Как расшифровать маркировку на резисторе (сопротивлении)

Типовые размеры SMD-резисторов

Размеры и форму этих деталей определяет нормативный документ JEDEC. На корпус наносится маркировка, которая сообщает о длине и ширине резистора в дюймах. Это наиболее распространенный вариант, используемый производителями, поставщиками, продавцами.

Например, маркировка 0804 означает, что длина детали равна 0,08 дюйма, а ширина – 0,04 дюйма. В системе СИ размеры указываются в миллиметрах. Для перевода в миллиметры дюймы умножают на 2,54. Обозначение резистора 0804 в системе СИ – 2010. Длина – 2,0 мм, ширина – 1,0 мм.

Для подбора нужного вида детали, расшифровки кодов можно воспользоваться калькулятором SMD-резисторов или специальной программой «Резистор». С их помощью можно узнать номинальное сопротивление имеющегося резистора или, наоборот, выяснить, как выглядит маркирорвка для нужного номинала.

Каждый размер SMD-резистора имеет определенную максимальную рассеиваемую мощность.

Мощность (Вт)
0201 0,6 0,05
0402 1,1 0,062
0603 1,6 0,1
0805 2,1 0,125
1206 3,1 0,25

Калькулятор обозначений SMD резисторов

Удобный калькулятор для отображения номинала резисторов в SMD корпусе.

Долго искал на просторах такой Калькулятор обозначений SMD резисторов. Как выяснилось, никто не работает под HTTPS. Пришлось сделать самому. Как сделать калькулятор для своего сайта расскажу в статье позже.

Код Знач. Код Знач. Код Знач. Код Знач.
R10 0.1 Ом 1R0 1 Ом 100 10 Ом 101 100 Ом
R11 0.11 Ом 1R1 1.1 Ом 110 11 Ом 111 110 Ом
R12 0.12 Ом 1R2 1.2 Ом 120 12 Ом 121 120 Ом
R13 0.13 Ом 1R3 1.3 Ом 130 13 Ом 131 130 Ом
R15 0.15 Ом 1R5 1.5 Ом 150 15 Ом 151 150 Ом
R16 0.16 Ом 1R6 1.6 Ом 160 16 Ом 161 160 Ом
R18 0.18 Ом 1R8 1.8 Ом 180 18 Ом 181 180 Ом
R20 0.2 Ом 2R0 2 Ом 200 20 Ом 201 200 Ом
R22 0.22 Ом 2R2 2.2 Ом 220 22 Ом 221 220 Ом
R24 0.24 Ом 2R4 2.4 Ом 240 24 Ом 241 240 Ом
R27 0.27 Ом 2R7 2.7 Ом 270 27 Ом 271 270 Ом
R30 0.3 Ом 3R0 3 Ом 300 30 Ом 301 300 Ом
R33 0.33 Ом 3R3 3.3 Ом 330 33 Ом 331 330 Ом
R36 0.36 Ом 3R6 3.6 Ом 360 36 Ом 361 360 Ом
R39 0.39 Ом 3R9 3.9 Ом 390 39 Ом 391 390 Ом
R43 0.43 Ом 4R3 4.3 Ом 430 43 Ом 431 430 Ом
R47 0.47 Ом 4R7 4.7 Ом 470 47 Ом 471 470 Ом
R51 0.51 Ом 5R1 5.1 Ом 510 51 Ом 511 510 Ом
R56 0.56 Ом 5R6 5.6 Ом 560 56 Ом 561 560 Ом
R62 0.62 Ом 6R2 6.2 Ом 620 62 Ом 621 620 Ом
R68 0.68 Ом 6R8 6.8 Ом 680 68 Ом 681 680 Ом
R75 0.75 Ом 7R5 7.5 Ом 750 75 Ом 751 750 Ом
R82 0.82 Ом 8R2 8.2 Ом 820 82 Ом 821 820 Ом
R91 0.91 Ом 9R1 9.1 Ом 910 91 Ом 911 910 Ом
102 1 кОм 103 10 кОм 104 100 кОм 105 1 мОм
112 1.1 кОм 113 11 кОм 114 110 кОм 115 1.1 мОм
122 1.2 кОм 123 12 кОм 124 120 кОм 125 1.2 мОм
132 1.3 кОм 133 13 кОм 134 130 кОм 135 1.3 мОм
152 1.5 кОм 153 15 кОм 154 150 кОм 155 1.5 мОм
162 1.6 кОм 163 16 кОм 164 160 кОм 165 1.6 мОм
182 1.8 кОм 183 18 кОм 184 180 кОм 185 1.8 мОм
202 2 кОм 203 20 кОм 204 200 кОм 205 2 мОм
222 2.2 кОм 223 22 кОм 224 220 кОм 225 2.2 мОм
242 2.4 кОм 243 24 кОм 244 240 кОм 245 2.4 мОм
272 2.7 кОм 273 27 кОм 274 270 кОм 275 2.7 мОм
302 3 кОм 303 30 кОм 304 300 кОм 305 3 мОм
332 3.3 кОм 333 33 кОм 334 330 кОм 335 3.3 мОм
362 3.6 кОм 363 36 кОм 364 360 кОм 365 3.6 мОм
392 3.9 кОм 393 39 кОм 394 390 кОм 395 3.9 мОм
432 4.3 кОм 433 43 кОм 434 430 кОм 435 4.3 мОм
472 4.7 кОм 473 47 кОм 474 470 кОм 475 4.7 мОм
512 5.1 кОм 513 51 кОм 514 510 кОм 515 5.1 мОм
562 5.6 кОм 563 56 кОм 564 560 кОм 565 5.6 мОм
622 6.2 кОм 623 62 кОм 624 620 кОм 625 6.2 мОм
682 6.8 кОм 683 68 кОм 684 680 кОм 685 6.8 мОм
752 7.5 кОм 753 75 кОм 754 750 кОм 755 7.5 мОм
822 8.2 кОм 823 82 кОм 824 820 кОм 815 8.2 мОм
912 9.1 кОм 913 91 кОм 914 910 кОм 915 9.1 мОм

Калькулятор обозначений SMD резисторов

Маркировка чип-резисторов, номиналы

Прочитав обозначение 2r00 резистора, как определить, на какое сопротивление он рассчитан? Для этого существует маркировка smd резисторов. Это можно сделать с помощью таблиц, где указан перечень характеристик, согласно обозначению на корпусе. Также цифровую маркировку поможет расшифровать программа онлайн-калькулятор. Интерфейс этого сетевого инструмента выглядит просто и работает быстро. Достаточно для этого вбить в окна полей необходимый запрос.

Онлайн-калькулятор для расчёта цифровых обозначений

При визуальном осмотре элемента маркировка смд резисторов может иметь следующие знаки, нанесённые на корпус:

  • цифровые маркировки;
  • буквенные символы;
  • цветовые маркеры.

Они наносятся непосредственно на верхнюю часть корпуса и имеют различное значение.

Цифровые маркировки

Код, нарисованный на резистивном элементе, может состоять из трёх или четырёх цифр. Трёхцифровое обозначение расшифровывается легко. К примеру, у резистора 103 сколько ом величина сопротивления, указывают две первые цифры, третья – это множитель, на который умножается двухзначное число. В математике это показатель степени числа с основанием 10.

Внимание! Множитель в этом случае – степень n, в которую необходимо возвести число 10. Следовательно, чип-резистор 104 имеет номинал 10*104 = 100 кОм. Маркировка при помощи трёх цифр позиционирует элементы, имеющие допуск погрешности: 2; 5; 10%

Маркировка при помощи трёх цифр позиционирует элементы, имеющие допуск погрешности: 2; 5; 10%.

Трёхзначное цифровое обозначение

Маркировка резисторов меньше 1 Ом

Соответствующая отметка на детали, как и для сопротивлений менее 10 Ом, требует ввода в код буквы R. Она ставится либо впереди двух цифр, либо в середине и заменяет собой десятичную точку.

Обозначение SMD-резисторов

Цветовое обозначение

Цветовой способ маркировки резисторов применяется для элементов, имеющих маленький типоразмер. Однако для смд-сопротивлений он не применяется. По цветной палитре колец можно определить: номинал, множитель и температурный коэффициент (ТКС).  Цветное кольцо, опоясывающее элемент, имеет определённый цвет, ширину и месторасположение.

Некоторые особенности при нанесении цветной маркировки, которые могут интерпретироваться следующим образом:

  1. У деталей с погрешностью 20% 3 кольца. Два первых – величина сопротивления, третье – множитель.
  2. Четыре кольца означают, что допуск отличен от 20% и обозначен четвёртым кольцом.
  3. Пять цветных колец имеют другое значение. Три первых – номинал детали, четвёртое – значение множителя, пятое – величина допуска в 0,005%.

ТКС, он же TCR (Temperature Coefficient of Resistance), показывает, насколько поменяется величина сопротивления двухполюсника при изменении температуры в один градус. Температура может меняться в любом направлении.

Шестая полоса (редкий случай) укажет значение TCR для резистора. Использование в схемах чувствительных к изменению температурного режима окружающей среды требует установки элемента с определённым значением TCR.

Расшифровка цветных маркеров

Буквенная маркировка

Стандарт EIA – 96 допускает при кодировке SMD-чипов резистивной направленности ввод буквы третьим символом.

Расшифровка мнемонического обозначения буквами

При требовании к допуску в 1% маркировка имеет трёхзначные или четырёхзначные обозначения на корпусе деталей.

Две цифры и буква у таких smd резисторов, имеющих типоразмер 0603, распределены следующим образом:

  • две первых цифры – сопротивление в Ом;
  • буква – это множитель: S, R, B, C, D, E, F.

Данные по сопротивлениям с трёхзначным кодом определяют по таблицам.

Таблица кодов для первых двух цифр при допуске в 1%

Нумерация с использованием 4-х цифр при данном допуске отклонения от точности означает:

  • три первых цифры – мантисса (дробная часть десятичного числа);
  • четвёртая цифра – показатель степени числа 10.

Например, резистивный элемент с меткой 3501 обладает номиналом 350*10 = 3,5 кОм.

Интересно. Когда на детали нарисован ноль «0», это значит смд-резистор имеет нулевое значение сопротивления. Это просто перемычка. При измерении тестером результат не должен вводить в заблуждение – элемент исправен.

При замене неисправных элементов, расположенных на печатной плате, правильное определение номинального значения поможет устранить повреждение. В случае необходимости можно smd-компоненты заменить на детали аналогичных параметров, расшифровав цифровые и буквенные коды.

Техдокументация «чип резисторы (smd, для поверхностного монтажа)»

  • 0402, 307 КБ
  • 0402, 147 КБ
  • 0402, 94 КБ
  • 0603, 147 КБ
  • 2050615, 116 КБ
  • 2167052, 654 КБ
  • 2554085, 847 КБ
  • 2561767, 687 КБ
  • AC03000002207JAC00, 132 КБ
  • AOA0000C304-1149620, 147 КБ
  • AOA0000C313-1141758, 528 КБ
  • AOA0000C313-1141758, 554 КБ
  • AOA0000C331-1141874, 385 КБ
  • AOA0000C331-1141874, 505 КБ
  • ASC_WR-1525196, 483 КБ
  • chpreztr-777398, 579 КБ
  • CR0402-JW-270GLF, 690 КБ
  • cr0805, 364 КБ
  • CR0805-JW, 364 КБ
  • cra-777404, 165 КБ
  • crcw, 107 КБ
  • CRCW2512, 147 КБ
  • crcwhpe3-524687, 165 КБ
  • cre-1862108, 575 КБ
  • CRL1206, 209 КБ
  • CRL2021, 234 КБ
  • CRM0805-FX-R100ELF, 780 КБ
  • CRM1206AFX, 764 КБ
  • crm-1649051, 194 КБ
  • cr-series, 1222 КБ
  • crxxxxa_as-1858644, 712 КБ
  • dcrcwe3, 108 КБ
  • e_11, 381 КБ
  • ENG_DS_1773200_N, 295 КБ
  • ER, 80 КБ
  • erj, 180 КБ
  • erj, 287 КБ
  • ERJ6E, 147 КБ
  • ERJ6ENF4992V, 138 КБ
  • ERJB2BFR22V, 73 КБ

§

  • ERJB3BF4R7V, 264 КБ
  • ERJT14J5R6U, 352 КБ
  • HR0805, 523 КБ
  • MC0063W0603111R, 553 КБ
  • MC01W08055, 639 КБ
  • MCMR, 645 КБ
  • MCWR04, 665 КБ
  • MCWW12XR750FTL, 560 КБ
  • melfprof-1762115, 230 КБ
  • MMA02040E2201BB100, 189 КБ
  • MMB02070, 189 КБ
  • n_catalog_partition01_en-1140338, 226 КБ
  • NG_DS_9-1773463-9_A-1358566, 555 КБ
  • PYu-R_Marking_1, 238 КБ
  • PYu-RL_Group_521_RoHS_L_2-1131815, 610 КБ
  • RC, 4183 КБ
  • RC2021FK, 291 КБ
  • rcle3-1761762, 153 КБ
  • res SMD, 1578 КБ
  • res_lvm, 464 КБ
  • RGP0207CHJ100M, 126 КБ
  • RLP73K2BR11FTDF, 178 КБ
  • RMCF2512JT1M00, 498 КБ
  • RN73, 623 КБ
  • RN73C2A, 293 КБ
  • SFR03EZPF, 914 КБ
  • TTe, 1130 КБ
  • Type RP73 Series, 200 КБ
  • ULR-1528281, 1317 КБ
  • W3M22R0J, 186 КБ
  • w-777661, 604 КБ
  • WCR0805-4K7FI, 586 КБ
  • WR12X249, 237 КБ
  • wsl-101914, 134 КБ
  • wsl1206r0100fea, 101 КБ
  • wsl-1762032, 163 КБ
  • WSL2512, 114 КБ
  • Наборы резисторов 0805, 161 КБ
  • Основные размеры SMD-компонентов, 186 КБ
  • Толстопленочные бескорпусные (ЧИП) резисторы РН1-12 имп., 312 КБ

Как правильно подобрать SMD резистор

Резисторы, которые изготовляются по технологии surface mount device или кратко SMD устанавливаются на поверхность платы, чаще всего при помощи паяльника присоединяются к печатным проводникам. Технология именно такого монтажа дала возможность привести к автоматизму установки компонентов, при этом применяются разные способы пайки. Используя конденсаторы SMD можно уменьшить размеры аппаратуры, а также сократить время на изготовление элемента.

Учитывая, что разновидностей существует много, необходимо знать, как их выбирать. В первую очередь стоит по достоинству оценить их преимущества и недостатки. Также нельзя выбирать компонент, не зная особенностей его применения и области, в которой он может пригодиться.

Рассматривая каждый резистор в отдельности, можно говорить о том, что он представляет собой двухвыводный компонент, который применяется для ограничения тока, распределения напряжения и формирования временных характеристик цепи. Вместе с пассивными компонентами применяются активные – это операционные контролеры, интегральные схемы, которые необходимы для того, чтобы контролировать и осуществлять смещение, фильтрацию и ввод-вывод.

Если используются переменные конденсаторы, то они необходимы исключительно для изменения параметров схемы. Такие компоненты чувствительны к току и измеряют напряжение в цепях. Что касается материала, из которого они могут изготавливаться, то тут выбор также огромен, применяется для изготовления: металлофольга, керамика, варистор, металлические, имеются фоторезисторы.

Естественно, что лучше всего выбирать наиболее точные компоненты, которые отличаются эксплуатационными характеристиками, подбирать габариты. Следует четко понимать, что какие бы технические характеристики не использовались в качестве увеличения мощности, есть еще такое понятие, как отвод тепла. Некоторые детали могут работать при больших температурах, но энергию тепла отводить необходимо. Тогда дополнительно к таким резисторам предъявляются еще и дополнительные требования в отношении монтажа на плату. Чаще всего для отвода тепла применяются контакты медных проводников, за счет этого поверхность платы может охлаждаться.

Бывает так, что в печатных платах под поверхностный монтаж элементов отводят толщу платы и специальные оборудуют медные полигоны, которые выступают в роли радиатора. Иногда, оказывается, невозможно поступить по другому, кроме как применить принудительное внешнее охлаждение, например, устанавливаются микро – вентиляторы. Среди большого выбора следует подобрать компонент, который необходим.

Характеристики

Важнейшими характеристиками резисторов являются величина номинального сопротивления, допуск на эту величину и температурный коэффициент изменения сопротивления.

С этими характеристиками тесно связаны допустимая рассеиваемая мощность и тепловое сопротивление между резистором и окружающей средой. Кроме того, в некоторых областях применения резисторов могут оказаться существенными их шумовые характеристики (особенно токовый шум).

Будет интересно Что такое фоторезистор?

Также временная стабильность, предельная величина рабочего напряжения, зависимость сопротивления от приложенного напряжения и частотные параметры резистора (характеристики его эквивалентной схемы на различных частотах).

Рассмотрим важнейшие из этих характеристик с точки зрения применения резисторов в аналоговых и цифроаналоговых электронных устройствах. Таковыми являются величина номинального сопротивления, допуск на эту величину и температурный коэффициент изменения сопротивления. Допуск на величину номинального сопротивления задается в процентах от номинального значения сопротивления. Номинальное значение – это величина сопротивления резистора, измеренная при фиксированных значениях факторов внешних воздействий.

Кривая нагрева и охлаждения при пайке SMD-резисторов.

Важнейшим среди этих факторов является температура. Обычно номинальное значение сопротивления приводится для температуры +20°С и нормального атмосферного давления. SMD резисторы выпускаются с допусками на номинальное сопротивление в пределах от ±0.05% до ±5%. Разработчикам следует иметь в виду, что самыми распространенными, доступными и дешевыми являются резисторы с допуском на номинальное значение ±5% и ±1%.

Более точные резисторы обычно требуют предварительного заказа и их стоимость возрастает в несколько раз. Температурным коэффициентом сопротивления (ТКС) называется величина, характеризующая обратимое относительное изменение сопротивление резистора при изменении его температуры на 1°С. Следует иметь в виду, что изменение температуры резистора может происходить как из-за изменения температуры окружающей среды, так и из-за его саморазогрева.

Значение ТКС определяется по формуле:

ТКС=DR/(R*DТ)

где DR – абсолютное значение изменения сопротивления при изменении температуры резистора на величину DТ, R – номинальное значение сопротивления резистора.

Величина ТКС измеряется в 1/ °С, однако, чаще всего ее измеряют в единицах ppm (1ppm=10E-6 1/°С). Современные SMD резисторы выпускаются со значением ТКС в пределах от ±5 до ±200 ppm.

Интересно сопоставить влияние на общее отклонение от номинального значения сопротивления резистора его допуска и температурного изменения. Это сопоставление можно выполнить введением такого параметра, как критическая температура Тк, определяемая как изменение температуры резистора, при которой изменение его сопротивления, определяемое величиной ТКС, сравняется с допуском на номинальное сопротивление.

Учитывая малое значение допуска на величину номинального сопротивления резистора, можно с достаточной степенью точности утверждать, что при наихудшем сочетании допусков на резисторы допуск на значение К в два раза больше допуска на номинал резистора.

Это значит, что для применяя в данной схеме SMD резисторы наивысшей точности и без учета влияния нагрева резисторов невозможно достижение точности коэффициента передачи выше ±0.1%! Такой точности явно недостаточно для многих аналоговых устройств. К счастью, в действительности ситуация несколько легче. Дело в том, что в приведенном выражении для коэффициента передачи его точность определяется не абсолютными значениями сопротивлений резисторов R1 и R3, а их отношением.

Если для схемы используются резисторы одной фирмы и одной партии, то значения их ТКС и номинальных значений могут быть значительно ближе, чем паспортные данные на каждый резистор в отдельности. Это позволяет существенно повысить результирующую точность схемы, как при нормальной температуре, так и при ее изменении. Однако, на практике применить предложенный подход к уменьшению погрешности схем не так просто!

В рассмотренной выше схеме он хорошо работает только при К=-1, так как для этого требуются одинаковые резисторы, которые могут быть выбраны из одной партии. При других значениях К эта схема не даст требуемой точности, так как для резисторов разных номиналов вероятность расхождения параметров (особенно ТКС) существенно возрастает.

Универсальная таблица цветов

Существует универсальная таблица цветов, которая позволяет проводить быстрый расчет номиналов каждого резистора при необходимости.

При создании подобной таблицы выделяют следующие поля:

  1. Цвет кольца или нанесенной точки. При этом, указывается как название, так и приводится пример.
  2. В зависимости от того, каким по счету стоит цвет, есть возможность перевести цветовую кодировку в числовое значение. Это необходимо при создании схемы для условного обозначения номиналов.
  3. Множитель позволяет провести математическое вычисление того, какое сопротивление имеет рассматриваемый вариант исполнения.
  4. Также, практически для каждого цвета имеется поле, которое обозначает максимально отклонение от номинала.

Стоит помнить, что каждый цвет может обозначать цифру в маркировке, значение множителя или максимальное отклонение.

Примеры

Пример 1:

Использование подобной таблицы рассмотрим на следующем примере: коричневый, черный, красный, серебристый. Чтение колец проводим слева на право, получаемое значение всегда кодируется в Омах.

Согласно данным из таблицы, проводим следующую расшифровку:

  1. Коричневый цвет в первом положении обозначает как цифру, так и множитель. В этом случае, цифра будет равна «1», а множитель «10». Стоит отметить, что в первой позиции не могут использоваться следующие цвета: черный, золотистый или белый.
  2. Второй цвет означает номер второй цифры. Черный означает «0» и он не используется при расчетах. Имея подобные данные, можно сделать вывод, что резистор имеет буквенно-числовую маркировку 1К0.
  3. Третий цвет определяет множитель. В нашем случае он красный, множитель у этого цвета «100».
  4. Последний цвет означает максимальный допуск по отклонению, и серебристый цвет соответствует 10%.

Используя таблицу, можно сказать, что рассматриваемый резистор имеет маркировку 1К0 и значение сопротивления 1000 Ом (10*100) или 1 кОм, а также допуск 10%.

Пример 2:

Еще одним более сложным примером назовем расчет номинальных значений следующего резистора: красный, синий, фиолетовый, зеленый, коричневый, коричневый. Данная маркировка состоит из 6 колец.

При расшифровке отмечаем следующее:

1 кольцо, красное – число «2».
2 кольцо, синее – число «6».
3 кольцо, фиолетовое – число «7».
Все числа выбираем из таблицы. При их сочетании получаем число «267».
4 кольцо имеет зеленый цвет

В данном случае обращаем внимание не на числовой значение, а множитель. Зеленый цвет соответствует множителю 105. Проводим расчет: 267*105=2,67 МОм.
5 кольцо имеет коричневый цвет и ему соответствует значение максимального отклонения в обе стороны 1%.
6 линия коричневая, что соответствует температурному коэффициенту в значении 100 ppm/°C.

Из вышеприведенного примера можно сказать, что провести расшифровку маркировки не сложно, и количество колец практически не оказывает влияние на то, насколько сложными будут расчеты. В рассматриваемом случае, резистор имеет сопротивление 2,67 МОм с отклонением в обе стороны 1% при температурном коэффициенте 100 ppm/°C.

Процедуру можно упростить, воспользовавшись специальными калькуляторами. Однако, не многие проводят вычисление 6 колец, что стоит учитывать.

Номинальные ряды резисторов можно назвать результатом проведения стандартизации номинальных значений. Постоянные резисторы имеют 6 подобных рядов. Также, введен один ряд для переменных номиналов и специальный ряд Е3.

На примере приведенного номинала проведем расшифровку:

  1. Буква «Е» обозначает то, что проводится маркировка по ряду номинала. Эта бука всегда идет в обозначении.
  2. Цифры после буквы означает число номинальных значений сопротивления в каждом десятичном интервале.

Существуют специальные таблицы с отображение номинальных рядов.

Для выявления стандартных рядов, был принят ГОСТ 2825-67. При этом, можно выделить несколько наиболее популярных стандартных рядов:

  1. Ряд Е6 имеет отклонение в обе стороны 20%.
  2. Ряд Е 12 имеет допустимое отклонение 10%.
  3. Ряд Е24 обладает показателем максимально допустимого отклонения в обе стороны 5%.

Последующие ряды Е48 и Е96, Е192 обладают показателем отклонения 2%, 1%, 0,5% соответственно.

Маркировка SMD диодов — справочник кодовых обозначений

Маркировка SMD диодов фирмы Hewlett Packard

# Конфигурация Тип корпуса Цоколевка
Одиночный диод SOT23 D1a
2 Два последовательно включенных диода SOT23 D1i
3 Два диода с общим анодом SOT23 D1j
4 Два диода с общим катодом SOT23 D1h
5 Два отдельных диода SOT143 D6d
7 Кольцо из четырех диодов SOT143 D6c
8 Мост из четырех диодов SOT143 D6a
9 Перевернутая четверка диодов SOT143
B Одиночный диод SOT323 D2a
C Два последовательно включенных диода SOT323 D2b
E Два диода с общим анодом SOT323 D2c
F Два диода с общим катодом SOT323 D2d
K Два отдельных диода SOT363 D7b
L Три отдельных диода SOT363 D7f
M Четыре диода с общим катодом SOT363 D7g
N Четыре диода с общим анодом SOT363 D7h
P Мост из четырех диодов SOT363 D7i
R Кольцо из четырех диодов SOT363 D7j
T Диод с низкой индуктивностью SOT363
U Последовательно-параллельная пара диодов SOT363

Маркировка SMD диодов в цилиндрических корпусах

Тип 1 полоса 2 полоса Эквивалент
BA682 Красная Нет BA482
BA683 Красная Желтая BA483
BAS32 Черная Нет 1N4148
BAV100 Зеленая Черная BAV18
BAV101 Зеленая Красная BAV19
BAV102 Зеленая Красная BAV20
BAV103 Зеленая Желтая BAV21
BB219 Нет Нет BB909

Маркировка диодов и диодных сборок

Наименование Маркировка Кол-во диодов Обратное напр. Прямой ток Время рас. Емкость диода Корпус
LL 4148 один 70 В 100 мА 4 нс 4,0 пФ mini-МELF
BAS 216 один 75 В 250 мА 4 нс 1,5 пф SOD110
BAT254 NEW один 30 В 200 мА 5 нс 10 пФ SOD110
BAS 16 JU/A6 один 75 В 200 мА 6 нс 2,0 пФ SOT23
BAS 21 JS один 200 В 200 мА 50 нс 5 пФ SOT23
BAV 70 JJ/A4 2 диода 70 В 250 мА 6 нс 1,5 пФ SOT23
BAV 99 JK, JE, A7 2 диода 70 В 250 мА 6 нс 1,5 пФ SOT23
BAW 56 JD, A1 2 диода 70 В 250 мА 6 нс 2,0 пФ SOT23
BAT54S L44 2 шотки 30 В 200 мА 5 нс 10 пФ SOT23
BAT54C L43 2 шотки 30 В 200 мА 5 нс 10 пФ SOT23
BAV23S L31 2 диода 200В 225 мА 50 нс 5 пФ SOT23

Маркировка стабилитронов BZX84

Тип Маркировка Uст при 5мА min Uст при 5мА nom Uст при 5мА max Max R ДИФ Uст в диапазоне -60 … +125°С
BZX84C2V7 W4 2,4B 2,7B 3,1B 85 Oм -0,06%
BZX84C3V0 W5 2,8B 3,0B 3,2B 85 Oм -0,06%
BZX84C3V3 W6 3,1В 3,3В 3,5В 85 Ом -0,06%
BZX84C3V9 W8 3,7В 3,9В 4,1В 85 Ом -0,06%
BZX84C4V3 Z0 4,1B 4,3B 4,5B 80 Ом -0,03%
BZX84C4V7 Z1 4,4В 4,7В 5,0В 80 Ом -0,03%
BZX84C5V1 Z2 4,9B 5,1B 5,3B 60 Ом 0,03%
BZX84C5V6 Z3 5,2В 5,6В 6,0В 40 Ом 0,03%
BZX84C6V2 Z4 5,8В 6,2В 6,6В 10 Ом 0,05%
BZX84C6V8 Z5 6,4В 6,8В 7,2В 15 Ом 0,05%
BZX84C7V5 Z6 7,1В 7,5В 7,9В 15 Ом 0,05%
BZX84C8V2 Z7 7,7В 8,2В 8,7В 15 Ом 0,06%
BZX84C9V1 Z8 8,8В 9,1В 9,5В 20 Ом 0,05%
BZX84C10 Z9 9,4В 10,0В 10,6В 20 Ом 0,07%
BZX84C12 Y2 11,4В 12,0В 12,7В 25 Ом 0,07%
BZX84C15 Y4 13,8В 15,0В 15,6В 30 Ом 0,08%
BZX84C18 Y6 16,8В 18,0В 19,1В 45 Ом 0,08%
BZX84C20 Y8 17,8В 20,0В 21,0В 45 Ом 0,08%

Маркировка стабилитронов BZT52

Тип Маркировка Uст при 5мА min Uст при 5мА nom Uст при 5мА max Max R ДИФ Uст в диапазоне -60 … +125°С
BZT52-C3V3S W4 3,1B 3,3B 3,5B 95 Oм -0,055%
BZT52-C3V9S W6 3,7B 3,9B 4,1B 95 Oм -0,050%
BZT52-C4V3S W7 4,0В 4,3В 4,6В 95 Ом -0,035%
BZT52-C4V7S W8 4,4В 4,7В 5,0В 75 Ом -0,015%
BZT52-C5V1S W9 4,8B 5,1B 5,4B 60 Ом -0,005%
BZT52-C6V8S WB 6,4B 6,8B 7,2B 8 Ом 0,045%

Как проверить SMD компоненты

Предыдущая запись Маркировка SMD транзисторов — кодовые обозначения

Следующая запись Маркировка SMD конденсаторов — коды электролитических емкостей

Цифровые маркировки

Цифровые маркировки содержат показатель (N) множителя (10 N) в качестве последней цифры, остальные две или три — мантисса сопротивления.

Номинал пассивных компонентов для поверхностного монтажа маркируется по определенным стандартам и не соответствует напрямую цифрам, нанесенным на корпус. Статья знакомит с этими стандартами и поможет Вам избежать ошибок при замене чип-компонентов.

Основой производства современных средств радиоэлектронной и вычислительной техники является технология поверхностного монтажа или SMT-технология (SMT — Surface Mount Technology). Эту технологию отличает высокая автоматизация монтажа печатных плат. Специально для SMT технологии были разработаны серии миниатюрных безвыводных электронных компонентов, которые еще называют SMD (Surface Mount Devices) компонентами или чип-компонентами. Размеры чип-компонентов стандартизованы во всем мире, как и способы их маркировки.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЧИП-РЕЗИСТОРОВ На рис.1 представлен внешний вид чип-резисторов, а в таблицах 1,2 приведены их геометрические размеры и основные технические данные. Типоразмеры SMD резисторов обозначаются четырехзначным числом по стандарту IEA. Обозначения самих же SMD резисторов некоторых зарубежных производителей приведены в табл.3. В нашей стране чип-резисторы также производятся (серия Р1-12).

МАРКИРОВКА ЧИП-РЕЗИСТОРОВ Для маркировки чип-резисторов применяется несколько способов. Способ маркировки зависит от типоразмера резистора и допуска.

Резисторы типоразмера 0402 не маркируются.

Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу (то есть номинал резистора без множителя), а последняя — показатель степени по основанию 10 для определения множителя.

При необходимости к значащим цифрам может добавляться буква R для обозначения десятичной точки. Например, маркировка 563 означает, что резистор имеет номинал 56х103 Ом = 56 кОм.

Обозначение 220 означает, что номинал резистора равен 22 Ома.

Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырьмя цифрами, первые три из которых обозначают мантиссу, а последняя — показатель степени по основанию 10 для задания номинала резистора в Омах.

Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750х10 Ом = 7,5 кОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 (таблица 4) двумя цифрами и одной буквой.

Цифры задают код, по которому из таблицы определяют мантиссу, а буква — показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 10С означает, что резистор имеет номинал 124х102 Ом = 12,4 кОм. Литература — Журнал «Ремонт электронной техники» 2 1999:::

Самым распространённым и очень широко применяемым в электронике элементом. является резистор. Это элемент, создающий сопротивление

электрическому току. Номинальные значения зависят от класса точности. Он указывает на отклонение, от номинала, которое допускается техническими условиями. Имеются три класса точности:

  • 5 %-ный ряд;
  • 10 %-ный;
  • 20 %- ный.

Например, если взять резистор I класса с номинальным значением сопротивления 100 кОм, то его натуральная величина находится в пределах от 95 до 105 кОм. У такого же компонента III класса точности величина будет лежать в 20%ном интервале, и равняться 80 или 120 кОм. Кто хорошо знаком с электротехникой, может вспомнить, что существуют прецизионные резисторы с 1%ным допуском.

Термин SMD резистор появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность». Чип резисторы, как их ещё называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты

, чем их проволочные аналоги. Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.

На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий. Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств. В связи с тем, что имеют место небольшие размеры элементов, достигается высокая плотность монтажа

Основное преимущество таких элементов — это отсутствие гибких выводов, что позволяет не сверлить отверстия в печатной плате. Вместо них используются контактные площадки.

Трехзначный код резисторов со сопротивлением менее 10 Ом

В описанной выше системе минимальное значение сопротивления, которое мы можем кодировать, составляет 10 Ом, что эквивалентно коду «100» (10 + нет нуля).

При значениях сопротивления менее 10 Ом необходимо найти другое решение, потому что вместо добавления нулей мы должны разделить значение первых двух цифр. Чтобы решить проблему, производители используют букву «R», которая эквивалентна запятой.

Например, сопротивление с кодом 4R7 эквивалентно 4,7 Ом, потому что мы заменяем «R» запятой. Если значение сопротивления меньше 1 Ом, мы используем ту же систему, помещая R в качестве первого номера. Например, R22 равно 0,22 Ом. Как вы можете видеть, это довольно легко.