Схемы простых мощных зарядных устройств для аккумуляторов

Содержание

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться: На управляющий выход и катод. Название — с управлением катодом.
  • На управляющий электрод и анод. Соответственно — управление анодом.

Тиристоры могут управляться как с анода, так и с катода

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Различают в основном, по типу проводимости и способу управления

Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.

Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

Недостатки ЗУ на тиристорах

У простой схемы есть существенный минус – отсутствие электронной защиты от переполюсовки, КЗ и перегрузок. Отчасти эту функцию выполняет плавкий предохранитель, что не очень удобно. При желании и достаточном опыте можно собрать дополнительную схему защиты и подключить её отдельно.

Второй недостаток – гальваническая связь настроечного блока с сетью. Его можно устранить, если использовать регулировочное сопротивление с пластиковой осью.

И ещё один минус – необходимость установки охлаждающих радиаторов (лучше использовать ребристые алюминиевые изделия). Частично проблема решается использованием схемы с включением регулирующего модуля в обмотку I питающего трансформатора.

Подводя итог, скажем, что тиристорное зарядное устройство своими руками собрать не так сложно, как может показаться с первого взгляда. Упорство и затраченное время будут вознаграждены недорогим качественным ЗУ с плавной регулировкой силы тока, продлевающей жизнь аккумулятору.

Грубый расчет обмоток трансформатора

Желательно в конструкции зарядного устройства на тиристорах использовать трансформатор с уже имеющейся первичной обмоткой. Но если нет первичной обмотки, нужно вычислить ее. Для этого достаточно знать мощность устройства и площадь сечения магнитопровода. Желательно использовать трансформаторы мощностью свыше 50 Вт. Если известно сечение магнитопровода S (кв. см), можно вычислить число витков на каждый 1 В напряжения:

N = 50 / S (кв. см).

Чтобы вычислить количество витков в первичной обмотке, нужно 220 умножить на N. Аналогичным образом считается и вторичная обмотка. Но нужно учитывать, что в бытовой сети напряжение может подскакивать вплоть до 250 В, поэтому трансформатор должен выдерживать такие перепады.

Как сделать ЗУ самостоятельно?

Если говорить о производстве ЗУ своими руками, то этот процесс рассмотрим на примере схемы 2. В данном случае тиристорное управления осуществляется посредством сдвига фаз. Весь процесс мы описывать не будем, поскольку он индивидуален в каждом случае, в зависимости от добавления дополнительных компонентов в конструкцию. Ниже рассмотрим основные нюансы, которые следует учесть.

В нашем случае устройство собирается на обычном оргалите, в том числе и конденсатор:

  1. Диодные элементы, отмеченные на схеме как VD1 и VD 2, а также тиристоры VS1 и VS2, следует установить на теплоотводе, монтаж последних допускается на общем теплоотводе.
  2. Элементы сопротивления R2, а также R5, следует использовать не менее, чем по 2 ватта.
  3. Что касается трансформатора, то его можно приобрести в магазине либо взять из паяльной станции (качественные трансформаторы можно найти в старых советских паяльниках). Можно перемотать вторичный провод на новый сечением около 1.8 мм на 14 вольт. В принципе, можно использовать и более тонкие провода, поскольку этой мощности будет достаточно.
  4. Когда все элементы будут у вас на руках, всю конструкцию можно установить в один корпус. Например, для этого можно взять старый осциллограф. В этом случае мы не будем давать какие-либо рекомендации, поскольку корпус — это личное дело каждого.
  5. После того, как зарядный прибор будет готов, необходимо проверить его работоспособность. Если у вас есть сомнения касательно качества сборки, то мы бы порекомендовали произвести диагностику прибора на более старой АКБ, которую в случае чего не жалко будет выбросить. Но если вы все сделали правильно, в соответствии со схемой, то проблем в плане эксплуатации возникнуть не должно. Учтите и то, что изготовленное ЗУ не нуждается в настройке, оно изначально должно работать правильно.

Простое тиристорное ЗУ в корпусе осциллографа

Регулятор тока и напряжения

Основными рабочими элементами регуляторов служат тиристоры, а также различные типы конденсаторов и резисторов. В высоковольтных устройствах дополнительно используются магнитные усилители. Модуляторы обеспечивают плавность регулировок, а специальные фильтры способствуют сглаживанию помех в цепи. В результате, электрический ток на выходе приобретает более высокую стабильность, чем на входе.

Регуляторы постоянного и переменного тока имеют свои особенности и отличаются основными параметрами и характеристиками. Например, регулятор напряжения постоянного тока имеет более высокую проводимость, при минимальных потерях тепла. Основой прибора является тиристор диодного типа, обеспечивающий высокую подачу импульса за счет ускоренного преобразования напряжения. Резисторы, используемые в цепи, должны выдерживать значение сопротивления до 8 Ом. За счет этого снижаются тепловые потери, предохраняя модулятор от быстрого перегрева. Регулятор постоянного тока может нормально функционировать при максимальной температуре 40С. Этот фактор следует обязательно учитывать в процессе эксплуатации. Полевые транзисторы располагаются следом за тиристорами, поскольку они пропускают ток лишь в одном направлении. За счет этого отрицательное сопротивление будет сохраняться на уровне, не превышающем 8 Ом.

Основным отличием регулятора переменного тока является использование в его конструкции тиристоров исключительно триодного типа. Однако полевые транзисторы применяются такие же, как и в регуляторах постоянного тока. Конденсаторы, установленные в цепь, выполняют лишь стабилизирующие функции. Фильтры высокой частоты встречаются очень редко. Все проблемы, связанные с высокими температурами, решаются установкой импульсных преобразователей, расположенных следом за модуляторами. В регуляторах переменного тока, мощность которых не превышает 5 В, применяются фильтры с низкой частотой. Управление по катоду в таких приборах выполняется путем подавления входного напряжения.

Во время регулировок в сети должна быть обеспечена плавная стабилизация тока. При высоких нагрузках схема дополняется стабилитронами обратного направления. Для их соединения между собой используются транзисторы и дроссель. Таким образом, регулятор тока на транзисторе выполняет преобразование тока быстро и без потерь.

Следует отдельно остановиться на регуляторах тока, предназначенных для активных нагрузок. В схемах этих устройств используются тиристоры триодного типа, способные пропускать сигналы в обоих направлениях. Ток анода в цепи снижается в тот период, когда понижается и предельная частота данного устройства. Частота может колебаться в пределах, установленных для каждого прибора. От этого будет зависеть и максимальное выходное напряжение. Для обеспечения такого режима используются резисторы полевого типа и обычные конденсаторы, способные выдерживать сопротивление до 9 Ом.

Очень часто в таких регуляторах применяются импульсные стабилитроны, способные преодолевать высокую амплитуду электромагнитных колебаний. Иначе, в результате быстрого роста температуры транзисторов, они сразу же придут в нерабочее состояние.

Импульсное зарядное устройство на КУ202Н

Распространенная, простая, но очень эффективная схема тиристорного фазоимпульсного регулятора мощности уже давно используется для заряда свинцовых аккумуляторов.

Узнай время зарядки своего аккумулятора

Зарядка на КУ202Н позволяет:

Схема тиристорного зарядного устройства на КУ202Н

  • добиться зарядного тока до 10А;
  • выдавать импульсный ток, благоприятно влияющий на продолжительность жизни АКБ;
  • собрать устройство своими руками из недорогих деталей, доступных в любом магазине радиоэлектроники;
  • повторить принципиальную схему даже новичку, поверхностно знакомому с теорией.

Условно, представленную схему можно разделить на:

  • Понижающее устройство – трансформатор с двумя обмотками, превращающий 220В из сети в 18-22В, необходимых для работы прибора.
  • Выпрямительный блок, преобразующий импульсное напряжение в постоянно собирается из 4-х диодов или реализуется с помощью диодного моста.
  • Фильтры – электролитические конденсаторы, отсекающие переменные составляющие выходного тока.
  • Стабилизация осуществляется за счет стабилитронов.
  • Регулятор тока производится компонентом, строящимся на транзисторах, тиристорах и переменном сопротивлении.
  • Контроль выходных параметров реализуется с помощью амперметра и вольтметра.

Принцип работы

Схема зарядного устройства с тиристором

Цепь из транзисторов VT1 и VT2 контролирует электрод тиристора. Ток проходит через VD2, защищающий от возвратных импульсов. Оптимальный ток зарядки контролируется компонентом R5. В нашем случае, он должен быть равен 10% от емкости аккумулятора. Чтобы контролировать регулятор тока, данный параметр перед клеммами подключения необходимо установить амперметр.

Питание данной схемы осуществляется трансформатором с выходным напряжением от 18 до 22 В. Обязательно необходимо расположить диодный мост, а также управляющий тиристор на радиаторах, для отвода избытка тепла. Оптимальный размер радиатора должен превышать 100см2. При использовании диодов Д242-Д245, КД203- в обязательном порядке изолируйте их от корпуса устройства.

Данная схема зарядного устройства на тиристорах обязательно должна комплектоваться предохранителем для выходного напряжения. Его параметры подбираются согласно собственных нужд. Если вы не собираетесь использовать токи более 7 А, то предохранителя на 7.3 А будет вполне достаточно.

Особенности сборки и эксплуатации

Схема проверки теристора

Собранное по представленной схеме зарядное устройство в дальнейшем можно дополнять автоматическими защитными системами (от переполюсовки, короткого замыкания и др). Особенно полезным, в нашем случае будет установка системы отключения подачи тока при заряде батареи, что убережет ее от перезаряда и перегрева.

Другие защитные системы желательно комплектовать светодиодными индикаторами, сигнализирующими о коротких замыканиях и других проблемах.

Внимательно следите за выходным током, так как он может изменяться из-за колебаний в сети.

Как и аналогичные тиристорные фазоимпульсные регуляторы, собранное по представленной схеме зарядное устройство создает помехи радиоприему, поэтому желательно предусмотреть LC-фильтр для сети.

Тиристор КУ202Н можно заменить аналогичными КУ202В, КУ 202Г или КУ202Е. Также можно использовать и более производительные Т-160 или Т-250.

Архивы

АрхивыВыберите месяц Апрель 2021  (1) Март 2021  (3) Февраль 2021  (2) Январь 2021  (1) Декабрь 2020  (1) Ноябрь 2020  (1) Октябрь 2020  (1) Сентябрь 2020  (2) Июль 2020  (2) Июнь 2020  (1) Апрель 2020  (1) Март 2020  (3) Февраль 2020  (2) Декабрь 2019  (2) Октябрь 2019  (3) Сентябрь 2019  (3) Август 2019  (4) Июнь 2019  (4) Февраль 2019  (2) Январь 2019  (2) Декабрь 2018  (2) Ноябрь 2018  (2) Октябрь 2018  (3) Сентябрь 2018  (2) Август 2018  (3) Июль 2018  (2) Апрель 2018  (2) Март 2018  (1) Февраль 2018  (2) Январь 2018  (1) Декабрь 2017  (2) Ноябрь 2017  (2) Октябрь 2017  (2) Сентябрь 2017  (4) Август 2017  (5) Июль 2017  (1) Июнь 2017  (3) Май 2017  (1) Апрель 2017  (6) Февраль 2017  (2) Январь 2017  (2) Декабрь 2016  (3) Октябрь 2016  (1) Сентябрь 2016  (3) Август 2016  (1) Июль 2016  (9) Июнь 2016  (3) Апрель 2016  (5) Март 2016  (1) Февраль 2016  (3) Январь 2016  (3) Декабрь 2015  (3) Ноябрь 2015  (4) Октябрь 2015  (6) Сентябрь 2015  (5) Август 2015  (1) Июль 2015  (1) Июнь 2015  (3) Май 2015  (3) Апрель 2015  (3) Март 2015  (2) Январь 2015  (4) Декабрь 2014  (9) Ноябрь 2014  (4) Октябрь 2014  (4) Сентябрь 2014  (7) Август 2014  (3) Июль 2014  (2) Июнь 2014  (6) Май 2014  (4) Апрель 2014  (2) Март 2014  (2) Февраль 2014  (5) Январь 2014  (4) Декабрь 2013  (7) Ноябрь 2013  (6) Октябрь 2013  (7) Сентябрь 2013  (8) Август 2013  (2) Июль 2013  (1) Июнь 2013  (2) Май 2013  (4) Апрель 2013  (7) Март 2013  (7) Февраль 2013  (7) Январь 2013  (11) Декабрь 2012  (7) Ноябрь 2012  (5) Октябрь 2012  (2) Сентябрь 2012  (10) Август 2012  (14) Июль 2012  (5) Июнь 2012  (21) Май 2012  (13) Апрель 2012  (4) Февраль 2012  (6) Январь 2012  (6) Декабрь 2011  (2) Ноябрь 2011  (9) Октябрь 2011  (14) Сентябрь 2011  (22) Август 2011  (1) Июль 2011  (5)

Простое зарядное устройство для АКБ на основе тиристора

По сути, речь идёт о тиристорном регуляторе. В прилагаемой схеме нет блока защиты, контрольного модуля и иных наворотов. Простота и минимальное количество деталей обусловили популярность этой несложной конструкции.

Возникает вопрос: не проще ли приобрести готовое устройство на тиристорах в магазине? Вроде бы, так и нужно поступить. Но у заводских недорогих ЗУ есть некоторые проблемы. Например, ток настраивается солидным переключателем, элементарно убавляющим либо прибавляющим витки в обмотке II трансформатора. Благодаря этому ток возрастает или падает. Получается грубо, ступенчато. А более качественное ЗУ стоит достаточно дорого. Поэтому имеет смысл сделать простое зарядное устройство своими руками. Плюсы:

  • доступность электронных компонентов и невысокая их стоимость;
  • лёгкость в поиске требуемой схемы (через интернет);
  • плавность регулировки тока зарядки (диапазон 1010 ампер);
  • использование импульсного тока, продлевающего эксплуатационный срок аккумулятора;
  • простая наладка;
  • стабильное функционирование.

Принцип работы схемы и подбор деталей

Перед вами фазоимпульсный регулятор, где главными элементами являются тиристоры. Под текстом – доступная схема зарядного устройства для автомобильного аккумулятора:

Электронные компоненты зарядного устройства для автомобиля, которое вы хотите собрать своими руками, с учётом обозначения:

  • С1 – от 047 до 1 мкФ на 63 В;
  • R1 сопротивлением 6,8 кОм (Р = 0,25 Вт);
  • R2 на 300 Ом;
  • R3 на 3,3 кОм;
  • R4: 110 Ом;
  • R5: 15 кОм;
  • R6: 50 Ом;
  • R7 на 150 Ом мощностью 2 Вт;
  • VD1 – диод импульсного типа, обратное напряжение от 50 В;
  • VS1 – тиристор Т-160, 250 или КУ202;
  • транзисторы с прямым переходом КТ315 или им подобные (КТ3107 и т. д.);
  • транзисторы с обратным переходом КТ361, КТ 3102 и т. п.;
  • FU1: предохранитель на 10 А (подойдёт деталь на 15–20 А, с запасом).

На тиристор воздействуют компоненты VT1 и VT2. Затем в работу вступает диод, защищающий цепь от скачков напряжения, возникающих на VS1. R5 в самодельном зарядном устройстве для аккумулятора «вычисляет» I = 1/10 ёмкости. При 60 А/ч используется зарядка в 6 А. Чтобы знать точно, на контактах, ведущим к заряжаемому изделию, желательно вставить амперметр. Это позволит держать контроль над процессом.

Теперь о питании. Схема самодельного зарядного устройства для автомобильного аккумулятора подразумевает применение трансформатора, выдающего от 18 до 22 В. При большем значении сопротивление R7 увеличьте до 200 Ом. Не забудьте элементы моста на диодах закрепить на охлаждающих алюминиевых радиаторах (применяйте специальную пасту). Стоит отметить: использование диодов старого образца типа Д242 подразумевает их установку на радиатор через изолирующие прокладки-шайбы. Номинал предохранителя должен соответствовать применяемому току. Если это до 6 А, то для FU1 вполне достаточно 6,3 А. Ниже – схема для зарядных устройств для автомобильного аккумулятора (обратная сторона печатной платы):

Помимо предохранителя, существуют электронные способы гарантии от замыкания и перепутывания полюсов, что ведёт к выходу из строя ЗУ. Например, у вас имеется изделие, где уже невозможно различить «плюс», «минус». Тогда поможет специальная схема, сигнализирующая о неправильном подключении клемм. Её нужно включать последовательно между АКБ и ЗУ:

Используемые детали:

  • R1 и R2 – резисторы сопротивлением по 510 Ом;
  • VD1 и МВ2 – диоды (например, 1N4148 или ему подобные);
  • VD3 и МВ4 (можно не устанавливать);
  • реле любое на 12 В и 15 А (можно вытащить из отслужившего своё UPS);
  • светодиоды любые.

Схема работает просто. При соблюдении полярности заряд, ещё имеющийся в батарее, замкнёт контакты реле, процесс начнётся, что подтвердит загоревшийся зелёный светодиод. Если же контакты перепутаны, зажжётся красный сигнализатор. Ниже – печатная плата устройства, защищающего от несоблюдения полярности при зарядке:

Описание и принцип работы пуско-зарядного устройства

Здесь особо сложного ничего нет. Сетевое U = 220 В подаётся через выключатель на первичную обмотку трансформатора, а на вторичной происходит уменьшение переменного напряжения. Потом оно сглаживается двухполупериодным или мостовым выпрямителем, собранным на мощных диодах. Далее пульсирующее напряжение может быть отфильтровано посредством электролитических конденсаторов. При необходимости около выхода осуществляется увеличение напряжения, что делается с помощью усилителей, в которых основными компонентами являются транзисторы, тиристоры.

Из недостатков описываемого пуско-зарядного устройства можно отметить разве что солидный вес, что обусловлено установкой мощного и, как следствие, габаритного трансформатора. Ниже – схема двухполупериодного пуско-зарядного устройства своими руками:

В этой схеме задействован лабораторный трансформатор ЛАТР. Вместо двух диодов можно использовать и диодный мост типа КЦ405. Схема пуско-зарядного устройства для автомобиля с усилителем:

Как сделать пуско-зарядное устройство своими руками, чтобы оно наверняка заработало? Нужно соблюдать параметры деталей. Мощность указанных на картинке тиристоров – не менее 80 А (если будет использоваться диодный мост, то от 160 А). Диоды на ток – 100–200 А. Транзистор – КТ361 либо КТ 3102 (можно любой другой с такими же параметрами). Мощность используемых резисторов – от 1 Вт.

Собранное своими руками зарядно-пусковое устройство подключается через зажимы-крокодилы к АКБ в соответствии с полярностью. При нормально заряженной батарее с ПЗУ энергия поступать не будет. Если же АКБ не функционирует, тиристорный переход откроется, и зарядный ток пойдёт на батарею и стартер.

Расчёт обмоток трансформатора

Сначала нужно подобрать магнитопровод, сечение которого должно быть не меньше 37 кв. см. Чтобы рассчитать количество витков в первичной обмотке, необходимо воспользоваться формулами: Т = 30/S, где S – площадь магнитопровода и N = 220*Т, то есть W1 = 220*30/37 = 178 витков. Для обмотки необходимо использовать изолированный провод сечением не менее 2 кв. мм. Формула для вторичной обмотки: W2 = 16*Т = 16*30/37 = 13 витков. Здесь понадобится шина из алюминия площадью 36 кв. мм.

Стоит заметить, что формулы не всегда могут выдавать точное число обмоток (особенно вторичной), поэтому можно применить метод подбора. Намотав первичную обмотку, накрутите несколько витков вторичной и измерьте получившееся напряжение, не обрезая шину. Таким образом нужно добиться на выходе значения 14–16 В.

Дело будет обстоять проще, если у вас имеется ЛАТР – лабораторный трансформатор. От него нужно взять сердечник. Количество витков первичной обмотки – 265–295. Используйте изолированный провод сечением 2 мм. Намотку производите в три слоя. Далее обязательно проверьте значение тока холостого хода (включите мультиметр в разрыв между сетью 220 В и одним из концов обмотки). Прибор должен показывать 210–390 мА. Если показания больше, число витков нужно увеличить, в противном случае, наоборот, уменьшить. Вторичная обмотка разделена на две секции, в каждой из которых 15–18 витков. Здесь понадобится провод сечением 10 кв. мм.

Расчёт выпрямителя

Далее рассмотрены параметры электронных компонентов (помимо указанных выше), применяемых в обеих схемах:

  1. Диоды. Максимальный пропускаемый ток не должен быть менее 100 А. Это могут быть В200, Д141, 2Д141, 2Д151 и иные аналогичные детали. Вместо КД105 не возбраняется применять КД209 или даже Д226. Стабилитрон – Д808, 2С182 и т. п.
  2. Тиристоры. I = 80 А и более: ТС185, Т15-80, Т15-100, Т161, Т125 и т. п. Если используется вариант выпрямления тока с диодным мостом, тиристоры будут мощнее вдвойне: Т15, Т160, Т250, Т16 и другие, аналогичные.
  3. Транзисторы. Здесь важен коэффициент усиления h = 21э. Это КТ361 либо КТ3107 проводимостью n-p-n. Вместо КТ816 подойдёт и КТ814.
  4. Резисторы. Желательно, чтобы их мощность была не менее 1 Вт.
  5. Выключатель. Должен держать ток от 6 А.

Подбор сечения проводов

Подбирая выходные провода, которые будут присоединяться к аккумулятору, нужно помнить, что их диаметр не может быть меньше такого же параметра вторичной обмотки. Лучше использовать многожильный медный кабель, используемый в сварочных аппаратах, где каждый проводок имеет сечение 2,5 кв. мм. Такую же площадь должен иметь провод, посредством которого самодельный аппарат будет подключаться к сети. Не забудьте приобрести мощные зажимы-крокодилы для подключения к клеммам АКБ. Здесь тоже рекомендуется использовать изделия, применяемы при сварке («масса»).

На транзисторах

Сборки на транзисторах больше подходят для индуктивной нагрузки, ими можно регулировать обороты электродвигателей.

Простая схема

Данная сборка очень практичная — этот регулятор напряжения представляет собой простой блок питания, универсальный адаптер к радиоустройствам на разные напряжения (вольтаж). Собрать сможет даже пользователь с начальными познаниями и небольшим опытом.

Элементы:

  • транзистор КТ815Г, можно и 817 Г;
  • переменник на 10 кОм;
  • резистор стандартный 0.125 Вт на 1 кОм

Спаять элементы можно без площадки, но покажем, как это сделано с ней. Создаем плату:

Пайка компонентов:

Транзистор, важно не перепутать его выводы (эмиттер и базу).
Резистор на 1 кОм.
Впаиваем с проводами переменник на 10 кОм. Можно применить и другой, припаять сразу, без них, если позволяет типоразмер.
Четыре вывода — к питанию, к выходам.

Подсоединяем к питанию, выход оснащаем светодиодом, подключаем нагрузку (лампу), моторчик, тот же светодиод (в нашем примере он). Двигаем регулятор — наблюдаем изменение напряжения.

Особенность: диапазон обслуживаемой мощность и ток нагрузки ограничены предельными характеристиками транзистора — примерно половина 1 Ампера. Для увеличения диапазона такого регулируемого стабилизатора надо брать транзисторы КТ805, 819.

Другие варианты маломощных транзисторных схем

С 2 деталями: транзистором и переменником. Алгоритм элементарный: последний указанный элемент индуцирует (отпирает) первый. Чем ниже номинал настроечного резистора, тем более плавная регулировка. Это вариант для маломощной нагрузки, например, для вентиляторов, слабых электромоторчиков, светодиодов. Транзистор нагревается сильно, поэтому радиатор желательный.

Мощная сборка

Опишем особо мощный регулятор для нагрузки в несколько кВт. Тут ток на нагрузку идет также через симистор, но управляется все через каскад транзисторов. Переменником настраивается ток, поступающий в базу первого транз. (маломощного), а тот посредством коллекторно-эмиторного перехода осуществляет управление базой уже мощного транз., который реализует открывание/закрывание симистора. Так создается возможность очень плавной настройки огромных токов на нагрузке.