Arduino ide: программная среда для разработки под ардуино

Содержание

4Среда разработки Codeblocks for Arduino

Существуют и другие среды разработки для Arduino кроме перечисленных. Например, CodeBlocks. Основное её отличие от описанных IDE – возможность писать код для микроконтроллеров и некоторых других платформ, не только для Arduino. Более подробно описывать её не буду, проще почитать информацию на официальном сайте и файлы справки.

Среда разработки CodeBlocks для Arduino

Теперь мы знаем, что существуют альтернативные, гораздо более удобные, среды разработки, чем классическая Arduino IDE. Их использование может существенно упростить и ускорить написание ваших собственных скетчей.

Разработка проекта

На современном рынке представлено множество устройств Arduino, имеющих различную комплектацию. Но универсального решения «на все случаи жизни» не существует. В зависимости от поставленной задачи каждый комплект подбирается в индивидуальном порядке. Чтобы избежать ошибок, требуется разработка проекта.

Какие проекты можно создавать на Arduino?

Ардуино позволяет создавать множество уникальных проектов. Вот лишь некоторые из них:

  • Сборка кубика Рубика (система справляется за 0,887 с);
  • Контроль влажности в подвальном помещении;
  • Создание уникальных картин;
  • Отправка сообщений;
  • Балансирующий робот на двух колесах;
  • Анализатор спектра звука;
  • Лампа оригами с емкостным сенсором;
  • Рука-робот, управляемая с помощью Ардуино;
  • Написание букв в воздухе;
  • Управление фотовспышкой и многое другое.

Как подключить проходной выключатель: одноклавишный, двухклавишный, как обычный, схемы, критерии выбора

Составление проекта для умного дома

Рассмотрим ситуацию, когда необходимо сделать автоматику для дома с одной комнатой.

Такое здание состоит из пяти основных зон — прихожей, крыльца, кухни, санузла, а также комнаты для проживания.

При составлении проекта стоит учесть следующее:

  • КРЫЛЬЦО. Включение света производится в двух случая — приближение хозяина к дому в темное время суток и открытие дверей (когда человек выходит из здания).
  • САНУЗЕЛ. В бойлере предусмотрен выключатель питания, который при достижении определенной температуры выключается. Управление бойлером производится в зависимости от наличия соответствующей автоматики. При входе в помещение должна срабатывать вытяжка, и загорается свет.
  • ПРИХОЖАЯ. Здесь требуется включение света при наступлении темноты (автоматическое), а также система обнаружения движения. Ночью включается лампочка небольшой мощности, что исключает дискомфорт для других жильцов дома.
  • КОМНАТА. Включение света производится вручную, но при необходимости и наличии датчика движения эта манипуляция может происходить автоматически.
  • КУХНЯ. Включение и отключение света на кухне осуществляется в ручном режиме. Допускается автоматическое отключение в случае продолжительного отсутствия перемещений по комнате. Если человек начинает готовить пищу, активируется вытяжка.

Отопительные устройства выполняют задачу поддержания необходимой температуры в помещении. Если в доме отсутствуют люди, нижний предел температуры падает до определенного уровня.

После появления людей в здании этот параметр поднимается до прежнего значения. Рекуперация воздуха осуществляется в случае, когда система обнаружила присутствие владельца. Продолжительность процесса — не более 10 минут в час.

Стоит обратить внимание, что если в доме планируется установка умных розеток, то для управления ими лучше использовать приложения на мобильных устройствах, WIFI или через SMS сообщения. Визуальное программирование для Arduino можно осуществлять с помощью специального приложения FLProg, которое можно скачать с официального сайта https://flprog.ru/

Визуальное программирование для Arduino можно осуществлять с помощью специального приложения FLProg, которое можно скачать с официального сайта https://flprog.ru/.

Codim

Arduino позволяет детям и взрослым выйти за рамки виртуального компьютерного мира в физический и взаимодействовать с ним. Устройства на базе Arduino могут получать информацию об окружающей среде посредством различных датчиков, а также могут управлять различными устройствами.

На курсе учащийся научится:

  • Основам электроники
  • Самостоятельно собирать электрические схемы
  • Программировать на языке Си++
  • Самостоятельно собирать и программировать роботов
  • Создавать устройства интернета вещей
  • Управлять роботом и устройствами интернета вещей с помощью смартфона
  • Воплощать свои самые фантастические идеи в жизнь
  • Технической грамотности
  • Разовьет образное мышление
  • Раскроет свой творческий потенциал.

Загружаем и устанавливаем Fritzing

Для установки перейдите на страницу загрузки Fritzing и выберите вашу операционную систему. Чтобы установить на свой компьютер, следуйте инструкциям на странице. Каких то особенностей в установке нет, поэтому я не буду останавливаться на этом подробнее. Fritzing «из коробки» уже идет с большим количеством библиотек различных элементов. Есть как основные компоненты, такие как провода, кнопки, резисторы, так и различные специализированные компоненты, такие как платы Arduino и датчики. Если вам нужно добавить новую библиотеку, или же свой компонент в библиотеку — не проблема. Как это сделать, я расскажу в отдельной статье.

Fritzing

Fritzing — это аппаратная инициатива с открытым исходным кодом, которая делает электронику доступной в качестве творческого материала для всех, кто интересуется этой темой.

Веб-сайт предоставляет программный инструмент, сообщество и услуги в духе Arduino и обработки, а также создает креативную экосистему, которая позволяет пользователям:

  • Документирование своих прототипов
  • Делимся прототипами с другими
  • Преподавание электроники в классе
  • Разработка и изготовление профессиональных печатных плат

С помощью Fritzing вы можете недорого и быстро превратить свою схему в настоящую печатную плату, изготовленную на заказ.

Этот инструмент может выступать в качестве креативной платформы, только если многие пользователи используют его как средство обучения и обмена.

Вы можете узнать огромное количество вещей из множества доступных руководств. Вот некоторые из самых интересных:

  • Построение цепи
  • Используя Stripboard
  • Работа с деталями SMD
  • Создание бумажных шаблонов
  • Пышные Провода и сгибаемые Ноги
  • Проектирование печатной платы
  • Одна минута дизайн Щит Arduino
  • Двусторонняя маршрутизация
  • Изготовление печатной платы
  • Пайка SMD деталей
  • Создание пользовательских частей
  • Прикрепление программного кода.

Также интересно знать, что Fritzing превратился из финансируемого государством исследовательского проекта в некоммерческую организацию.

Это означает, что для обеспечения самостоятельности и продолжения развития Fritzing предлагает несколько услуг, которые включают следующее:

  • Fritzing Fab — С Fritzing Fab, сервисом по производству печатных плат, вы можете быстро и недорого превратить свои эскизы в профессиональные печатные платы.
  • Семинары — Есть множество мастер-классов по Arduino, Fritzing и всему, что связано с ними, которые предлагаются начинающим и профессионалам.
  • Создание деталей — Вы также можете включить свой продукт в Fritzing, а если вы не хотите делать это самостоятельно, вы можете нанять разработчиков для создания высококачественных деталей.
  • Продукты — Fritzing создала учебный набор для начинающих и апгрейдов.

Вы можете проверить больше информации на официальном сайте Fritzing.

Простые проекты Ардуино

Давайте начнем наш обзор с традиционно самых простых, но очень важных проектов, включающих в себя минимальное количество элементов: светодиоды, резисторы и, конечно же, плату ардуино. Все примеры рассчитаны на использование Arduino Uno, но с минимальными изменениями будут работать на любой плате: от Nano и Mega до Pro, Leonardo и даже LilyPad.

Проект с мигающим светодиодом – маячок

Все без исключения учебники и пособия для начинающих по ардуино стартуют с примера мигания светодиодом. Этому есть две причины: такие проекты требуют минимального программирования и их можно запустить даже без сборки электронной схемы – уж что-что, а светодиод есть на любой плате ардуино. Поэтому и мы не станем исключением – давайте начнем с маячка.

Нам понадобится:

  • Плата Ардуино Uno, Nano или Mega со встроенным светодиодом, подключенным к 13 пину.
  • И все.

Что должно получиться в итоге:

Светодиод мигает – включается и выключается через равные промежутки времени (по умолчанию – 1 сек). Скорость включения и выключения можно настраивать.

Схема проекта

Схема проекта довольно проста:  нам нужен только контроллер ардуино со встроенным светодиодом, подсоединенным к пину 13. Именно этим светодиодом мы и будем мигать. Подойдут любые популярные платы: Uno, Nano, Mega и другие.

Подсоединяем Arduino к компьютеру, убеждаемся, что плата ожила и замигала загрузочными огоньками. Во многих платах «мигающий» скетч уже записан в микроконтроллер, поэтому светодиод может начать мигать сразу после включения.

С помощью такого простого проекта маячка вы можете быстро проверить работоспособность платы: подключите ее к компьютеру, залейте скетч и по миганию светодиода сразу станет понятно – работает плата или нет.

Программирование в проекте Ардуино

Если в вашей плате нет загруженного скетча маячка – не беда. Можно легко загрузить уже готовый пример, доступный в среде программирования Ардуино.

Открываем программу Arduino IDE, убеждаемся, что выбран нужный порт.

Проверка порта Ардуино – выбираем порт с максимальным номером

Затем открываем уже готовый скетч Blink – он находится в списке встроенных примеров. Откройте меню Файл, найдите подпункт с примерами, затем Basics и выберите файл Blink.

Открываем пример Blink в Ардуино IDE

В открытом окне отобразится исходный код программы (скетча), который вам нужно будет загрузить в контроллер. Для этого просто нажимаем на кнопку со стрелочкой.

Кнопки компиляции и загрузки скетча
Информация в Arduino IDE – Загрузка завершена

Ждем немного (внизу можно отследить процесс загрузки) – и все. Плата опять подмигнет несколькими светодиодами, а затем один из светодиодов начнет свой размеренный цикл включений и выключений. Можно вас поздравить с первым загруженным проектом!

Проект маячка со светодиодом и макетной платой

В этом проекте мы создадим мигающий светодиод – подключим его с помощью проводов, резистора и макетной платы к ардуино. Сам скетч и логика работы останутся таким же – светодиод включается и выключается.

Графическое изображение схемы подключения доступно на следующем рисунке:

Другие идеи проектов со светодиодами:

  • Мигалка (мигаем двумя свтодиодами разных цветов)
  • Светофор
  • Светомузыка
  • Сонный маячок
  • Маячок – сигнализация
  • Азбука Морзе

Подробное описание схемы подключения и логики работы программы можно найти в отдельной статье, посвященной проектам со светодиодами.

Начало

Создание проекта на Arduino состоит из 3 главных этапов: написание кода, прототипирование (макетирование) и прошивка. Для того, чтоб написать код а потом прошить плату нам необходима среда разработки. На самом деле их есть немало, но мы будем программировать в оригинальной среде – Arduino IDE. Сам код будем писать на С++, адаптированным под Arduino. Скачать можно на официальном сайте. Скетч (набросок) – программа, написанная на Arduino. Давайте посмотрим на структуру кода:

main(){ void setup(){ } void loop(){ } }

Важно заметить, что обязательную в С++ функцию main() процессор Arduino создаёт сам. И результатом того, что видит программист есть:. void setup(){ } void loop(){ }

void setup(){ } void loop(){ }

Давайте разберёмся с двумя обязательными функциями. Функция setup() вызывается только один раз при старте микроконтроллера. Именно она выставляет все базовые настройки. Функция loop() — циклическая. Она вызывается в бесконечном цикле на протяжении всего времени работы микроконтроллера.

AutoCAD 123D

Перейти на сайт Autodesk

Роль Autodesk в разработке электрических схем на протяжении многих лет нельзя переоценить. 123D — это еще одно из предложений компании Autodesk совместимых с Arduino

Во-первых, важно отметить, что 123D — это приложение САПР, которое имеет специальную функцию для проектирования схем. Поэтому при загрузке бесплатного приложения вы получите как приложение САПР, так и симулятор Ардуино

Как и другие симуляторы, упомянутые выше, 123D — действительно отличный инструмент для изучения основ программирования Arduino и проектирования схем. Приложение работает на Windows и экосистеме Android. Оно также имеет очень большую базу ресурсов и поддержку (как и большинство продуктов Autodesk) для разработки схем или обучения с нуля. Это приложение настоятельно рекомендуется большинству пользователей.

Emulare Arduino Simulator

Заинтересованы в многозадачности Arduino? Тогда Emulare — ваш лучший выбор. Этот инновационный симулятор предоставляет пользователю возможность одновременного моделирования нескольких проектов Arduino без каких-либо сбоев. Он также объявлен как кросс-платформенный симулятор из-за того, что он поддерживает как операционные системы Linux, так и Windows.

Emulare был создан для, преимущественно, электротехнических проектов и оснащен богатой библиотекой объектов. Emulare сосредотачивается на микроконтроллерах ATMega, которые позволят вам встраивать целые схемы с элементами памяти AVR, кнопками, переключателями, таймерами, светодиодами и другими компонентами. Удивительно, но Emulare со всеми его функциями и компонентами абсолютно бесплатна и обладает достаточной поддержкой, чтобы помочь пользователям понять ее особенности.

Стартовый набор Arduino

Для того что бы начать изучать Arduino необходимо обзавестись самой платой микроконтроллера и дополнительными деталями. Лучше всего приобрести стартовый набор Ардуино, но можно и самостоятельно подобрать все необходимое. Я советую выбрать набор, потому что это проще и зачастую дешевле. Вот ссылки на лучшие наборы и на отдельные детали, которые обязательно пригодятся вам для изучения:

Базовый набор ардуино для начинающих:
Большой набор для обучения и первых проектов:
Набор дополнительных датчиков и модулей:
Ардуино Уно самая базовая и удобная модель из линейки:
Беспаечная макетная плата для удобного обучения и прототипирования:
Набор проводов с удобными коннекторами:
Комплект светодиодов:
Комплект резисторов:
Кнопки:
Потенциометры:

Выбор платформы: Windows, Mac или Linux

Arduino Web Editor может работать со множеством разнообразных платформ. Если вы используете Windows, Mac или Linux вам необходимо будет просто установить специальный плагин от Arduino Web Editor, который позволит вам загружать скетчи из браузера в ваши платы Arduino.

Если у вас возникли какие либо проблемы с установкой данного плагина, вы всегда можете написать о возникшей проблеме в специальной теме на форуме, где специалисты техподдержки постараются решить вашу проблему.

В конце процесса установки данного плагина вас перебросит на страницу входа в аккаунт Arduino – используйте свои учетные данные чтобы войти в него.

Симулятор Ардуино от PaulWare

Как следует из названия, этот симулятор Arduino был создан разработчиком по имени Пол. Симулятор с открытым исходным кодом и собрал свою собственную долю фанатов, которые одновременно добавляют свои идеи и создают учебники о том, как использовать симулятор. Этот бесплатный продукт был сделан преимущественно для экосистемы Windows и обеспечивает достаточную поддержку для новичков.

Основными компонентами, которые он обеспечивает для поддержки вашего проекта, являются светодиодный кратковременный выключатель, матричная клавиатура 4 на 4, матричная клавиатура 4 на 4 с ЖК-дисплеем, поворотный переключатель и т.д. YouTube видео предоставит вам достаточно информации для начала использования этого симулятора Arduino.

Для него также предусмотрен специальный раздел на форуме производителя Ардуино, на котором вы можете стать участником, чтобы узнать больше об обновлениях и схемах проектирования.

Из чего состоит плата Arduino?

Выпускаются различные модели Arduino. Каждая из них «заточена» для различных задач. Некоторые платы принципиально отличаются от приведенной на рисунке ниже. Но большинство из них имеют следующие одинаковые узлы:

Разъем питания (USB / разъем для адаптера)

Каждая плата Arduino должна подключаться к источнику питания. Arduino Uno может запитываться от USB кабеля от вашего персонального компьютера Или от отдельного адаптера, который подключается к предусмотренному на плате разъему. На рисунке соединение через USB отмечено (1), а разъем для внешнего источника питания — (2).

USB также используется для загрузки вашей программы (скетча) на плату.

Примечание! Не используйте источник питания с напряжением на выходе более 20 вольт. Это может привести к тому, что ваша плата перегорит. Рекомендуемое напряжение питания для Arduino — от 6 до 12 вольт.

Разъемы (пины) (5V, 3.3V, GND, Analog, Digital, PWM, AREF)

Пины на вашей плате Arduino — это предусмотренные разъемы, к которым вы будете подключать провода от периферийных устройств (очень часто для прототипов используют монтажные платы (макетная плата, макетка) и провода с коннекторами на концах). На Arduino несколько типов пинов, каждый из которых подписан в соответствии с выполняемой функцией.

  • GND (3): сокращение от ‘Ground’ — ‘Земля’. На платах несколько пинов GND, каждый из которых может использоваться для заземления вашей электрической цепи.
  • 5V (4) и 3.3V (5): как вы могли уже догадаться — питы, которые на выходе обеспечивают питание 5 вольт и 3.3 вольт соответственно. Большинство компонентов, которые подключаются к Arduino, благополучно питаются именно от 5 или 3.3 вольт.
  • Analog (6): на участке, который подписан ‘Analog In’ (от A0 до A5 на Arduino Uno) расположены аналоговые входы. Эти пины позволяют считывать сигналы от аналоговых датчиков (например, датчик температуры) и преобразовывать их в цифровые значения, которыми мы в дальнейшем оперируем.
  • Digital (7): напротив аналоговых пинов находятся цифровые пины (от 0 до 13 на Arduino Uno). Эти пины используются для цифровых входящих (input) сигналов (например, нажатие кнопки) и для генерации цифровых исходящих (output) сигналов (например, питание светодиода).
  • PWM (8): вы наверное заметили знак (~) рядом с некоторыми цифровыми пинами (3, 5, 6, 9, 10, и 11 на UNO). Эти пины работаю как в обычном цифровом режиме, так и в режиме ШИМ-модуляции (PWM). Если объяснить вкратце — эти пины могут имитировать аналоговый выходной сигнал (например, для постепенного затухания светодиода).
  • AREF (9): Этот пин используется достаточно редко. В некоторых случаях это подключают в схему для установки максимального значения напряжения на аналоговых входах (от 0 до 5 вольт).

Кнопка сброса (Reset Button)

Как и на оригинальных Nintendo, на Arduino есть кнопка сброса (reset) (10). При нажатии на нее контакт сброса замыкается с землей и код, загруженный на Arduino начинает отрабатывать заново. Полезная опция, если ваш код отрабатывает без повторов, но вы хотите протестить его работу.

Индикатор питания (Power LED)

Немного справа и ниже надписи “UNO” установлен светодиод, подписанный «on» (11). Этот светодиод должен загореться, когда вы подключили Arduino к источнику питания. Если светодиод не загорелся — плохой знак ;).

Светодиоды TX и RX

TX — сокращение от transmit (передача), RX — от receive (прием). Эти условные обозначения часто встречаются в электронике для обозначения контактов, которые отвечают за серийный обмен данным. На Arduino Uno эти контакты встречаются два раза на цифровых пинах 0 и 1 и в качестве светодиодов TX и RX (12). Эти светодиоды позволяют визуально отслеживать, передает или принимает данные Arduino (например, при загрузке программы на плату).

Главная интегральная микросхема (IC)

Черная деталь с металлическими коннекторами с двух сторон это интегральная микросхема, микропроцессор (IC или Integrated Circuit) (13). Можете смело считать, что это «мозги» нашей Arduino. Этот чип разный в разных моделях Arduino, но обычно он относится к линейке микропроцессоров ATmega от компании ATMEL

Это может оказаться важной информацией для загрузки скетча на плату. Модель интегральной микросхемы обычно указана на ее верхней корпусной части

Для дополнительной информации о вашей микросхеме стоит обратиться к ее даташиту.

Регулятор напряжения

Регулятор напряжения (14) is выполняет функцию, указанную в названии — контролирует напряжение, которое поступает на плату Arduino. Можете его себе представить как охранника, который не пропускает слишком большое напряжение на плату во избежание ее повреждений. Конечно же, у регулятора есть свой предел. Так что питать Arduino напряжением больше 20 вольт нельзя.

BangBangEducation

Этот практический курс посвящен основам работы с контроллерами из семейства Arduino. Вы узнаете, как быстро и просто прототипировать, используя контроллер и датчики Arduino в любой доступной вам среде, и собирать интерактивные объекты для рекламных событий, умного дома или семейных праздников.

Широкий спектр датчиков и актуаторов позволит добавить интерактивности практически в любую систему, а основы взаимодействия и работы, изучаемые на курсе, позволят сделать это просто, используя системы визуального программирования.

Курс состоит из нескольких модулей. Первый — вводный, его необходимо пройти всем: на нем слушатели подготовят контроллер для дальнейшей работы.

Все последующие модули также рекомендуется пройти, но можно начать с той среды программирования, которая вам близка или уже знакома. Разбираемые среды программирования: TouchDesigner, Ableton (Max), Max/MSP, PureData и Processing.

Кому подойдет курс: всем, кто решил начать изучать Arduino, но пока не хочет программировать на C++.

Для обучения на базе плат расширения нам понадобятся детали/модули:

• Arduino UNO / Mega
• соответствующий вашей плате кабель USB
• Плата расширения*
• Аналоговый модуль потенциометра*
• Модуль кнопка*
Опционально:
• Сервопривод
• Блок питания для сервопривода
• Датчик уровня шума*
• Инфракрасный дальномер Sharp (10−80 см)

Simduino для iPad

Этот продукт — платный, разработанный для использования на экосистеме смарт-устройств Apple. Это комплексный симулятор, который позволяет вам узнать о программировании и электронике на платформе Arduino. Он обеспечивает достаточную поддержку большинства языков программирования Arduino C и может использоваться для запуска нескольких проектов в соответствии с потребностями пользователя.

Эта программа имеет отличный рейтинг на iTunes. Хорошая поддержка помогает своим пользователям понять детали и описания, доступные пользователям на официальном сайте. Приблизительно за 2 доллара вы получите отличный Ардуино симулятор, совместимый с вашим iPad.

PSpice

Каждый студент, занимающийся электротехникой и электроникой, должен был столкнуться с PSpice в течение месяцев, потраченных на изучение основ проектирования схем и программирования. Но для тех кто не знает что такое PSpice — это интуитивный симулятор, который можно использовать для моделирования Arduino из-за множества функций, интегрированных в приложение. PSpice поддерживается операционной системой Windows и Linux и поставляется в разных модулях или типах.

Студенты могут использовать PSpice Lite, который абсолютно свободен, чтобы изучить основы программирования Ардуино, в то время как компании, преподаватели и другие эксперты могут использовать платный PSpice. PSpice в настоящее время используется в различных отраслях промышленности — автомобилестроении, образовании, энергоснабжении и т.д.

Теперь поинтереснее

Давайте объединим потенциометр и диод. И у нас выйдет плавное управление яркостью светодиода. Подключаем всё по следующей схеме:

После подключения давайте напишем код к нашему импровизированному светильнику:

int pot = A0; // потенциометр подключён к А0 int val; // переменная для хранения значений int LED = 3; // светодиод подключён к 3 пину void setup() { Serial.begin(9600); // настраиваем скорость обмена данных на 9600 бит в секунду pinMode(pot, INPUT); pinMode(LED, OUTPUT); } void loop() { val = analogRead(pot); // считываем данные с потенциометра Serial.println(val); // с новой строки выводим значения val = val / 4; // делим значения с потенциометра на 4 analogWrite(LED, val); // выводим значение переменной, которое получаем после деления на 4 }

Короткие объяснения по коду. Деление на 4 необходимо для следующего. Потенциометр может принимать значения от 0 до 1023. А вот аналоговый вход/выход передаёт значения только в диапазоне от 0 до 255. Поэтому деление нам в данном случае просто необходимо.

Выбор платформы: Windows, Mac или Linux

Arduino Web Editor может работать со множеством разнообразных платформ. Если вы используете Windows, Mac или Linux вам необходимо будет просто установить специальный плагин от Arduino Web Editor, который позволит вам загружать скетчи из браузера в ваши платы Arduino.

Если у вас возникли какие либо проблемы с установкой данного плагина, вы всегда можете написать о возникшей проблеме в специальной теме на форуме, где специалисты техподдержки постараются решить вашу проблему.

В конце процесса установки данного плагина вас перебросит на страницу входа в аккаунт Arduino – используйте свои учетные данные чтобы войти в него.

VBB4Arduino — виртуальный макет для Arduino

Виртуальный макет для Arduino создан, чтобы помочь пользователям сделать первые шаги в изучении всего о крутом мире физических вычислений с помощью микроконтроллера Arduino и моделей электронных схем на основе макета.

Вот основные вещи, которые вы сможете изучить с помощью Virtual Breadboard for Arduino:

  • Вы можете узнать все о физических вычислениях в безопасной среде виртуальной песочницы.
  • Вы можете узнать из встроенных в Arduino примеров.
  • Вы можете исследовать десятки различных типов датчиков, источников света и двигателей.
  • Вы сможете узнать команды Arduino и что они делают.
  • Вы можете использовать макеты в качестве эталона для создания реальных схем.

Вот ключевые особенности Virtual Breadboard:

  • Вы можете создавать прикладные схемы виртуальных макетов без пайки.
  • Вы можете смело экспериментировать с электронными схемами на основе микроконтроллеров.
  • Вы сможете протестировать макеты схем перед выполнением сборки.
  • Программное обеспечение имеет встроенный редактор встроенных программ для разработки приложений для микроконтроллера.
  • Это эмулятор схемы и микроконтроллера для тестирования вашего кода и схем.
  • Программа предлагает вам интерактивную виртуализацию для изучения основанного на обучении и схемотехнического тестирования.
  • У вас будет достаточно проводника примеров для навигации по многочисленным документированным обучающим примерам.
  • Он имеет интегрированную систему Wiki для разработки документации и курсовых работ.
  • Вы сможете проверить анимированные записи GIF-скриншотов для документации документации.
  • Один клик компилирует и развертывает встроенные приложения на реальных микроконтроллерах Vbb4UNO.
  • Кроссплатформенная разработка с 8-битными микросхемами и Raspberry Pi 2 с целями Windows 10 IoT Core.

По мнению большинства пользователей, это программное обеспечение идеально, но оно нуждается в некотором исправлении, потому что в нем есть несколько ошибок.

VBB4Arduino — это упрощенная версия полного продукта VBB. Он предназначен в качестве самостоятельной версии для начинающих с меньшим количеством опций и модулей, которые могут запутать стартеров.

Лучше всего использовать его как «песочницу» для изучения физических понятий. Опытные пользователи могут предпочесть использовать полную версию VBB с модулем расширения ArduinoToolkit.

Проверьте программное обеспечение на его официальной странице.

Вы достигли конца нашего списка симуляторов Arduino. Воспользуйтесь тем, что, по вашему мнению, подходит для ваших нужд.

Что такое Arduino Nano?

Arduino Это уже классика в мире бесплатного оборудования и в мире производителей. С его разработкой и программным обеспечением вы можете создавать множество проектов, предел которых — ваше воображение и ну … конечно, некоторые технические ограничения. Но они позволяют изучать электронику, программирование, а также творить настоящие чудеса.

Даже профессиональные проекты основаны на этих досках для разработки. В случае Arduino Nano, это уменьшенная версия de Arduino UNO. Это сводит к минимуму потребление энергии, а также означает, что для размещения тюка требуется меньше места, что делает его идеальным для проектов, где важен размер.

Это не тарелка Arduino UNO точно в миниатюре, как вы увидите, есть некоторые важные технические отличия. И это не альтернатива LilyPad. Но он разделяет другие характеристики и суть, которые присутствуют во всех проектах Arduino. Конечно, его можно запрограммировать таким же Arduino IDE как и остальные.

технические характеристики

Плата Arduino Nano имеет некоторые технические характеристики, которые вы должны знать, прежде чем начинать с нее, в дополнение к оцените, действительно ли это то, что вам нужно для вашего проекта или не соответствует вашим ожиданиям.

те технические характеристики являются:

  • Это небольшая, гибкая и простая в использовании плата микроконтроллера.
  • Он основан на микроконтроллере Atmel ATmega328p или MCU в версиях 3.x и на ATmega168 в предыдущих версиях. В любом случае он работает на частоте 16 МГц.
  • Память состоит из 16 или 32 КБ флэш-памяти в зависимости от версии (2 КБ используется для загрузчика), с 1 или 2 КБ памяти SRAM и 512 байт или 1 КБ EEPROM в зависимости от MCU.
  • Он имеет напряжение питания 5 В, но входное напряжение может варьироваться от 7 до 12 В.
  • Он имеет 14 цифровых контактов, 8 аналоговых контактов, 2 контакта сброса и 6 контактов питания (Vcc и GND). Из аналоговых и цифровых выводов им назначено несколько дополнительных функций, таких как pinMode () и digitalWrite () и analogRead () для аналогов. В случае аналогов они допускают 10-битное разрешение от 0 до 5 В. На цифровых устройствах 22 могут использоваться как выходы. ШИМ.
  • Он не включает розетку постоянного тока.
  • Он использует стандартный miniUSB для подключения к компьютеру для программирования или питания.
  • Его потребляемая мощность составляет 19 мА.
  • Размер печатной платы 18×45 мм, вес всего 7 грамм.

Распиновка и таблица данных

На этом изображении, любезно предоставленном Arduino, вы можете увидеть распиновка или предрасположенность контактов и соединений, которые вы можете найти на этой плате разработки. Как видите, у Arduino Nano не так много контактов ввода-вывода, как у его сестер, но для большинства проектов их достаточно.

Если вы хотите увидеть более подробную информацию, вы можете получить доступ таблицы данных которые существуют для этой версии Arduino Nano:

  • Технический паспорт в PDF
  • Файлы Eagle
  • Электронная схема Arduino Nano
  • Скачать распиновку в PDF

Отличия от других плат Arduino Mini и Micro

В официальный Arduinos Вы можете найти те версии, о которых мы говорили в этом блоге, такие как UNO, Mega и т. Д. Еще один — это Arduino Nano, который имеет следующие отличия, которые вы видели в предыдущих разделах.

Однако делать краткое изложение наиболее выдающихся, они являются наиболее важными по сравнению с другими официальными пластинами небольшого размера:

  • Он был разработан с той же целью, что и Arduino Mini, только у Nano есть порт miniUSB запрограммировать и подпитать энергией.
  • Su цена он находится между Arduino Mini и Arduino Micro.
  • Остальные характеристики можно увидеть в следующих таблица:
Характеристики

Ардуино Мини

Ардуино Микро

Ардуино Нано

Микроконтроллер

Atmega328P

ATmega32U4

ATmega168 / ATmega328P

Рабочее напряжение

5 V

5 V

5 V

Напряжение питания

7 9-V

7 12-V

7 9-V

Рабочая частота

16 МГц

16 МГц

16 МГц

Аналоговые входы / выходы

8/0

12/0

8/0

Цифровые входы / выходы

14/14

20/20

14/14

ШИМ

6

7

6

EEPROM (кБ)

1

1

0.512 / 0

SRAM (кБ)

2

2.5

1 / 2

Flash (КБ)

32

32

16 / 32

Основной порт питания и программирования

Через карту FTDI или кабель

MicroUSB

MiniUSB

UART

1

1

1

размеры 3 х 1.8 см 4.8 х 1.77 см 4.5 х 1.8 см

совместимость

Плата Arduino Nano — это совместим со всеми видами электронных компонентов как и остальные тарелки. Нет никаких ограничений, кроме поддерживаемых максимальных ограничений по току и напряжению. Но в противном случае вы можете использовать любой компонент, который хотите все видели в HwLibre.