 означает номинал 10 000 Ом или 10 кОм.

В обозначении резисторов с номинальным сопротивлением менее 10 Ом используется буква R, которая ставится на месте десятичной запятой. Например, 0R5 – обозначает номинальное сопротивление 0,5 Ом.

Маркировка из двух цифр и одной буквы

Этот вариант применяется для прецизионных (очень точных деталей с допуском по сопротивлению 1 % и менее), которые отличаются очень маленькими габаритами. Их маркируют в соответствии со стандартом EIA-96.

Такая маркировка состоит из двух элементов:

  • цифры – характеризуют код номинального сопротивления резистора;
  • буква – определяет множитель, показывающий степень, в которую необходимо возвести 10, чтобы получить конечный результат.

Маркировка с цифрами в начале и буквой после них может использоваться для деталей с допусками 2 %, 5 %, 10 %. Расшифровка таких маркировок осуществляется по таблицам.

SMD резисторы — маркировка номинальных значений SMD резисторов

SMD резисторы — маркировка чип-резисторов

SMD резисторы – маркировка которых интересует многих радиолюбителей. Данные резисторы изготавливаются в миниатюрных корпусах, сделанных как правило из керамики и предназначенные для поверхностного монтажа. Этот элемент является самым распространенным компонентом в современных радиоэлектронных схемах.

Различные компании, производящие SMD резисторы, делают много всевозможных модификаций своей продукции, кодовые обозначения, которых имеют отличие от других. В связи с этим, электронщикам, которым приходится часто выполнять ремонт электронной техники или заниматься сборкой печатных плат, нужно четко знать кодовые обозначения резисторов.

Предназначение чип-резисторов

Основная функция резисторов в схеме — это токоограничение в конкретной части электрического тракта. Один из ближайших примеров, которым можно показать резистор в действии — это включение сопротивления в питающую цепь LED-диодов либо в эмиттерную цепь биполярного транзистора установленного в усиливающем каскаде. Приведенная ниже таблица окажет вам существенную помощь в расшифровке кодовых обозначений.

Таблица расшифровки номинальных значений SMD резисторов

Код smd Значение Код smd Значение Код smd Значение Код smd Значение
R10 0.1 Ом 1R0 1 Ом 100 10 Ом 101 100 Ом
R11 0.11 Ом 1R1 1.1 Ом 110 11 Ом 111 110 Ом
R12 0.12 Ом 1R2 1.2 Ом 120 12 Ом 121 120 Ом
R13 0.13 Ом 1R3 1.3 Ом 130 13 Ом 131 130 Ом
R15 0.15 Ом 1R5 1.5 Ом 150 15 Ом 151 150 Ом
R16 0.16 Ом 1R6 1.6 Ом 160 16 Ом 161 160 Ом
R18 0.18 Ом 1R8 1.8 Ом 180 18 Ом 181 180 Ом
R20 0.2 Ом 2R0 2 Ом 200 20 Ом 201 200 Ом
R22 0.22 Ом 2R2 2.2 Ом 220 22 Ом 221 220 Ом
R24 0.24 Ом 2R4 2.4 Ом 240 24 Ом 241 240 Ом
R27 0.27 Ом 2R7 2.7 Ом 270 27 Ом 271 270 Ом
R30 0.3 Ом 3R0 3 Ом 300 30 Ом 301 300 Ом
R33 0.33 Ом 3R3 3.3 Ом 330 33 Ом 331 330 Ом
R36 0.36 Ом 3R6 3.6 Ом 360 36 Ом 361 360 Ом
R39 0.39 Ом 3R9 3.9 Ом 390 39 Ом 391 390 Ом
R43 0.43 Ом 4R3 4.3 Ом 430 43 Ом 431 430 Ом
R47 0.47 Ом 4R7 4.7 Ом 470 47 Ом 471 470 Ом
R51 0.51 Ом 5R1 5.1 Ом 510 51 Ом 511 510 Ом
R56 0.56 Ом 5R6 5.6 Ом 560 56 Ом 561 560 Ом
R62 0.62 Ом 6R2 6.2 Ом 620 62 Ом 621 620 Ом
R68 0.68 Ом 6R8 6.8 Ом 680 68 Ом 681 680 Ом
R75 0.75 Ом 7R5 7.5 Ом 750 75 Ом 751 750 Ом
R82 0.82 Ом 8R2 8.2 Ом 820 82 Ом 821 820 Ом
R91 0.91 Ом 9R1 9.1 Ом 910 91 Ом 911 910 Ом
Код smd Значение Код smd Значение Код smd Значение Код smd Значение
102 1 кОм 103 10 кОм 104 100 кОм 105 1 МОм
112 1.1 кОм 113 11 кОм 114 110 кОм 115 1.1 МОм
122 1.2 кОм 123 12 кОм 124 120 кОм 125 1.2 МОм
132 1.3 кОм 133 13 кОм 134 130 кОм 135 1.3 МОм
152 1.5 кОм 153 15 кОм 154 150 кОм 155 1.5 МОм
162 1.6 кОм 163 16 кОм 164 160 кОм 165 1.6 МОм
182 1.8 кОм 183 18 кОм 184 180 кОм 185 1.8 МОм
202 2 кОм 203 20 кОм 204 200 кОм 205 2 МОм
222 2.2 кОм 223 22 кОм 224 220 кОм 225 2.2 МОм
242 2.4 кОм 243 24 кОм 244 240 кОм 245 2.4 МОм
272 2.7 кОм 273 27 кОм 274 270 кОм 275 2.7 МОм
302 3 кОм 303 30 кОм 304 300 кОм 305 3 МОм
332 3.3 кОм 333 33 кОм 334 330 кОм 335 3.3 МОм
362 3.6 кОм 363 36 кОм 364 360 кОм 365 3.6 МОм
392 3.9 кОм 393 39 кОм 394 390 кОм 395 3.9 МОм
432 4.3 кОм 433 43 кОм 434 430 кОм 435 4.3 МОм
472 4.7 кОм 473 47 кОм 474 470 кОм 475 4.7 МОм
512 5.1 кОм 513 51 кОм 514 510 кОм 515 5.1 МОм
562 5.6 кОм 563 56 кОм 564 560 кОм 565 5.6 МОм
622 6.2 кОм 623 62 кОм 624 620 кОм 625 6.2 МОм
682 6.8 кОм 683 68 кОм 684 680 кОм 685 6.8 МОм
752 7.5 кОм 753 75 кОм 754 750 кОм 755 7.5 МОм
822 8.2 кОм 823 82 кОм 824 820 кОм 815 8.2 МОм
912 9.1 кОм 913 91 кОм 914 910 кОм 915 9.1 МОм

Маркировка SMD резисторов

SMD компоненты

usilitelstabo.ru

Какие моды и клиры использовать для сабома

Для того чтобы парить на низком сопротивлении, новичкам в вейпинге понадобится клиромайзер со специальным испарителем и мод определенной мощности. Сопротивление не должно превышать 1 Ом, а мощность должна быть регулируемой. Клиры и девайсы, работающие без особой настройки или переделок, сейчас представлены на рынке в большом количестве. Например, мод Aspire CF (поддерживает от 0,3 до 1 Ом) и Subox Mini Starter Kit от производителя Kanger.

Когда-то купить готовые устройства было сложно, потому вейперы сами делали свои намотки, использовали обслуживаемые клиромайзеры. Несмотря на то, что сейчас все это доступно в заводском варианте, идейные вейперы используют именно собственноручно созданный вариант для того, чтобы комфортно парить.

Сабомные клиромайзеры должны обладать несколькими важными характеристиками, такими как качественный обдув и вместительный бак для жидкости, поскольку ее расход достаточно высок по сравнению с обычным девайсом. Это связано с тем, что при сабомном парении жидкость сильнее нагревается и, соответственно, испаряется с высокой скоростью.

Итоги

Сабомное парение – вечный тренд и нетленная классика. Сегодня эта техника вейпинга доступна как вайперам со стажем, так и новичкам. Главное: подобрать себе правильный девайс и придерживаться техники безопасной эксплуатации.

Характеристики резисторов МЛТ

Постоянный резистор простой элемент – параметров у него не слишком много. Основные характеристики – номинальное сопротивление и мощность рассеивания.

Размеры

От размера резистора зависит его сопротивление и мощность – крупный элемент способен задержать больший поток электронов и меньше греется. Опытные электромеханики с первого взгляда могут отличить резистор большого номинала от маломощного.

 

Вид резистора

Размеры, мм  

Масса, г

не более

D L d I
МЛТ-0,125 2,2 6,0 0,5 20 0,15
МЛТ-0,25 3,0 7,0 0,6 20 0,25
МЛТ-0,5 4,2 10,8 0,8 25 1,0
МЛТ-1 6,6 13,0 0,8 25 2,0
МЛТ-2 8,6 18,5 1,0 25 3,5

Номиналы

В электротехнике применяют ряды Е – номинальное сопротивление резисторов МЛТ будут соответствовать значениям ряда Е24 (отклонение от номинала не более 5%) и Е96 (отклонение от номинала не более 1%).

Предельные рабочие напряжения

Электрическая прочность – предельное рабочее напряжение, которое кратковременно прикладывается к выводам резистора без нарушения его работоспособности. Рассчитывается исходя из номинальной мощности резистора и его сопротивления по формуле: U=(P×R)/2.

Тип резистора Номинальная мощность, Вт Номинальное сопротивление Предельные рабочие напряжения
МЛТ-0,125 0,125 8,2 Ом – 3,0 МОм 200
МЛТ-0,25 0,25 8,2 Ом – 5,1 МОм 250
МЛТ-0,5 0,5 1 Ом – 5,1 МОм 250
МЛТ-1 1 1Ом – 10МОм 500
МЛТ-2 2 1 Ом – 10 МОм 700

Зависимость допустимой мощности от температуры окружающей среды

В зависимости от температуры одна и та же мощность рассеивания может вызвать значительный нагрев сопротивления и в итоге разрушение места соединения резистора с выводами и локальный перегрев и плавление резистивного слоя.

Температурный коэффициент сопротивления

Под влиянием протекающего тока и внешней температуры сопротивление резистора меняется – сильное изменение может нарушить работу схемы. ТКС – показатель изменения сопротивления при изменении температуры на 1 градус.

Для металлопленочных сопротивлений ТКС при температуре окружающей среды:

  1. От -60 до +25 градусов – ±0,0012.
  2. От +25 до предельной:
  • до 10 кОм – ±0,0006;
  • от 11 кОм до 1 Мом – ± 0,0007;
  • более 1 Мом – ± 0,001.

Калькулятор маркировки резисторов

Мне очень понравилась программа Резистор 2.2. С этой программой разберется даже дошкольник. Давайте же с помощью нее определим номинал нашего резистора. Вбиваем полоски интересующего нас резистора и программа выдаст нам его номинал.

И вот снизу слева в рамке мы видим значение номинала резистора: 1кОм -+5%. Удобно не правда ли?

Теперь давайте замеряем сопротивление с помощью мультиметра: 971 Ом. 5% от 1000 Ом – это 50 Ом. Значит номинал резистор должен быть в диапазоне от 950 Ом и до 1050 Ом, иначе его можно признать не годным. Как мы видим, значение 971 Ом прекрасно вписывается в диапазон от 950 до 1050 Ом. Следовательно, мы правильно определили номинал резистора, и его спокойно можно использовать в наших целях.

Давайте потренируемся и определим номинал еще одного резистора.

Все ОК ;-).

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 25,4.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее

Цветовой декодер резисторов

Для регулирования тока в электрических цепях применяют резисторы, который являются одним из наиболее распространенных радиоэлементов. Основной параметр резистора это сопротивление току, измеряемая в Ом, КилоОм (1000 Ом) и даже МегаОм(1000кОм).

Для маркировки резистора используют буквенно-цифровой код или цветовой код, нанесенный на внешний корпус резистора.

Буквенно-цифровое обозначение резистора

Данное обозначение сейчас встречается довольно редко по сравнению с цветовой маркировкой, но все же оно еще долго не выйдет из обихода в радиоаппаратуре, электронных модулях и платах. В данной маркировки применяются три буквы R(ом), K(килоом), M(мегаом).

Есть три варианта буквенно-цифровой маркировки:

  1. Буква в конце цифр — применяться при целочисленном значение сопротивления(10R=10ом или 68K=68кОм)
  2. Буква в начале цифр — применяться при значение сопротивления меньше единицы (R15=0,15 Ом, M36=0,36Мом)
  3. Буква между цифрами — применяется при дробном значение сопротивление, если оно больше единицы (1K5=1,5кОм или 6M8=6,8МОм)

Допуск резистора

Не нужно думать, что резисторы имеют точно такое же значение как указано в маркировки, у каждого резистора есть такой параметр как отклонение от номинала, измеряемое в процентом соотношение от номинального значения(см. Маркировку) т. е. Если допуск составляет 10% а номинальное сопротивление резистора 10 Ом, то показания на мультиметре в 11 или 9 Ом не являются браком и понятное дело, что чем точнее резистор, тем выше его цена.

Цветовая маркировка

При монтаже очень сложно учитывать расположение маркировки каждого радиокомпонента, поэтому буквенно-цифровая маркировка не удобна в дальнейшей эксплуатации и ремонте в отличие от цветовой маркировки, которая видна с любой стороны элемента, но вслед за этим и есть минус, для определения номинального значения нужен онлайн сайт или скачать программу для определения цветовой маркировки резисторов.

Каждому цвету соответствует число

  • В четерехполосной маркировке двузначное число(номинал)
  • В пятиполосной маркировки трехзначное число(номинал)

Номинал умножается на третью полоску(для четырехполосного резистора) или на 4-ю полоску для пятиполосного резистора

Последняя полоска это допуск резистора

Мощность резистора

Все понимают что большой ток может течь только по большим проводам и резисторы в этом плате не исключение, среди их можно найти мощность 0,25 Ватт 0,5 Ватт 1, 2 и т. д. отличаются они по размерам, а на старых резисторах из СССР обозначались МЛТ1 или МЛТ2 что означало 1 и 2 вата соответственно.

Начало маркировки

Любой резистор имеет смещение к одному из выводом цветовой маркировкой, первым кольцом считается ближний к выводу, если размеры не позволяют сделать смещение, то первое кольцо делают в два раза шире остальных, тем самым давая понять где начало отсчета

Пример №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Профессиональный цифровой осциллограф
Количество каналов: 1, размер экрана: 2,4 дюйма, разрешен…

Подробнее

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Терморезисторы типоразмеров 0805 и 0603

Номиналом: 10 кОм, 22 кОм, 47 кОм, 100 кОм.

NTC Термисторы EWTF03

Номиналом: 10 кОм, 22 кОм, 47 кОм, 100 кОм.

Маркировка сопротивлений SMD резисторов ряда E24 с отклонением номинала 5%

Маркир. Номинал I Маркир. Номинал I Маркир. Номинал I Маркир. Номинал
0 Ом I I I
1R0 1 Ом I 101 100 Ом I 102 1кОм I 104 100кОм
1R1 1,1 Ом I 111 110 Ом I 112 1,1кОм I 114 110кОм
1R2 1,2 Ом I 121 120 Ом I 122 1,2кОм I 124 120кОм
1R3 1,3 Ом I 131 130 Ом I 132 1,3кОм I 134 130кОм
1R5 1,5 Ом I 151 150 Ом I 152 1,5кОм I 154 150кОм
1R6 1,6 Ом I 161 160 Ом I 162 1,6кОм I 164 160кОм
1R8 1,8 Ом I 181 180 Ом I 182 1,8кОм I 184 180кОм
2R0 2,0 Ом I 201 200 Ом I 202 2,0кОм I 204 200кОм
2R2 2,2 Ом I 221 220 Ом I 222 2,2кОм I 224 220кОм
2R4 2,4 Ом I 241 240 Ом I 242 2,4кОм I 244 240кОм
2R7 2,7 Ом I 271 270 Ом I 272 2,7кОм I 274 270кОм
3R0 3,0 Ом I 301 300 Ом I 302 3,0кОм I 304 300кОм
3R3 3,3 Ом I 331 330 Ом I 332 3,3кОм I 334 330кОм
3R6 3,6 Ом I 361 360 Ом I 362 3,6кОм I 364 360кОм
3R9 3,9 Ом I 391 390 Ом I 392 3,9кОм I 394 390кОм
4R3 4,3 Ом I 431 430 Ом I 432 4,3кОм I 434 430кОм
4R7 4,7 Ом I 471 470 Ом I 472 4,7кОм I 474 470кОм
5R1 5,1 Ом I 511 510 Ом I 512 5,1кОм I 514 510кОм
5R6 5,6 Ом I 561 560 Ом I 562 5,6кОм I 564 560кОм
6R2 6,2 Ом I 621 620 Ом I 622 6,2кОм I 624 620кОм
6R8 6,8 Ом I 681 680 Ом I 682 6,8кОм I 684 680кОм
7R5 7,5 Ом I 751 750 Ом I 752 7,5кОм I 754 750кОм
8R2 8,2 Ом I 821 820 Ом I 822 8,2кОм I 824 820кОм
9R1 9,1 Ом I 911 910 Ом I 912 9,1кОм I 914 910кОм
10R(100) 10 Ом I 102 1кОм I 103 10кОм I 105 1МОм
11R(110) 11 Ом I 112 1,1кОм I 113 11кОм I 115 1,1МОм
12R(120) 12 Ом I 122 1,2кОм I 123 12кОм I 125 1,2МОм
13R(130) 13 Ом I 132 1,3кОм I 133 13кОм I 135 1,3МОм
15R(150) 15 Ом I 152 1,5кОм I 153 15кОм I 155 1,5МОм
16R(160) 16 Ом I 162 1,6кОм I 163 16кОм I 165 1,6МОм
18R(180) 18 Ом I 182 1,8кОм I 183 18кОм I 185 1,8МОм
20R(200) 20 Ом I 202 2,0кОм I 203 20кОм I 205 2,0МОм
22R(220) 22 Ом I 222 2,2кОм I 223 22кОм I 225 2,2МОм
24R(240) 24 Ом I 242 2,4кОм I 243 24кОм I 245 2,4МОм
27R(270) 27 Ом I 272 2,7кОм I 273 27кОм I 275 2,7МОм
30R(300) 30 Ом I 302 3,0кОм I 303 30кОм I 305 3,0МОм
33R(330) 33 Ом I 332 3,3кОм I 333 33кОм I 335 3,3МОм
36R(360) 36 Ом I 362 3,6кОм I 363 36кОм I 365 3,6МОм
39R(390) 39 Ом I 391 390 Ом I 393 39кОм I 395 3,9МОм
43R(430) 43 Ом I 431 430 Ом I 433 43кОм I 435 4,3МОм
47R(470) 47 Ом I 471 470 Ом I 473 47кОм I 475 4,7МОм
51R(510) 51 Ом I 511 510 Ом I 513 51кОм I 515 5,1МОм
56R(560) 56 Ом I 561 560 Ом I 563 56кОм I 565 5,6МОм
62R(620) 62 Ом I 621 620 Ом I 623 62кОм I 625 6,2МОм
68R(680) 68 Ом I 681 680 Ом I 683 68кОм I 685 6,8МОм
75R(750) 75 Ом I 751 750 Ом I 753 75кОм I 755 7,5МОм
82R(820) 82 Ом I 821 820 Ом I 823 82кОм I 825 8,2МОм
91R(910) 91 Ом I 911 910 Ом I 913 91кОм I 915 9,1МОм
106 10МОм

Резисторы или сопротивления, так же как и конденсаторы, являются самыми распространёнными компонентами электронных схем. Резисторы в исполнение для поверхностного монтажа изготавливаются посредством нанесения резистивной пасты на керамическую подложку и последующее ее спекание под воздействием высоких температур. На поверхности резистора как правило указывается номинал сопротивления в условном обозначении. Для увеличения рассеиваемой мощности и повышения стабильности характеристик керамическое основание может быть заменено на металлическое. SMD резисторы предназначены для автоматического монтажа и пайки посредством оплавления паяльной пасты в парогазовой фазе печи инфракрасного нагрева. Резисторы упаковываются в блистер ленту, которая в свою очередь наматывается на пластмассовую катушку.

Наряду с широкой номенклатурой пассивных компонентов: резисторов, конденсаторов, катушек индуктивности, дросселей, разъемов, переключателей, компания поставляет со склада активные компоненты: SMD транзисторы, SMD диоды, стабилитроны, светодиоды, микросхемы.

Типы включения и примеры использования

Основные типы включения это последовательные и параллельные соединения.

Последовательно сопротивление рассчитывается просто. Достаточно все сложить.

При последовательном соединении напряжение распределяется по резисторам согласно их сопротивлениям.

Это второе правило Кирхгофа. Например, напряжение 12 В, а пара резисторов по 1 кОм.

Соответственно, на каждом из них по 6 В. Это простой пример делителя напряжения. Здесь пара деталей делит напряжение, и благодаря этому можно получить необходимое напряжение.

Здесь R1 и R2 образуют делитель напряжения, они выполняют роль делителя напряжения. Между этими двумя резисторами и базой транзистором протекает ток, который открывает транзистор.

Это необходимо для того, чтобы он работал без искажений.

Параллельное включение

При параллельном соединении радиодеталей, общее сопротивление цепи снижается. Если два резистора по 1 кОм соединены параллельно, то общее будет равно меньше 0,5 кОм, т.е. сопротивление цепи (эквивалентное) равно половине самого наименьшего.

В таком соединении наблюдается первое правило Кирхгофа. В точку соединения направляется ток в 1 А, а в узле он расходится на два направления по 0,5 А.

Формулы расчета

Для двух резисторов:
Для более:

Для тока параллельное соединение — это как вторая дорога или обходной путь. Еще такой тип соединения называют шунтированием. В качестве примера можно привести амперметр. Чтобы увеличить его шкалу показаний, достаточно подключить параллельно резистору еще один шунтирующий.

Его сопротивление рассчитывается по формуле:

Эквивалентное соединение

В схеме усилителя к эмиттеру транзистора VT1 подключена пара из резистора R3 и конденсатора C2.

В этом случае VT1 и R3 подключены последовательно друг к другу. Зачем это надо? Когда усилитель работает, транзистор начинает нагреваться и его сопротивление снижается. R3, как и в случае со светодиодом, не позволяет транзистору перегреваться. Он балансирует общее сопротивление, чтобы транзистор не вносил искажения в сигнал. Это называется режим термостабилизации.

А конденсатор C2 подключен к R3 параллельно. И это нужно для того, чтобы при нормальном режиме работы усилителя, переменный сигнал прошел без потерь. Так работает параллельный фильтр.

Если бы был только один R3, то мощность усилителя была намного меньше из-за того, что он забирает переменное напряжение на себя. А конденсатор пропускает без потерь, но не пропускает постоянное напряжение.