Зарядное устройство для автомобильного аккумулятора своими руками: простые схемы и проекты! 115 фото как построить самодельное устройство для зарядки

Описание и принцип работы пуско-зарядного устройства

Здесь особо сложного ничего нет. Сетевое U = 220 В подаётся через выключатель на первичную обмотку трансформатора, а на вторичной происходит уменьшение переменного напряжения. Потом оно сглаживается двухполупериодным или мостовым выпрямителем, собранным на мощных диодах. Далее пульсирующее напряжение может быть отфильтровано посредством электролитических конденсаторов. При необходимости около выхода осуществляется увеличение напряжения, что делается с помощью усилителей, в которых основными компонентами являются транзисторы, тиристоры.

Из недостатков описываемого пуско-зарядного устройства можно отметить разве что солидный вес, что обусловлено установкой мощного и, как следствие, габаритного трансформатора. Ниже – схема двухполупериодного пуско-зарядного устройства своими руками:

В этой схеме задействован лабораторный трансформатор ЛАТР. Вместо двух диодов можно использовать и диодный мост типа КЦ405. Схема пуско-зарядного устройства для автомобиля с усилителем:

Как сделать пуско-зарядное устройство своими руками, чтобы оно наверняка заработало? Нужно соблюдать параметры деталей. Мощность указанных на картинке тиристоров – не менее 80 А (если будет использоваться диодный мост, то от 160 А). Диоды на ток – 100–200 А. Транзистор – КТ361 либо КТ 3102 (можно любой другой с такими же параметрами). Мощность используемых резисторов – от 1 Вт.

Собранное своими руками зарядно-пусковое устройство подключается через зажимы-крокодилы к АКБ в соответствии с полярностью. При нормально заряженной батарее с ПЗУ энергия поступать не будет. Если же АКБ не функционирует, тиристорный переход откроется, и зарядный ток пойдёт на батарею и стартер.

Расчёт обмоток трансформатора

Сначала нужно подобрать магнитопровод, сечение которого должно быть не меньше 37 кв. см. Чтобы рассчитать количество витков в первичной обмотке, необходимо воспользоваться формулами: Т = 30/S, где S – площадь магнитопровода и N = 220*Т, то есть W1 = 220*30/37 = 178 витков. Для обмотки необходимо использовать изолированный провод сечением не менее 2 кв. мм. Формула для вторичной обмотки: W2 = 16*Т = 16*30/37 = 13 витков. Здесь понадобится шина из алюминия площадью 36 кв. мм.

Стоит заметить, что формулы не всегда могут выдавать точное число обмоток (особенно вторичной), поэтому можно применить метод подбора. Намотав первичную обмотку, накрутите несколько витков вторичной и измерьте получившееся напряжение, не обрезая шину. Таким образом нужно добиться на выходе значения 14–16 В.

Дело будет обстоять проще, если у вас имеется ЛАТР – лабораторный трансформатор. От него нужно взять сердечник. Количество витков первичной обмотки – 265–295. Используйте изолированный провод сечением 2 мм. Намотку производите в три слоя. Далее обязательно проверьте значение тока холостого хода (включите мультиметр в разрыв между сетью 220 В и одним из концов обмотки). Прибор должен показывать 210–390 мА. Если показания больше, число витков нужно увеличить, в противном случае, наоборот, уменьшить. Вторичная обмотка разделена на две секции, в каждой из которых 15–18 витков. Здесь понадобится провод сечением 10 кв. мм.

Расчёт выпрямителя

Далее рассмотрены параметры электронных компонентов (помимо указанных выше), применяемых в обеих схемах:

  1. Диоды. Максимальный пропускаемый ток не должен быть менее 100 А. Это могут быть В200, Д141, 2Д141, 2Д151 и иные аналогичные детали. Вместо КД105 не возбраняется применять КД209 или даже Д226. Стабилитрон – Д808, 2С182 и т. п.
  2. Тиристоры. I = 80 А и более: ТС185, Т15-80, Т15-100, Т161, Т125 и т. п. Если используется вариант выпрямления тока с диодным мостом, тиристоры будут мощнее вдвойне: Т15, Т160, Т250, Т16 и другие, аналогичные.
  3. Транзисторы. Здесь важен коэффициент усиления h = 21э. Это КТ361 либо КТ3107 проводимостью n-p-n. Вместо КТ816 подойдёт и КТ814.
  4. Резисторы. Желательно, чтобы их мощность была не менее 1 Вт.
  5. Выключатель. Должен держать ток от 6 А.

Подбор сечения проводов

Подбирая выходные провода, которые будут присоединяться к аккумулятору, нужно помнить, что их диаметр не может быть меньше такого же параметра вторичной обмотки. Лучше использовать многожильный медный кабель, используемый в сварочных аппаратах, где каждый проводок имеет сечение 2,5 кв. мм. Такую же площадь должен иметь провод, посредством которого самодельный аппарат будет подключаться к сети. Не забудьте приобрести мощные зажимы-крокодилы для подключения к клеммам АКБ. Здесь тоже рекомендуется использовать изделия, применяемы при сварке («масса»).

Как правильно заряжать литиевые аккумуляторы

Существует несколько схем зарядки литиевых аккумуляторов. Чаще используется двухэтапная  зарядка, разработанная компанией SONY. Не применяются устройства с применением импульсного заряда и ступенчатой зарядки, как для кислотных АКБ.

Зарядка любых разновидностей ионно-литиевых или литий-полимерных аккумуляторов требует строгое соблюдение напряжения. На одном элементе заряженного литиевого аккумулятора должно быть не больше 4,2 В. Номинальным напряжением для них считается 3,7 В.

Литиевые аккумуляторы можно ли заряжать быстро, не полностью? Да. Их всегда можно дозарядить. Работа батареи на 40-80 % емкости удлинняет АКБ срок годности.

Двухступенчатая схема зарядки батареи литиевых аккумуляторов

Принцип схемы CC/CV – постоянная сила зарядного тока/ постоянное напряжение. Как зарядить по этой схеме литиевый аккумулятор?

На схеме до 1 этапа зарядки изображен предэтап, для восстановления глубоко севшего литиевого аккумулятора, с напряжением на клеммах не менее 2,0 В. Первый этап должен восстановить 70-80 % емкости. Ток зарядки выбирают 0,2-0,5 С. Ускоренно заряжать можно, током 0,5-1,0 С. (С – емкость литиевых аккумуляторов, цифровое значение). Каким должно быть напряжение зарядки на первом этапе? Стабильным, 5 В. Когда достигнуто напряжение на клеммах аккумулятора 4,2 – это сигнал перехода на второй этап.

Теперь ЗУ поддерживает стабильное напряжение на клеммах, а зарядный ток по мере поднятия емкости снижается. При уменьшении его значения до 0,05-0,01 С зарядка закончится, устройство отключится, не допуская перезарядки. Общее время восстановления емкости для литиевого аккумулятора не превышает 3 часов.

Если литий-ионная батарея разряжена глубже 3,0 В, потребуется провести «толчок». Это заключается в зарядке малым током до тех пор, пока на клеммах не будет 3,1 В. Потом используется обычная схема.

Как контролируют параметры зарядки

Так как литиевые аккумуляторы работают в узком диапазоне изменения напряжения на клеммах, их нельзя перезаряжать выше 4,2 В и допускать разрядку ниже 3 В. Контроллер заряда установлен в ЗУ. Но каждый аккумулятор или батарея имеют собственные прерыватели, РСВ плату или РСМ модули защиты. В аккумуляторах установлена именно защита от того или иного фактора. В случае нарушения параметра, она должна отключить банку, разорвать цепь.

Контроллер – устройство, которое должно реализовать функции управления – переводить режимы CC/CV, контролировать количество энергии в банках, отключать зарядку. При этом сборка работает, нагревается.

Самодельные схемы зарядки, применяемые для литиевых аккумуляторов

  • LM317 – схема простого зарядного устройства с индикатором заряда. От USB порта не запитывается.
  • MAX1555, MAX1551- специально для Li Аккумуляторов, устанавливаются в адаптер питания от телефона в USB. Есть функция предварительного заряда.
  • LP2951- стабилизатор ограничивает ток, формирует стабильное напряжение 4,08-4,26В.
  • MCP73831- одна из простейших схем, подходит для зарядки ионных и полимерных устройств.

Если батарея состоит из нескольких банок, разряжаются они не всегда равномерно. При зарядке необходим балансир, распределяющий заряд и обеспечивающий равномерный заряд всех банок в батарее. Балансир может быть отдельным или встроенным в схему подключения АКБ. Устройство защиты батареи называется BMS. Зная как заряжать приборы, разбираясь в схемах, можно своими руками собрать схему защитного устройства для литиевого аккумулятора.

Как сделать своими руками

Сделать зарядное устройство с диодным мостом самому по вышеприведенной схеме не составит особого труда. Достаточно руководствоваться следующими рекомендациями.

Подготовить необходимые комплектующие и инструменты

  • Трансформатор. Если зарядник изготавливается для АКБ  легкового автомобиля «Жигули» емкостью 60 А×ч, то автомобильные характеристики трансформатора должны иметь следующие параметры:
    • мощность не менее 150 Вт, чтобы обеспечить зарядный ток величиной 6 А (оптимальная зарядка по времени с обеспечением стойкости пластин аккумулятора достигается на режиме 10 % от емкости АКБ);
    • напряжение на вторичной обмотке должно быть выше 12 Вольт для нормального прохождения тока через разряженную батарею — в районе 14.4 Вольт.

    Трансформатор с такими характеристиками можно найти в старых электроламповых телевизорах или потертых временем музыкальных центрах, вышедших из строя микроволновых печах и источниках бесперебойного питания. В конце концов в специализированных магазинах можно купить такое устройство за небольшие деньги.

    Старые трансформаторы используют в обмотках алюминиевый провод в отличие от медного он сильнее нагревается. Поэтому возникает необходимость борьбы с перегревом таких трансформаторов. Кулер от неисправного источника питания компьютера поможет решить проблему:

  • Выпрямитель. Для диодного моста следует использовать достаточно мощные диоды, работающие на токе около 10 А. Такими параметрами обладают электронные элементы типа Д246. Возможно найти и другие подобные варианты. Наличие меток с указанием полярности диодов облегчает сборку моста.
  • При работе мощные диоды выделяют большое количество тепла. Монтировать диодный мостик рекомендуется на радиаторе охлаждения, например, имеющихся в старых запасных частях от системного блока компьютера. В случае невозможности найти промышленный радиатор охлаждения можно воспользоваться алюминиевым профилем, как показано на изображении:
  • Для подключения зарядника к бытовой сети необходима сетевая вилка.
  • Монтаж лучше производить на текстолитовой пластине, подходящей по габаритам.
  • Необходим кусок нихромовой проволоки.
  • Амперметр, вольтметр.
  • Диэлектрическая бумага, изолента.
  • Кроме слесарного, основным рабочим инструментом будет паяльник с материалами необходимыми в технологии пайки.

Порядок выполнения работ

  1. Так как трансформатор для самодельного зарядника обычно берется с другого электротехнического устройства, то весьма редко напряжение и сила тока на вторичной обмотке соответствуют требованиям. Следует в таком случае полностью удалить вторичную обмотку, оставив первичную. Выполнить расчеты из школьного курса физики для определения количества витков и диаметра проволоки, подходящими для необходимого напряжения и силы тока. Аккуратно уложить проволоку виток к витку не составит труда. Не стоит забывать делать изоляцию (диэлектрической бумагой, изолентой) между слоями. Концы проволоки вывести и закрепить на корпусе. Для уменьшения вибраций следует пропитать обмотку парафином.
  2. На текстолитовой пластине разместить радиатор охлаждения с установленными на нем четырьмя диодами Д246. Собрать диодный мостик с выводами к клеммам аккумулятора. Зачистить концы выводов.
  3. В разрыв между диодным мостом и аккумулятором подключается амперметр и устанавливается  кусок нихромовой проволоки. Один конец ее жестко закрепляется, а второй остается подвижным, чтобы была возможность менять длину нихромовой проволоки и варьировать величиной сопротивления. Такой самодельный переменный резистор позволит производить регулирование тока подаваемого на аккумулятор.
  4. Все соединения необходимо заизолировать изолентой. Готовое устройство для обеспечения электробезопасности следует поместить в подходящий корпус.
  5. Амперметр будет отслеживать процесс зарядки. Когда показания силы тока на нем будут в районе 1 А, можно сделать вывод, что аккумулятор зарядился.
  6. Контролировать зарядку можно и с помощью вольтметра, однако при подключенном зарядном устройстве его показания будут немного выше.

Конструкция и принцип работы зарядного устройства

Чтобы произвести зарядку аккумулятора используются зарядные устройства. Данные приборы работают от сети 220 В. На самом деле зарядное устройства является обычным преобразователем электрической энергии.

Он берет переменный ток сети 220 В, понижает его и преобразовывает в постоянный ток напряжением до 14 В, то есть до напряжения, которое выдает сам АКБ.

Сейчас производится большое количество всевозможных зарядных устройств – от примитивных и простейших до приборов с большим количеством всевозможных дополнительных функций.

Продаются и зарядные устройства, которые помимо возможной подзарядки АКБ, установленной на авто, могут еще и произвести запуск силовой установки. Такие устройства называются зарядно-пусковыми.

Есть и автономные зарядно-пусковые приборы, которые могут подзарядить АКБ или запустить мотор без подключения самого устройства к сети 220 В. Внутри же такого прибора помимо оборудования, преобразующего электрическую энергию, имеется еще и обычный аккумулятор, что и делает такой прибор автономным, хотя батарее прибора тоже после каждой отдачи электроэнергии требуется зарядка.

Видео: Как сделать простейшее зарядное устройство

Что касается обычных зарядных устройств, то простейшее из них состоит всего из нескольких элементов. Основным элементом у такого устройства является понижающий трансформатор. В нем производится понижение напряжение с 220 В до 13,8 В, которые являются самыми оптимальными для зарядки АКБ. Однако трансформатор только понижает напряжение, а вот преобразование его с переменного тока на постоянный выполняется другим элементом устройства – диодным мостом, который производит выпрямление тока и разделение его на положительный и отрицательный полюса.

За диодным мостом обычно в схему включен амперметр, который показывает силу тока. В простейшем устройстве используется стрелочный амперметр. В более дорогих приборах, он может быть цифровым, также помимо амперметра может быть встроен и вольтметр. В некоторых зарядных устройствах существует возможность выбора напряжения, к примеру, им можно заряжать как 12-вольтовые АКБ, так и 6-вольтовые.

От диодного моста выходят провода с «плюсовой» и «минусовой» клеммами, которыми и производится подключение прибора к аккумулятору.

Все это заключено в корпус, из которого выходит провод с вилкой для подключения к сети, и провода с клеммами. Чтобы обезопасить всю схему от возможного повреждения, в нее включен плавкий предохранитель.

В целом, это и вся схема простого зарядного устройства. Выполнить им зарядку аккумулятора сравнительно просто

К разряженной батарее подключаются клеммы прибора, при этом важно не перепутать полюса. Затем прибор подключается к сети

В самом начале зарядки прибор будет подавать напряжение с силой тока в 6-8 ампер, но по мере зарядки, сила тока будет уменьшаться. Все это будет отображаться на амперметре. Если батарея полностью зарядится, то стрелка амперметра опустится до нуля. Это и есть весь процесс зарядки аккумулятора.

Простота схемы зарядного устройства обеспечивает возможность самостоятельного его изготовления.

Как заряжать АКБ 18650

При зарядке АКБ 18650 необходимо соблюдать следующие правила:

  1. Начинать восстановление нужно при напряжении 0,05 В, постепенно повышая его до 4,2 В.
  2. Диапазон допустимого тока заряда – 25-50% от емкости (например, для АКБ на 2000 мА/ч он варьируется от 0,5 до 1 А).
  3. Оптимальный показатель составляет 25-30% емкости, максимальный ампераж используется только при срочной подзарядке.
  4. Допустимое время зарядки при полном разряде аккумулятора – 3 часа.
  5. Для точного выбора длительности восстановления нужно измерить его вольтаж мультиметром или подключить к интеллектуальному зарядному устройству (ЗУ).

Оптимальный режим состоит из двух этапов:

  1. CC (constant current). На нем нужно обеспечить постоянный ампераж, который находится в пределах 20-50% емкости аккумулятора. При ускоренном заряде может использоваться и большее значение тока, но часто применять такой режим не рекомендуется. Зарядное устройство должно быть оборудовано функцией плавного подъема вольтажа. На первом этапе зарядник работает как стабилизатор силы тока.
  2. CV (constant voltage). При подъеме напряжения до 4,2 В можно переходить ко второму этапу подзарядки, на котором поддерживается вольтаж 4,15-4,25 В. К концу первого этапа АКБ восстанавливается на 70-80%. По мере накопления заряда до 90-95% ампераж будет плавно снижаться. Как только его значение достигнет 1-5% емкости, батарею можно отключать от ЗУ.

Некоторые модели «зарядок» оборудованы режимом восстановления АКБ при глубоком разряде (менее 2,5 В). На нем батарея заряжается низким током (не более 5-10% емкости) до тех пор, пока ее вольтаж не достигнет 2,8 В. После этого ЗУ переходит в режим постоянного тока.

Зарядное устройство из диода и бытовой лампочки

Диод – это полупроводниковый электронный прибор, который способен проводит ток в одном направлении, имеет сопротивление, приравненное к нулю.

В качестве диода будет использован адаптер зарядки к ноутбуку.

Для изготовления такого вида устройства, нам потребуется:

  • адаптер зарядки к ноутбуку;
  • лампочка;
  • провода длиной от 1 м;

Каждый зарядный прибор для автомобиля выдает около 20в напряжения. Так как диод его заменяет адаптер и пропускает напряжение только в одну сторону, он защищен от короткого замыкания, которое может случиться при неправильном подключении.

Чем больше мощность лампочки, тем быстрее происходит заряд аккумулятора.

Ход выполнения работ:

  1. К плюсовому проводу адаптера ноутбука подсоединяем нашу лампочку.
  2. От лампочки бросаем провод на плюс.
  3. Минус от адаптера напрямую подключаем к аккумулятору.

В случае правильного подключения, наша лампочка будет светиться, потому что ток на клеммах низкий, а напряжение большое.

Также, нужно помнить, что правильная зарядка предусматривает среднюю силу тока в пределах в 2-3 ампера. Подключение лампочки высокой мощности, приводит к повышению силы тока, а это, в свою очередь, пагубно влияет на аккумулятор.

Исходя из этого, подключать лампочку высокой мощности можно только в особых случаях.

Этот способ предусматривает постоянное наблюдение и измерение напряжения на клеммах. Перезаряд батареи приведет к обильному выделению водорода, и она может выйти из строя.

При зарядке АКБ таким способом, постарайтесь находиться возле прибора, так как временное оставление его без присмотра может привести к выходу из строя прибора и АКБ.

Проверка и настройка

Для проверки нашего прибора необходимо наличие исправной автомобильной лампочки. Сначала, с помощью провода подключаем нашу лампочку к зарядке, помня о соблюдении полярности. Включаем зарядку в сеть и лампочка загорелась. Все работает.

Каждый раз, перед использованием самодельного заряжающего прибора, проверяйте его на работоспособность. Такая проверка исключит все возможности вывести из строя ваш аккумулятор.

Подбор по техническим показателям

Придя в магазин за пуско-зарядным устройством нужно учитывать некоторые факторы.

Для начала, с каким аккумулятором данному устройству придется работать. Видов аккумуляторов несколько и у каждого вида свои особенности зарядки.

Поэтому перед походом в магазин стоит уточнить, какой аккумулятор установлен на авто. Если это кислотный аккумулятор, то и ЗПУ должно быть рассчитано на работу именно с этим типом аккумуляторов.

Далее, что следует учитывать, это, каким выходным напряжением должно обладать устройство.

Если только с легковыми авто, то вполне достаточно и 12 В. Но здесь есть один интересный факт, эти устройства могут оставаться работоспособными очень длительное время. И вполне возможно, что авто со временем поменяется и потребуется уже устройство с напряжением на выходе 24 В.

Поэтому лучшим вариантом будет приобретение данного устройства, которое может работать в диапазоне 6-24 В, это лишним не будет.

Следующим фактором, влияющим на выбор ПЗУ, является сила тока, которую должно выдавать устройство для запуска авто.

Для определения данного параметра стоит посмотреть технические характеристики автомобиля, в частности сила тока, требуемая для запуска автомобиля.

Если такой возможности нет, примерное значение данного параметра можно посмотреть на аккумуляторе, установленном на авто.

К примеру, если на аккумуляторе обозначено, что его емкость составляет 65 Ач, то ЗПУ стоит выбирать с таким значением тока на выходе. Но опять же стоит брать в расчет то, что авто может поменяться и данное значение на авто будет выше и ЗПУ со значение 65 Ач уже не сможет завести авто.

Поэтому советуется при выборе пуско зарядного устройства нужно учитывать и этот фактор, поскольку приобретенное устройство, которое будет работать на предельном значении, быстрее выйдет из строя из-за работы на предельных значениях. Поэтому сила тока приобретаемого устройства при запуске должна быть выше, чем требуется.

Кроме силы тока для запуска, стоит брать в расчет и силу тока устройства, которое нужно для зарядки аккумулятора.

Если сила тока на выходе в режиме зарядки будет меньше, чем требуется для аккумулятора, то это приведет к быстрому осыпанию батареи из-за систематической недозарядки.

Подобрать ЗПУ по силе тока на зарядку не так уж и сложно. Дело в том, что оптимальное значение силы тока для зарядки аккумулятора – это 10% от номинальной мощности аккумулятора. То есть, если емкость аккумулятора составляет 65 Ач, то сила тока, которая должна быть на выходе, должна составлять 6,5 А. И опять же стоит учитывать, что устройство не должно работать на предельных значениях, у него должен быть запас.

Также стоит обратить внимание на новое ПЗУ AvtoGSM Energy D09, которое подойдет на все случаи жизни

Видео «Как собрать регулируемое ПЗУ»

Пользователь valeriyvalki подробно рассказал о процедуре сборки регулируемого ПЗУ с описанием всех особенностей и компонентов, которые применялись для разработки.

Зима, мороз, машина не заводится, пока пробовали завести, аккумулятор разрядился в конец, чешем “репу”, думаем, как решить проблему… Знакомая ситуация? Думаю, те кто живет в северных районах нашей необъятной, не раз сталкивались с проблемным заводом своего авто в холодное время года. И вот тогда возникает такой случай, начинаем думать, а неплохо было бы иметь под руками пусковое устройство, предназначенное именно для таких целей.

Естественно покупать такой девайс промышленного производства не есть дешевое удовольствие, поэтому целью данной статьи является предоставить вам информацию, каким образом пусковое устройство можно сделать своими руками с минимальными затратами.

Схема пускового устройства, которую мы хотим вам предложить, простая, но надежная, смотри рисунок 1.

Это устройство предназначено для пуска двигателя транспортного средства с 12 вольтовой бортовой сетью. Основным элементом схемы является мощный понижающий трансформатор. Жирными линиями на схеме обозначены силовые цепи, идущие от пускового устройства на клеммы аккумулятора.

По выходу вторичной обмотки трансформатора стоят два тиристора, которые управляются узлом контроля напряжения. Узел контроля собран на трех транзисторах, порог срабатывания определяется номиналом стабилитрона и двумя резисторами, образующими делитель напряжения.

Работает устройство следующим образом. После подключения силовых проводов к клеммам аккумулятора и включении сети, никакого напряжения на батарею не подается. Начинаем заводить двигатель, и если U аккумулятора упадет ниже порога срабатывания узла контроля напряжения (это ниже 10 вольт), оно подаст сигнал на открытие тиристоров, аккумулятор получит подпитку от пускового устройства.

При достижении напряжения на клеммах выше 10 вольт, пусковое устройство запрет тиристоры, подпитка батареи прекратится. Как говорит автор данной конструкции, такой метод позволяет не наносить вред автомобильному аккумулятору.

Трансформатор для пускового устройства.

Для того чтобы прикинуть, какой мощности нужен трансформатор для пускового устройства, нужно учесть, что в момент пуска стартера, он потребляет ток порядка 200 ампер, а когда раскрутится – ампер 80-100 (напряжение 12 – 14 вольт). Так как пусковое устройство подсоединяется непосредственно к клеммам аккумулятора, то в момент завода автомобиля какая-то часть электроэнергии будет отдаваться самим аккумулятором, а какая-то часть будет идти от пускового устройства. Умножаем ток на напряжение (100 х 14), получаем мощность 1400 ватт. Хотя автор вышеприведенной схемы утверждает, что и 500 ваттного трансформатора достаточно для завода автомобиля с бортовой сетью 12 вольт.

В авторском исполнении был применен трансформатор с габаритной мощностью 500 ватт, сечение провода II обмотки 14 кв. мм (это сложенный вдвое провод диаметром 3 мм). Выходное напряжение 15…18 вольт.

На всякий случай напомним формулу соотношения диаметра провода к площади поперечного сечения, это диаметр в квадрате умноженный на 0,7854. То есть два провода диаметром 3 мм дадут (3*3*0,7854*2) 14,1372 кв. мм .

Приводить конкретные данные по трансформатору в этой статье особого смысла не имеет, ведь для начала необходимо как минимум иметь более-менее подходящее трансформаторное железо, ну а потом, опираясь на фактические размеры, произвести расчет намоточных данных именно для него.

Остальные элементы схемы.

Тиристоры:

при двухполупериодной схеме – на ток от 80А и выше. Например: ТС80, Т15-80, Т151-80, Т242-80, Т15-100, ТС125, Т161-125 и т.д. При реализации второго варианта с использованием мостового выпрямителя (смотри схему выше), тиристоры должны быть раза в 2 мощнее. Например: Т15-160, Т161-160, ТС161-160, Т160, Т123-200, Т200, Т15-250, Т16-250 и им подобные.

Полезный совет

При использовании устройств без автоматического контроля заряда АКБ можно применить простейшее сетевое, суточное реле китайского производства. Это избавит от необходимости следить за временем отключения блока от сети.

Стоимость такого прибора около 200 рублей. Зная примерное время зарядки своего аккумулятора, можно выставить нужное время отключения. Это гарантирует своевременное прекращение подачи электричества. Можно отвлечься на дела и забыть о АКБ, что может привести к закипанию, разрушению пластин и выходу аккумулятора из строя. Новый аккумулятор будет стоить гораздо дороже

Самодельные приборы для заряда

Самостоятельно сделать зарядку для шуруповёрта на 12 вольт своими руками, по аналогии с той, что применяется в ЗУ Интерскол, довольно просто. Для этого потребуется воспользоваться способностью термореле разрывать контакт при достижении определённой температуры.

В схеме R1 и VD2 представляют собой датчик прохождения тока заряда, R1 предназначен для защиты диода VD2. При подаче напряжения транзистор VT1 открывается, через него проходит ток и светодиод LH1 начинает светиться. Величина напряжения падает на цепочке R1, D1 и прикладывается к аккумулятору. Ток заряда проходит через термореле. Как только температура аккумулятора, к которому подключено тепловое реле, превысит допустимое значение, оно срабатывает. Контакты реле переключаются, и ток заряда начинает протекать через сопротивление R4, светодиод LH2 загорается, сообщая об окончании заряда.

Схема на двух транзисторах

Ещё одно простое устройство можно выполнить на доступных элементах. Эта схема работает на двух транзисторах КТ829 и КТ361.

Величина тока заряда управляется транзистором КТ361 к коллектору, которого подключён светодиод. Этот транзистор также управляет состоянием составного элемента КТ829. Как только ёмкость батареи начинает увеличиваться, ток заряда уменьшается и светодиод соответственно плавно гаснет. Сопротивлением R1 задаётся максимальный ток.

Момент полного заряда батареи определяется необходимым напряжением на ней. Требуемая величина выставляется переменным резистором на 10 кОм. Чтобы её проверить, понадобится поставить вольтметр на клеммах подключения батареи, не подключая её саму. В качестве источника постоянного напряжения используется любой выпрямительный блок, рассчитанный на ток не менее одного ампера.

Использование специализированной микросхемы

Производители шуруповёртов стараются снизить цены на свою продукцию, часто это достигается путём упрощения схемы ЗУ. Но такие действия приводят к быстрому выходу из строя самой батареи. Применяя универсальную микросхему, предназначенную именно для ЗУ компании MAXIM MAX713, можно добиться хороших показателей процесса заряда. Вот как выглядит схема зарядного устройства для шуруповёрта на 18 вольт:

Микросхема MAX713 позволяет заряжать никель-кадмиевые и никель-металл-гидридные аккумуляторы в режиме быстрого заряда, током до 4 C. Она умеет отслеживать параметры батареи и при необходимости снижать ток автоматически. По окончании зарядки схема на основе микросхемы практически не потребляет энергии от аккумулятора. Может прерывать свою работу по времени или при срабатывании термодатчика.

HL1 служит для индикации питания, а HL2 — для отображения быстрого заряда. Настройка схемы заключается в следующем. Для начала выбирается зарядный ток, обычно его значение составляет величину равную 0,5 C, где C — ёмкость аккумулятора в амперчасах. Вывод PGM1 соединяется с плюсом напряжения питания (+U). Мощность выходного транзистора рассчитывается по формуле P=(Uвх — Uбат)*Iзар, где:

  • Uвх – наибольшее напряжение на входе;
  • Uбат – напряжение на аккумулятор;
  • Iзар – зарядный ток.

Сопротивление R1 и R6 рассчитывается по формулам: R1=(Uвх-5)/5, R6=0.25/Iзар. Выбор времени, через которое зарядный ток отключится, определяется подключением контактов PGM2 и PGM3 к разным выводам. Так, для 22 минут PGM2 оставляется неподключенным, а PGM3 соединяется с +U, для 90 минут PGM3 коммутируется с 16 ногой микросхемы REF. Когда понадобится увеличить время зарядки до 180 минут PGM3 закорачивают с 12 ногой MAX713. Наибольшее время 264 минуты достигается соединением PGM2 со второй ногой, а PGM3 с 12 ногой микросхемы.