Детекторный приёмник — конструкция и компоненты, вопросы и ответы

Что такое детекторный приемник – для тех, кто не знает.

Для тех, кто впервые слышит про детекторный приемник, сразу скажу – это не то радио, которое будет наполнять вашу комнату музыкой круглые сутки. Вот его некоторые особенности:

  1. — Да, это радио работает без батареек. :- ).   Но…
  2. — На простой детекторный приемник не удастся услышать станции FM диапазона. Детекторный приемник принимает лишь станции AM диапазона – Средние, Длинные, и если повезет  Короткие волны (СВ, ДВ, КВ ).
  3. — Детекторный приемник – это ночное радио. Из-за особенностей ДВ-СВ-КВ, нормальный прием чаще всего возможен с наступлением темного времени суток. Не пытайтесь собирать детекторный приемник днем, если вы не живете возле радиостанции.
  4. — Громкость звука детекторного приемника. Это будет еле слышное «шуршание» или в лучшем случае негромкий звук, сравнимый с шёпотом.
  5. — Количество принимаемых станций. Детекторный приемник может принимать лишь мощные или близко расположенные АМ радиостанции. По этому, скорее всего, на первых порах удастся поймать лишь одну — две радиостанции, «тонущие» в шуме помех.
  6. — Для детекторного приемника нужны специальные высокоомные наушники (наушники родом из СССР с сопротивлением 1600 Ом и более). Хотя можно использовать и обычные наушники от плеера, если подключить их через согласующий трансформатор (см. схему ниже). Без такого трансформатора на простые наушники ничего услышать не удастся. Можно еще использовать пьезо наушники.
  7. — Детекторному радиоприемнику нужна хорошая наружная антенна и заземление. Возможно, к этим благам не получится иметь доступ в вашей квартире.
  8. — Если все вышесказанное не пугает – тогда хорошая новость:  детекторный радиоприемник теоретически может работать вечно :- ).

Схема детекторного приемника.

Приведенный здесь детекторный радиоприемник состоит из четырех деталей, наушника, антенны и заземления. Схема отличается от классической схемы детекторного приемника тем, что для настройки применен индуктивный вариометр а не переменный конденсатор. Вместо переменного конденсатора используется конденсатор C1* с постоянной емкостью. Подбор емкости – чисто экспериментально. Я применил С1 = 180 пф, что позволяет мне слышать «Radio Romania». Хотя в принципе можно вообще обойтись без этого конденсатора. О вреде переменного конденсатора в детекторном приемнике много написано в разных источниках. Я лишь скажу, что действительно, этот конденсатор подавляет не только мешающий, но и в основном полезный сигнал. И по факту, нужен он в детекторном приемнике не для поддержания колебаний в контуре, а для «смещения» настройки в более длинноволновый диапазон при нехватке ресурса перестройки катушки вариометра. Другими словами, лучше обойтись вообще без переменного конденсатора, при этом обеспечив хорошую перестройку катушкой вариометра.

Меню

  • Главная
  • О сайте
  • Основы радиовещания

    • История изобретения радио
    • Свойства и диапазоны радиоволн
  • Передающие радиоцентры

    • Излучение радиоволн
    • Антенны ДВ радиостанций
    • Антенны СВ радиостанций
    • КВ и УКВ антенны
    • Синхронное радиовещание
  • Распространение радиоволн

    • Распространение поверхностных волн
    • Пространственные волны
    • Что и когда слышно?
  • Принципы радиопередачи и приема

    • Звуковые колебания
    • Амплитудная модуляция
    • Частотная модуляция
    • Радиоприемники и их параметры
  • Детекторные приёмники

    • Колебательный контур
    • Детектирование
    • Телефоны
  • Радиоприёмные антенны ДСВ

    • Типы и ориентация антенн
    • Проволочные антенны
    • Заземление
    • Грозозащита
    • Антенны для городских условий
    • Антенна с магнитной связью
  • Мощность, отдаваемая приемной антенной

    • Элементарная теория приемной антенны
    • Сопротивление излучения и действующая высота антенны
    • Мощность, отдаваемая антенной без потерь
    • Антенная цепь с потерями
  • Усовершенствование детекторного приёмника

    • Согласование антенной цепи
    • Оптимизация антенной цепи и связи с детектором
    • Емкостная связь детектора с антенной цепью
    • Практическая конструкция универсального детекторного приемника
    • Варианты приемника с емкостной связью
  • Высококачественные детекторные приемники

    • Двухконтурные приемники
    • Использование высококачественных телефонов
  • Портативные детекторные приемники

    • Портативные антенна и заземление
    • Необычные антенны и нестандартные решения
  • Акустические системы громкоговорящих детекторных приемников

    • Громкость звука, чувствительность и отдача акустических систем
    • Конструкции акустических систем
    • Рупорные акустические системы
  • Практические схемы громкоговорящих детекторных приемников

    • Схема без КПЕ
    • Двухполупериодные мостовые детекторы
    • Двухполупериодный детектор с индуктивной связью
    • Ключевые детекторы
    • Транзисторный детектор
    • Двухполупериодные детекторы на комплементарных транзисторах
  • Питание приёмника свободной энергией

    • Простейшая схема
    • Усовершенствование простейшей схемы
    • Питание полем мощных станций
    • Более полное использование энергии несущей
    • Приемник с мостовым усилителем
    • Налаживание приемников с питанием свободной энергией
    • Приемник с мостовыми детектором и усилителем
  • Радиотрансляция

    • Альтернатива радиоточке
    • Беспроводные радиоузлы
  • Приемники прямого усиления

    • Мистика коротких антенн
    • Истоковый детектор на полевом транзисторе
    • Магнитные антенны
    • Рамочная средневолновая антенна
  • Экономичные приемники

    • Схема на трех транзисторах
    • Карманный приемник
    • Чувствительный амплитудный детектор
    • Приемник на биполярных транзисторах с АРУ
    • Приемники с УРЧ на полевом транзисторе
    • Простые радиоприемники на микросхеме TDA1072
    • Приёмник с низковольтным питанием
  • Усовершенствованные приемники прямого усиления

    • Приемник-радиоточка
    • Двухконтурный преселектор
    • Приемник с двухконтурной входной цепью
    • Средневолновый приемник
    • Чувствительный приемник
    • Радиотракт на микросхеме
    • Приемник на МС КР174УН23
    • Приемник на МС К174ХА10
  • Регенеративные приемники

    • Принципы регенерации
    • СВ регенератор с индуктивной ОС
    • СВ регенератор с регулировкой ОС
    • Регенератор на биполярных транзисторах
    • Q-yмножители
    • Приемник с Q-умножителем
    • КВ регенератор
    • Серийный регенератор
  • Автодины

    • Захват частоты
    • Простой регенератор
    • Практическая схема
  • Синхродины

    • СВ синхродин
    • СВ синхродин с плавной регулировкой ОС
    • Обобщенная структурная схема синхродина
    • KB синхродин С. Коваленко
    • КВ синхродин с полевым транзистором

Конструкция антенны

Особое требование предъявляется к конструкции антенны. Именно она выполняет в детекторном радиоприемнике функцию источника питания. Отсюда можно сделать и вывод о том, что использовать детекторный приемник как источник питания довольно просто. Но имеется ряд недостатков, от которых не получится избавиться. В частности, напряжение на выходе очень низкое, даже если радиоприемник настроен на частоту передатчика сигнала. Другими словами, не соберешь с антенны большой потенциал. Но она должна обеспечивать стабильную работу устройства. Для этой цели применяется несколько типов антенн, но самым популярным и простым является «длинный луч».

На высоте не меньше трех метров нужно подвесить отрезок провода. Его длина должна быть не менее десяти метров. Причем желательно использовать медный провод в изоляции из лака (примечание: такой точно впоследствии необходимо применить в катушке индуктивности). Толщина проволоки свыше одного миллиметра. Как вы понимаете, подвешиваться она будет в двух местах, причем края обязательно должны быть заизолированы. В противном случае вся энергия будет уходить в землю. Проводить изоляцию лучше всего при помощи керамических элементов. Провод снижения делается от одного из краев антенны, надежно припаивается к полотну на расстоянии 30-50 см от конца.

Подбор диодов для детекторного приемника.

От типа и качества выбранного детекторного диода напрямую зависит громкость звука детекторного приемника. Даже диоды одного наименования могут выдавать разную громкость. По этому, необходимо подобрать диод на слух, на работающем детекторном приемнике. С помощью переключателя два диода вручную быстро переключаются, и таким образом определяется диод «победитель» по громкости. Далее победитель ставится против следующего «претендента» и опять определяется диод «победитель». И так до определения самого громкого диода «чемпиона» .

Отличные результаты по громкости в детекторном радиоприемнике показывают диоды Д311 и Д18. И как оказалось, классический Д9 не лучший вариант по сравнению с Д311 и Д18.

Заземление для детекторного приемника и подавление помех.

В городской квартире проблематично сделать нормальное заземление для детекторного приемника. Даже если заземление будет выполнено отдельным проводом и закопано под вашим окном. Многоквартирный дом буквально «фонтанирует» помехами на «любой вкус». От Wi-Fi до зарядок мобильных телефонов. Не говоря уже о мощных импульсных блоках питания ПК, ТВ  и т.п. и т.д. Все эти помехи прекрасно детектируются детекторным приемником и в наушники пролазит непробиваемый бешенный гул. Особенно в дневное и вечернее время. Помехи слегка ослабевают лишь глубокой ночью или под утро.

Но выход есть!

Экспериментально я установил, что если провод заземления детекторного приемника подключать даже на батарею, но через резистор 3.9 кОм (смотри схему) – помехи напрочь исчезают. Мистика…

Возможно величину сопротивления нужно подбирать для каждого конкретного случая отдельно, но у меня отлично работает именно 3,9 кОм. С применением этого резистора, в наушниках появляется чистый прием с еле заметным, отдаленным фоном на заднем плане, который абсолютно не мешает.

На даче же помехи почти полностью отсутствуют. Да и с заземлением там все просто –в землю забита железная труба  метра на полтора – классика.

Регенеративный приемник.

Хотя, по правде говоря, существует способ повышения селективности одиночного колебательного
контура. Если связать его, с выходом одного из каскадов УВЧ приемника,
то при определенном уровне положительной обратной связи,
электромагнитные колебания контура на резонансной частоте, перестают быть
затухающими, восстанавливаются — регенерируют.
Это ведет к резкому увеличению добротности контура, и, соответствено — улучшению
его селективности.

Это дает возможность расширить область приема, вплоть до диапазона коротких волн.
Минусом здесь является крайняя неустойчивость работы — малейшее снижение уровня обратной
связи ведет к срыву регенерации, повышение чревато самовозбуждением каскада УВЧ.
Поэтому, регенеративные приемники постепенно были вытеснены супергетеродинами.

Детекторный приемник.

Детекторный приемник самое простое устройство, позволяющее произвести прием радиовещательных
радиостанций, использующих амплитудную модуляцию.
Классический детекторный приемник рассчитанный на прием в диапазоне длинных и средних волн
состоит из колебательного контура, амплитудного детектора, собранного на одном диоде и высокоомных
головных телефонов (наушников, говоря по-просту).
Рисунок иллюстрирующий принцип работы амплитудного детектора

На рисунке диод «обрезает» отрицательную составляющую радиосигнала.
Затем, фильтрующая емкость производит выделение огибающей выпрямленного сигнала высокой
частоты — получается сигнал низкой частоты.

Вот так, может выглядеть схема реального детектороного приемника.

В качестве колебательного контура можно использовать конденсатор переменной емкости(C1),
от любого неисправного промышленного приемника и магнитную антенну от него же.

Наушники — старинные головные телефоны ТОН-2.

Что такое детекторный приемник – для тех, кто не знает.

Для тех, кто впервые слышит про детекторный приемник, сразу скажу – это не то радио, которое будет наполнять вашу комнату музыкой круглые сутки. Вот его некоторые особенности:

  1. — Да, это радио работает без батареек. :- ). Но…
  2. — На простой детекторный приемник не удастся услышать станции FM диапазона. Детекторный приемник принимает лишь станции AM диапазона – Средние, Длинные, и если повезет Короткие волны (СВ, ДВ, КВ ).
  3. — Детекторный приемник – это ночное радио. Из-за особенностей ДВ-СВ-КВ, нормальный прием чаще всего возможен с наступлением темного времени суток. Не пытайтесь собирать детекторный приемник днем, если вы не живете возле радиостанции.
  4. — Громкость звука детекторного приемника. Это будет еле слышное «шуршание» или в лучшем случае негромкий звук, сравнимый с шёпотом.
  5. — Количество принимаемых станций. Детекторный приемник может принимать лишь мощные или близко расположенные АМ радиостанции. По этому, скорее всего, на первых порах удастся поймать лишь одну — две радиостанции, «тонущие» в шуме помех.
  6. — Для детекторного приемника нужны специальные высокоомные наушники (наушники родом из СССР с сопротивлением 1600 Ом и более). Хотя можно использовать и обычные наушники от плеера, если подключить их через согласующий трансформатор (см. схему ниже). Без такого трансформатора на простые наушники ничего услышать не удастся. Можно еще использовать пьезо наушники.
  7. — Детекторному радиоприемнику нужна хорошая наружная антенна и заземление. Возможно, к этим благам не получится иметь доступ в вашей квартире.
  8. — Если все вышесказанное не пугает – тогда хорошая новость: детекторный радиоприемник теоретически может работать вечно :- ).

Историческая справка

7 мая 1895 года считается днём рождения радиоприёмника. В этот день российский учёный А. С. Попов продемонстрировал свой аппарат на заседании Русского физико-химического общества.

В 1899 году была построена первая линия радиосвязи длиной 45 км между островом Гогланд и городом Котка. Во время Первой мировой войны получили распространение приёмник прямого усиления и электронные лампы. Во время военных действий наличие радио оказалось стратегически необходимым.

В 1918 году одновременно во Франции, Германии и США учёными Л. Левви, Л. Шоттки и Э. Армстронгом был разработан метод супергетеродинного приёма, но из-за слабых электронных ламп широкое распространение этот принцип получил только в 1930-х годах.

Транзисторные устройства появились и развивались в 50-х и 60-х годах. Первый широко используемый радиоприёмник на четырёх транзисторах Regency TR-1 был создан немецким физиком Гербертом Матаре при поддержке промышленника Якоба Михаэля. Он поступил в продажу в США в 1954 году. Все старые радиоприёмники работали на транзисторах.

В 70-х начинается изучение и внедрение интегральных микросхем. Сейчас приёмники развиваются с помощью большой интеграции узлов и цифровой обработки сигналов.

Начинаем сборку

Чтобы изготовить простое радио своими руками, достаточно обладать элементарными навыками. Паяльник можно не использовать. Но если применяете его, то монтаж конструкции лучше будет смотреться навесной. Самый большое элемент – это переменный конденсатор. Причем нужно использовать те, у которых в качестве диэлектрика выступает воздух. Пленочные современные конденсаторы не подойдут для использования в конструкции детекторного приемника.

Подберите подходящий корпус для конструкции. Ввиду того что катушка имеет большие габариты, корпус будет соответствующий. Но можно размер катушки уменьшить, для этого придется увеличить ее индуктивность. Сделать это можно очень просто – намотайте провод не на толстом каркасе, а на ферритовом сердечнике. Тогда всю конструкцию можно уместить в маленьком корпусе, на котором обязательно нужно установить гнезда для подключения наушников, заземления и антенны.

Установка блока питания

Когда надоест менять батарейки, вы поймете, что необходим источник питания от сети. Если есть в наличии солнечная батарея, то ее можно использовать для подзарядки аккумуляторов, но если же нет таковой, то придется взять готовый блок питания от какого-нибудь бытового прибора. Питание детекторного приемника можно осуществить, например, взяв блок от антенного усилителя телевизора, от DSL-модема. Только не стоит использовать зарядчики от телефонов, так как они импульсные. Если уж совсем все плохо, то питание 5 Вольт без труда можно взять с USB-разъема ноутбука или компьютера (два крайних вывода в штекере).

Полуволновой вибратор.

Простейшая антенна — полуволновой вибратор, состоит из двух отрезков провода, направленных в противоположные
стороны, в одной плоскости.

Общая длина их составляет половину длины волны, а длина
отдельного отрезка — четверть.
Если один из концов вибратора направлен вертикально, вместо второго может использоваться земля,
или даже — общий проводник схемы передатчика.

Например, если длина вертикальной антенны составляет — 1 метр, то для радиоволны длиной 4 метра
(диапазон УКВ)
она будет представлять наибольшее сопротивление.
Соответственно, эффективность такой антенны будет максимальной — именно для радиоволн этой
длины, как при приеме, так и при передаче.

Говоря по правде, в диапазоне УКВ, наиболее уверенный прием должен наблюдаться, при горизонтальном
расположении антенны.
Это связано с тем, что передача в этом диапазоне с на самом деле, выполняется
чаще всего, с помощью горизонтально расположенных полуволновых вибраторов.
Поэтому, именно — полуволновой вибратор(а не четвертьволновой) будет являться более эффективной приемной антенной.

Подробности

Заземление для детекторного приемника

Антенна представляет собой «плюсовой» провод питания, а заземление – «минусовой». Без заземления работать приемник просто не будет. Если нет возможности устроить качественное заземление, то можно конечно воспользоваться батареями или водопроводными трубами (если, конечно, они не из пластика), а так же нулевым выводом в розетках. Последний вариант крайне опасный, поэтому тщательно проверяйте, где находиться фаза, иначе рискуете получить поражение электрическим током. Зато заземление через «ноль» розетки дает возможность получить прибор с повышенной чувствительностью и избирательностью.

Если планируете заземляться через батареи или водопроводные трубы, то стоит предварительно стереть с них слой декоративного покрытия, который будет мешать эффективной работе.

В качестве заземления может выступать и простой отрезок трубы или арматуры до метра в длину, забитый в землю. Аналогичным эффектом будет обладать железная плита, закопанная в землю на глубину от полуметра, при этом, чем больше металлической поверхности, тем лучше. В целом, для заземления можно использовать любой металлический предмет, закопанный или надежно закрепленный в земле.

Создание колебательного контура

После того, как вы соорудили антенну и организовали заземление для устройства можно переходить к созданию самого приемника. Первое, что необходимо создать – это колебательный контур. Он представляет собой катушку индуктивности и конденсатор, которые подключены параллельным соединением. Эти элементы помогают настроить приемник в резонанс с антенной

При этом важно, чтобы конденсатор был переменным. Для этого можно использовать воздушный или бумажный диэлектрики. На катушку наматывается тот же тип провода, который использовался при создании антенны

Намотать придется как минимум 100 витков при оправке с диаметров в 3-5 см. Для того, чтобы расширить диапазон принимаемых частот необходимо делать отводы после каждого 25 витка. Наматывать провод необходимо виток к витку, при этом следить за тем, чтобы напряжение провода было достаточным. Для надежной фиксации проволоки на катушке сверху ее можно покрыть эпоксидной смолой

На катушку наматывается тот же тип провода, который использовался при создании антенны. Намотать придется как минимум 100 витков при оправке с диаметров в 3-5 см. Для того, чтобы расширить диапазон принимаемых частот необходимо делать отводы после каждого 25 витка. Наматывать провод необходимо виток к витку, при этом следить за тем, чтобы напряжение провода было достаточным. Для надежной фиксации проволоки на катушке сверху ее можно покрыть эпоксидной смолой.

Сборка устройства

Детекторный приемник состоит из:

  • катушки индуктивности,
  • переменного и постоянного конденсатора (лучше использовать такие, которые изготавливаются из бумаги или фольги, чем керамические),
  • полупроводникового диода типа Д9 (можно заметить на диод любого другого типа, главное, чтобы он был на основе кристалла кремния и высокочастотным),
  • Высокоомных наушников,
  • Средств коммутации – зажимы- крокодилы, гнезда, штекеры и т.д.

Собрать все эти элементы не сложно, можно обойтись даже без пайки. Достаточно воспользоваться самой простой схемой сборки детекторного приемника.

Сборка дополнительного усилителя для низких частот

Предыдущие шаги дали нам возможность собрать простейший усилитель, которые позволяет слушать радио только с использованием наушников. Для того, чтобы детекторный приемник начал вещать через громкоговоритель, необходимо его усовершенствовать. Можно установить дополнительный разъем 3.5 мм и подключить через штекер колонки. Но, если колонки отсутствуют, то можно соорудить небольшой усилитель, работающий на микросхеме

Можно выбрать усиленные сборки TDA2003, 2005, важно, чтобы у них было однополярное питание

Дополнительно стоит установить и усилитель высокой частоты, он поможет увеличить амплитуду сигнала без потери его формы. Изготовить его можно так же как и усилитель низких частот на одном транзисторе. Стоит отдать предпочтение полевым транзисторам.

Установка блока питания

Надеюсь, что эта статья поможет вам осуществить детскую или уже не детскую мечту, и собрать своими руками радиоприемник. Тем более, что это от вас не потребуется каких-то дефицитных деталей, организации рабочего места, да и сами детали конструкции в любой момент могут быть усовершенствованы и заменены на более подходящие.

Подбор диодов для детекторного приемника.

От типа и качества выбранного детекторного диода напрямую зависит громкость звука детекторного приемника. Даже диоды одного наименования могут выдавать разную громкость. По этому, необходимо подобрать диод на слух, на работающем детекторном приемнике. С помощью переключателя два диода вручную быстро переключаются, и таким образом определяется диод «победитель» по громкости. Далее победитель ставится против следующего «претендента» и опять определяется диод «победитель». И так до определения самого громкого диода «чемпиона» .

Отличные результаты по громкости в детекторном радиоприемнике показывают диоды Д311 и Д18. И как оказалось, классический Д9 не лучший вариант по сравнению с Д311 и Д18.

Основы радиоприема

Эта конструкция очень простая, ее сможет повторить даже первоклассник. Принцип работы устройства достаточно прост, на любой схеме приведены все элементы, которые встречаются в конструкции. При изготовлении такого радио своими руками нужно помнить о том, как формируется сигнал радиостанции.

Существует два вида сигналов, которые излучает любая радиостанция при работе в диапазоне АМ:

  1. Несущий – задается генератором определенная частота. При этом создается своеобразный фон.
  2. Модуляция – это сигнал, который создается музыкой, голосом, любыми звуками.

Эти два сигнала накладываются друг на друга. И в итоге слушатель при настройке на частоту станции может без лишних помех воспринять информацию, которая передается.

Детали детекторного приемника.

Этот детекторный приемник – классика школьного приборостроения. Собран он на деревянном сосновом бруске и канцелярских кнопках. При пайке приемника на такой доске ощущается ностальгический сосново – канифольный «ламповый» аромат – весьма немаловажная составляющая. Как в детстве.

Катушка детекторного приемника намотана на пластиковой водопроводной трубе и содержит примерно 90 витков (до заполнения всей длины). Для настройки приемника используется кусок ферритового стержня от радиоприемника Селга, вводимого внутрь катушки. То есть этот детекторный приемник с настройкой вариометром.

Конденсатор С1* — как уже говорилось выше – 180 пф. Хотя может быть и другого номинала . Или можно вовсе без него, если получится принять какую-нибудь радиостанцию.

Конденсатор С2 может быть 1000 – 2200 пф. Не критично.

Диод D1 – лучший диод для детекторного приемника это Д18 или Д311. Но можно использовать и любой другой высокочастотный германиевый детекторный диод. Например Д9. Хотя звук будет немного тише. Вообще, диоды для детекторного приемника нужно подбирать – смотри ниже.

Катушка индуктивности

Чтобы сделать такую радио-поделку своими руками, придется наматывать катушку индуктивности. Процедура несложная, вам понадобятся такие материалы и инструменты:

  1. Каркас цилиндрической формы. Диаметр 3-5 см, высота не менее 10 см.
  2. Проволока медная в лаковой изоляции – диаметр 0,5-1 мм. Чем она толще, тем лучше.
  3. Зажимы типа «крокодил».
  4. Шуруповерт и сверла.
  5. Лак для фиксации обмотки.

По краям каркаса нужно сделать отверстия, в которых фиксируете концы обмотки. Затем плотно, виток к витку укладываете проволоку на каркас. Чтобы увеличить диапазон принимаемых сигналов, нужно сделать отводы от каждого 15-го витка (не критично, можно делать отвод от 20-го или 25-го витка). Всего придется намотать таким образом 100-150 витков.

Фиксируете край обмотки, все отводы зачищаете и пропаиваете. Кстати, чтобы облегчить переключение, можно установить многоконтактный выключатель. Но можно использовать и зажим «крокодил», который соединяется с верхним по схеме выводом переменного конденсатора. Катушку сделали, теперь можно приступить к сборке конструкции.

Проект «Какие материалы блокируют радиоволны?»

Радиоволны находятся повсюду: в космосе, в атмосфере Земли и иногда даже внутри твердых предметов – в зависимости от материалов. В этом проекте вы выясните, что такое радиопоглощающий материал, какой из материалов является радиопоглощающим и как сделать самый простой глушитель радиоволн.

Что нам понадобится:

  • автоматически открывающаяся гаражная дверь в качестве приемника радиоволн;
  • ключ от гаража (источник радиоволн, излучающий на частоте примерно 40 000 000 герц или 40 мегагерц);
  • наволочка из ткани;
  • блок бетона;
  • доска толщиной 2,5 сантиметра, ориентировочный размер – 120х120 сантиметров;
  • большая миска для супа или металлический контейнер;
  • блокнот, фотоаппарат для записи своих наблюдений (при необходимости);

Ход эксперимента:

  1. Найдите ответы на вопросы, связанные с исследованием:
    • Что такое передатчик радиоволн?
  2. Что такое радиопоглощающие материалы?
  3. Как измеряются радиоволны?
  4. Подготовьте все необходимое.
  5. Отойдите на расстояние 1 метра от двери.
  6. Несколько раз проверьте работу ключа.
  7. Удалитесь от двери на расстояние 6-9 метров.
  8. Попробуйте открыть дверь. Насколько легко было это сделать?
  9. Медленно отходите до тех пор, пока дверь не перестанет открываться.
  10. Запомните или зафиксируйте свои наблюдения.
  11. Вернитесь к гаражу. Возьмите в руку ключ, заверните его в наволочку и попробуйте открыть дверь. Зафиксируйте наблюдения.
  12. Далее используйте доску. Посмотрите, блокирует ли она излучаемые ключом волны. Попробуйте отойти на большее расстояние. Зафиксируйте свои наблюдения.
  13. Возьмите миску или контейнер и положите ключ внутрь. Является ли материал, из которого изготовлена емкость, рпм или радиопоглощающим материалом?
  14. Проведите аналогичный опыт с бетонным блоком.
  15. Проанализируйте полученные данные, сделайте выводы.
  16. Найдите информацию о радиопоглощающих свойствах использованных материалов и сравните их с теми результатами, которые получились у вас.

Вывод:

Вы выяснили, какие из материалов – ткань, дерево, бетон и керамика или металл – являются радиопоглощающими. Если вы хотите исследовать эту тему глубже, попробуйте выяснить как именно структура каждого материала влияет на его радиопоглощающие свойства.