Цифровые микросхемы — начинающим (занятие 8)

:: СЧЁТЧИК ГЕЙГЕРА ::

   Изобретенный Гансом Гейгером прибор, способный определить ионизирующее излучение, представляет собой герметизированный баллон с двумя электродами, куда закачивается газовая смесь, состоящая из неона и аргона, которая ионизируется.

На электроды подается высокое напряжение, которое само по себе никаких разрядных явлений не вызывает до того самого момента, пока в газовой среде прибора не начнется процесс ионизации.

Появление пришедших извне частиц приводит к тому, что первичные электроны, ускоренные в соответствующем поле, начинают ионизировать иные молекулы газовой среды.

В результате под воздействием электрического поля происходит лавинообразное создание новых электронов и ионов, которые резко увеличивают проводимость электронно-ионного облака. В газовой среде счетчика Гейгера происходит разряд. Количество импульсов, возникающих в течение определенного промежутка времени, прямо пропорционально количеству фиксируемых частиц.

   Он способен реагировать на ионизирующие излучения самых различных видов. Это альфа-, бета-, гамма-, а также рентгеновское, нейтронное и ультрафиолетовое излучения.

Так, входное окно счетчика Гейгера, способного регистрировать альфа- и мягкое бета-излучения, выполняется из слюды толщиной от 3 до 10 микрон. Для обнаружения рентгеновского излучения его изготавливают из бериллия, а ультрафиолетового – из кварца.

Схема паяется на небольшую печатную плату, и все это помещено в алюминиевый корпус. Медные трубки и кусок алюминиевой фольги используются для фильтрации радиочастотных помех.

Список деталей нужных для радиосхемы

  • 1 BPW34 фотодиода
  • 1 LM358 ОУ
  • 1 транзистор 2N3904
  • 1 транзистор 2N7000
  • 2 конденсатора 100 НФ
  • 1 конденсатор 100 мкФ
  • 1 конденсатор 10 нФ
  • 1 конденсатор 20 нФ
  • 1 10 Мом резистор
  • 2 1.

    5 Мом резистора

  • 1 56 ком резистор
  • 1 150 ком резистор
  • 2 1 ком резистора
  • 1 250 ком потенциометр
  • 1 Пьезодинамик
  • 1 Тумблер включения питания

   Как вы можете видеть из схемы, она настолько проста, что собирается за пару часов.

 После сборки убедитесь, что полярность динамика и светодиода, являются правильными.

   Наденьте на фотодиод медные трубки и изоленту. Она должна плотно прилегать.

   Просверлите отверстие в боковой стене алюминиевого корпуса для тумблера, а сверху для фотодатчика, светодиода и регулятора чувствительности. Больше никаких дырок в корпусе быть не должно, так как схема очень чувствительна к электромагнитным наводкам.

   После того, как все электрические компоненты будут соединены, вставьте батарейки. Мы использовали три сложеные вместе CR1620 батареи. Изоленту обмотайте вокруг трубок, чтобы они не смещались. Это также поможет закрыть свет от воздействия на фотодиод. Вот теперь всё готово для начала обнаружения радиоактивных частиц.

   Проверить его в действии можно на любом тестовом источнике радиации, который вы можете найти в специальных лабораториях или в школьных кабинетах, по проведению практических работ по этой теме.

Поделитесь полезными схемами

СЕРДЦЕ НА СВЕТОДИОДАХ

   Сегодня мы попробуем спаять простое эффектное украшение – светодиодное сердце. В схеме не используется дорогих радиодеталей.

ФМ УСИЛИТЕЛЬ

   Делаем качественный полуваттный передатчик с усилителем, для передачи аудиосигнала на FM радиовещательный приёмник.

САМОДЕЛЬНЫЙ MP3 ПЛЕЕР

    Данный MP-3 плеер поддерживает достаточно много функций, например случайное воспроизведение дорожек, навигация по дорожкам (вперед, назад, пауза), регулирование громкости звука воспроизведения. Также тут присутствует поддержка файловой системы FAT32, фрагментированных файлов. Качество звука и воспроизведения музыкальных файлов находится на очень высоком уровне. 

РАБОТА ТРИГГЕРА

     Триггер определяется, как бистабильный элемент, то есть логическое устройство с обработанными связями, которое может находиться в одном из двух устойчивых состояний, обеспечиваемых этими связями.

Входами триггера R, T и S служат кнопки SB1 – SB3, нажатием которых подается напряжение высокого уровня. Индикаторами выходов Q и Q– являются лампы HL1 и HL2. При включении питания триггера загорается одна из ламп, например HL2.

Если теперь на вход R подать 1, нажав кнопку SB1, триггер перейдет в другое устойчивое состояние – загорится лампа HL1, а лампа HL2 погаснет.   

Как правильно выбирать

Чтобы точно ответить на вопрос, какой счетчик Гейгера лучше выбрать, необходимо рассматривать конкретные условия его применения и основные технические параметры:

  • Чувствительность – рассматривается как соотношение числа импульсов, задаваемых излучением, и количества микрорентген, выделяемого эталонным источником (имп./мкР). Скорость счета может измеряться и в импульсах за 1 сек. (имп./сек.).
  • Параметры площади, сквозь которую проходят частицы (см2). При ее большей величине количество улавливаемых частиц возрастает.
  • Рабочее напряжение. Его типичное значение составляет 400 В.
  • Ширина рабочей характеристики как расхождение между уровнем напряжения искрового пробоя и его значением в точке выхода на «плато». Стандарт – 100 В.
  • Наклон рабочей характеристики – допустимая статистическая ошибка при подсчетах (около 0,15%).
  • Рабочая температура (от -50 до +70 градусов).
  • Ресурс – максимальное число замеряемых импульсов до появления ошибки.
  • Мертвый период, когда проводится ток при срабатывании.
  • Собственный фон – излучение деталей устройства.
  • Диапазон возможной регистрации – спектр воспринимаемых фотонов и частиц.

Счетчик Гейгера является достаточно полезным устройством, которое используется в работе дозиметров при оценке параметров среды. Существуют разные модели с определенными техническими характеристиками. Они предназначены для регистрации гамма-фотонов, а также альфа и бета-излучения.

Из чего состоит дозиметр.

Часто задаваемые вопросы

Чем отличается счетчик Гейгера от дозиметра?
Счетчик Гейгера – это деталь, датчик ионизирующего излучения в дозиметрической аппаратуре. Дозиметр – прибор, определяющий накопленную дозу ионизирующего излучения. Радиометр – прибор, показывающий мощность дозы ионизирующего излучения в данный момент времени в данной точке.

Почему счетчик Гейгера трещит?
Электрические импульсы во внешней цепи, которые возникают при вспышке разряда, усиливаются. Именно их и регистрирует магнитный счетчик. Число таких импульсов зависит от уровня радиации и, соответственно, напряжения на его электродах. Чем выше радиация, тем сильнее треск.

Какие частицы регистрирует счетчик Гейгера?
Счетчик Гейгера способен регистрировать гамма-частицы и бетта-частицы так как остальные не могут проникнуть в счетчик и вызвать ионизации аргона. внутри счетчика.

Поверка

осуществляется по документу МРБ МП. 2364-2013 «Счетчики электрической энергии однофазные многофункциональные «АИСТ-1». Методика поверки», утвержденному ГП «Г омельский ЦСМС» в октябре 2013 г.

В перечень основного поверочного оборудования входят:

— установка для поверки счетчиков электрической энергии HS-6303E (диапазон регулирования напряжения (1 — 300) В, диапазон регулирования тока (0,001 — 120) А, диапазон регулирования частоты (45 — 65) Гц, класс точности эталонного счетчика 0,05 или 0,1);

— универсальная пробойная установка УПУ-10;

— секундомер СОСпр-2б (класс точности 2).

Как меряет энергию электрический счетчик

Как всегда, сначала – немного теории, так сказать вступительное слово.

Прежде всего – счетчик отличается от всех остальных домашних электрических устройств тем, что он включен ПОСЛЕДОВАТЕЛЬНО со всеми приборами. То есть, схема электросчетчика устроена так, что через него проходит весь ток, который он учитывает. Ну а если ток проходит не весь, то это очень не нравится контролирующим органам энергонадзора.

Счетчик измеряет активную электроэнергию, без учета реактивной и cos φ. Знаю, что многие современные счетчики измеряют и реактивную энергию, и полную, но факт остается фактом – в энергокомпанию мы передаем показания расхода АКТИВНОЙ энергии, и платим только за АКТИВНУЮ.

Ток проходит в счетчике через специальный калиброванный шунт с определённым сопротивлением (сотые доли Ома). По закону Ома, на проводнике, через который проходит ток, образуется напряжение, прямо пропорциональное току и сопротивлению:

U = I·R

Этим напряжением однозначно определяется ток. Напряжение измеряется, и значит ток тоже становится известен, косвенным образом.

Дальше происходит вот что, главное не запутаться в терминах и единицах измерения.

Мощность, потребляемая приборами в квартире, равна току, умноженному на напряжение:

P = I·U

Но как узнать, сколько мощности “съели” электроприборы? Для этого мощность умножают на время, получают электрическую энергию:

E = I·U·t

За единицу измерения электрической энергии, которая показывает, сколько киловатт прошло через счетчик в течение часа приняли киловатт в час, сокращённо – кВт·час

Строго говоря, энергию правильней измерять в Джоулях, как нас этому учили в школе, но исторически прижилась единица измерения кВт·час. Писать нужно именно с точкой, как например полная электрическая мощность измеряется в В·А.

А реализуется учёт и индикация этих “Электроджоулей” путем нехитрых электрических преобразований и устройств. Рассмотрим их ниже.

2 Краткие теоретические сведения

Счётчик – устройство для подсчёта числа входных импульсов.

Параметры счётчика:

  • модуль счёта М – число устойчивых состояний;
  • ёмкость Е – максимальное число, которое может быть записано в счётчик (Е=М-1);
  • быстродействие (скорость перехода из состояния «все 1» в состояние «все 0» и наоборот).

Классификация:

  1. По направлению счёта:
  • суммирующие;
  • вычитающие;
  • реверсивные;
  1. По способу построения цепи переноса:
  • с последовательным переносом;
  • с параллельным переносом;
  • с комбинированным переносом;
  1. По способу переключения триггера:
  • синхронные;
  • асинхронные.

2.1 Простейший суммирующий асинхронный счётчик

Счётчик представляет собой несколько последовательно включенных счётных триггеров. Напомним, что по каждому входному импульсу счётный триггер изменяет своё состояние на противоположное.

Рисунок 2.1 – Простейший суммирующий асинхронный счётчик

Если вход синхроимпульса триггера отмечен как «\», то опрокидывание триггера происходит по заднему фронту, если как «/» — то по переднему.

Рисунок 2.2 – Временная диаграмма работы суммирующего асинхронного счётчика

Для того чтобы разобраться, как работает схема двоичного счётчика, воспользуемся временными диаграммами сигналов на входе и выходах этой схемы, приведёнными на рисунке 2.2.

Пусть первоначальное состояние всех триггеров счётчика будет нулевым. Это состояние мы видим на временных диаграммах. Запишем его в таблицу 2.1. После поступления на вход счётчика тактового импульса (который воспринимается по заднему фронту) первый триггер изменяет своё состояние на противоположное, то есть единицу.

Запишем новое состояние выходов счётчика в ту же самую таблицу. Так как по приходу первого импульса изменилось состояние первого триггера, то этот триггер содержит младший разряд двоичного числа (единицы).

Таблица 2.1 – Изменение уровней на выходе суммирующего двоичного счётчика при поступлении на его вход импульсов

Номер входного импульса Q2 Q1 Q0
1 1
2 1
3 1 1
4 1
5 1 1
6 1 1
7 1 1 1
8

Подадим на вход счётчика ещё один тактовый импульс. Значение первого триггера снова изменится на прямо противоположное. На этот раз на выходе первого триггера, а значит и на входе второго триггера сформируется задний фронт. Это означает, что второй триггер тоже изменит своё состояние на противоположное. Это отчётливо видно на временных диаграммах, приведённых на рисунке 2.2. Запишем новое состояние выходов счётчика в таблицу 2.1. В этой строке таблицы образовалось двоичное число 2. Оно совпадает с номером входного импульса.

Продолжая анализировать временную диаграмму, можно определить, что на выходах приведённой схемы счётчика последовательно появляются цифры от 0 до 7. Эти цифры записаны в двоичном виде. При поступлении на счётный вход счётчика очередного импульса, содержимое его триггеров увеличивается на 1. Поэтому такие счётчики получили название суммирующих двоичных счётчиков. Если информацию снимать с инверсных выходов триггеров, то получится вычитающий счётчик.

2.2 Простейший вычитающий асинхронный счётчик

Рассмотрим схему счётчика на триггерах, опрокидывающихся по переднему фронту входных импульсов рисунок 2.3

Рисунок 2.3 – Вычитающий счётчик

Рисунок 2.4 – Временная диаграмма

Из временной диаграммы видим, что получился вычитающий счётчик. Если информацию снимать с инверсных выходов триггеров, то получится суммирующий счётчик.

2.3 Счётчик с произвольным модулем счёта

Для построения такого счётчика можно использовать двоичный счётчик, у которого модуль счёта М должен быть больше модуля счёта разрабатываемого счётчика с произвольным модулем счёта.

Пусть нужно сделать счётчик с М= 10.

У 4-х разрядного счётчика модуль счёта равен 16 (больше 10).

Схема счётчика представляет собой 4 последовательно включённых счётных триггера, у которых есть вход сброса R.

Число 10 в двоичной системе счисления представляется 1010. Когда на выходах счетчика будет код 1010, на выходе элемента «И» появится логическая единица, которая запустит схему гашения. Длительность импульса на выходе схемы гашения должна быть достаточна для надёжного сброса всех триггеров счётчика в 0. Разряды числа 1010, равные 1 подаются на схему «И» с прямых выходов триггеров, а равные 0 — с инверсных. Таким образом, как только счётчик досчитает до 10, произойдёт обнуление всех триггеров и счёт продолжится с кода 0000.

Рисунок 2.5 – Счётчик с модулем счета М=10

Рассмотрим счётчик с М=11 на основе двоичного счётчика в одной микросхеме (без инверсных выходов).
1110=10112

Рисунок 2.6 – Счётчик с модулем счёта М=11

В качестве схемы гашения может быть RS-триггер.

Рисунок 2.7 – Счётчик с модулем счёта М=17

В этой схеме М=100012 = 1710

Сигнал на входе К счётчика будет действовать в течение одного периода входных импульсов

Регулятор оборотов мощности

Принципы работы


Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.

С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее. Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.

Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его катушки. Управление электричеством тесно связано с магнитным полем и скольжением электродвигателя. Для таких действий используют в основном автотрансформатор, бытовые регуляторы, которые уменьшают обороты данного механизма. Но стоит также помнить о том, что будет уменьшаться мощность двигателя.

Трехразрядный вычитающий счетчик с последовательным переносом

Рассмотрим трехразрядный вычитающий счетчик с последовательным переносом, схема и временные диаграммы работы которого приведены на рис. 3.68. {xtypo_quote}В счетчике используются три JK-триггера, каждый из которых работает в режиме Т-триггера (триггера со счетным входом).{/xtypo_quote}

На входы J и К каждого триггера поданы логические 1, поэтому по приходу заднего фронта импульса, подаваемого на его вход синхронизации С, каждый триггер изменяет предыдущее состояние. Вначале сигналы на выходах всех триггеров равны 1. Это соответствует хранению в счетчике двоичного числа 111 или десятичного числа 7. После окончания первого импульса F первый триггер изменяет состояние: сигнал Q1 станет равным 0, a ¯Q1 − 1.

Остальные триггеры при этом свое состояние не изменяют. После окончания второго импульса синхронизации первый триггер вновь изменяет свое состояние, переходя в состояние 1, (Qx = 0). Это обеспечивает изменение состояния второго триггера (второй триггер изменяет состояние с некоторой задержкой по отношению к окончанию второго импульса синхронизации, так как для его опрокидывания необходимо время, соответствующее времени срабатывания его самого и первого триггера).

После первого импульса F счетчик хранит состояние 11О. Дальнейшее изменение состояния счетчика происходит аналогично изложенному выше. После состояния 000 счетчик вновь переходит в состояние 111.

Как работает счетчик Гейгера

Детектор, заполнен газом, к которому приложено электрическое напряжение. В тот момент, когда излучение взаимодействует с газом, оно вызывает ионизацию, и этот небольшой сигнал усиливается. Коэффициент усиления зависит от напряжения.

В то время, когда излучение проникает в газовую среду, молекулы газы в трубке под действием процесса ионизации, начинают отдавать частицы. Электрон притягивается положительным зарядом анода, а положительно заряженные ионы отбрасываются к стенке трубки. После этого электрон проходит по проводам, образующим электрическую цепь, и рекомбинируется с ионом. Измерительная часть счётчика Гейгера — это устройство, которое измеряет этот поток электронов.

Когда электрон и ион ускоряются по направлению к электроду, на стенках камеры создается энергия из-за высокого напряжения, в результате чего они сталкиваются с другими атомами и подавляют электроны в процессе вторичной ионизации, что многократно усиливают исходный сигнал до уровня, который может быть измерен.

Как использовать CD4060

Прежде всего, нам необходимо подключить  вывод VDD  к положительной клемме питания, а  вывод GND —  к отрицательной клемме питания. Мы можем использовать источник питания с напряжением от 3 до 15 В. Хотя некоторые версии микросхемы 4060 поддерживают напряжение до 20В. Все это можно уточнить в datasheet на CD4060

Чтобы активировать генератор, подключите резистор Rt к выводу REXT, конденсатор Ct к выводу CEXT и резистор R2 к выводу CLK и соедините все оставшиеся свободные выводы  Rt, Ct и R2 вместе:

Стенд для пайки со светодиодной подсветкой
Материал: АБС + металл + акриловые линзы. Светодиодная подсветка…

Подробнее

Расчет частоты работы генератора можно рассчитать по следующей формуле:

f (Гц) = 1 / ( 2,3 * Ct * Rt )

Обратите внимание, что сопротивление резистора Rt должно быть намного ниже сопротивления R2, чтобы формула была правильной. Если мы хотим сбросить счетчик обратно на ноль, то на вывод RST (сброс) необходимо подать высокий уровень

В обычной ситуации, чтобы микросхема работала на RST должен быть низкий уровень

Если мы хотим сбросить счетчик обратно на ноль, то на вывод RST (сброс) необходимо подать высокий уровень. В обычной ситуации, чтобы микросхема работала на RST должен быть низкий уровень.

Используйте любой из Q-контактов в качестве выходного сигнала для управления всем тем, чем вы хотите управлять. Выход становятся высокими после того, как:

  • Q3 становится высоким после 23 = 8 тактовых импульсов
  • Q4 становится высоким после 24 = 16 тактовых импульсов
  • Q5 становится высоким после 25 = 32 тактовых импульсов
  • Q6 становится высоким после 26 = 64 тактовых импульсов
  • Q7 становится высоким после 27 = 128 тактовых импульсов
  • Q8 становится высоким после 28 = 256 тактовых импульсов
  • Q9 становится высоким после 29 = 512 тактовых импульсов
  • Q11 становится высоким после 211 = 2048 тактовых импульсов
  • Q12 становится высоким после 212 = 4096 тактовых импульсов
  • Q13 становится высоким после 213 = 8192 тактовых импульсов

Счетчик импульсов с предустановкой своими руками

Спасибо за ваш ответ pert

Толяныch
Родился

Зарегистрирован: Чт дек 09, 2010 11:04:12Сообщений: 10 Рейтинг сообщения: 0

tarabrinVasiliy
Грызет канифоль

Карма: 1 Рейтинг сообщений: 15 Зарегистрирован: Пт июл 29, 2016 16:24:32Сообщений: 276Откуда: Алтайский край Рейтинг сообщения: 0

Что эта ветка на форуме совсем заброшена что ли. Очень жаль, что больше ни кто не программирует контроллеры в направлении счётчиков цикла с отключением нагрузки.

Добавлено after 2 hours: Собственно нужен счётчик с очень простым алгоритмом работы.

ДанилКоржов
Родился

Зарегистрирован: Вт янв 16, 2018 23:18:46Сообщений: 3 Рейтинг сообщения: 0

Что эта ветка на форуме совсем заброшена что ли. Очень жаль, что больше ни кто не программирует контроллеры в направлении счётчиков цикла с отключением нагрузки.

Добавлено after 2 hours: Собственно нужен счётчик с очень простым алгоритмом работы.

tarabrinVasiliy
Грызет канифоль

Карма: 1 Рейтинг сообщений: 15 Зарегистрирован: Пт июл 29, 2016 16:24:32Сообщений: 276Откуда: Алтайский край Рейтинг сообщения: 0

Часовой пояс: UTC + 3 часа

Сейчас этот форум просматривают: oskars, Sborman и гости: 14

admin

Преимущества и недостатки типов

Несмотря на одно назначение, счетчики различных типов сильно различаются не только по конструкции, но и по функционалу. Для того чтобы правильно выбрать прибор учета в каждой конкретной ситуации, необходимо эти различия знать:

  1. Механические. Просты по конструкции, долговечны, имеют невысокую стоимость. К недостаткам можно отнести однотарифность, низкую точность, плохую защиту от саботажа (краж), невозможность дистанционного управления и передачи данных. Устанавливаться они должны строго вертикально и не любят пыли, поскольку начинают неизбежно «врать».
  2. Электронные и электронно-механические. Имеют широкий функционал, высокую точность, хорошую защиту от саботажа. Возможны многотарифность, накопление и дистанционная передача данных, учет реактивной энергии. Поверять такие устройства нужно не чаще чем раз в 4-15 лет. К недостаткам чисто электронных типов можно отнести невозможность их работы при минусовых температурах (замерзает ЖК-дисплей).

Что собой представляет прибор учета

Счетчик — это устройство, способное перевести расход в числовое значение, по которому и будет начисляться оплата согласно тарифной ставке. Такие приборы могут различаться по области использования. Существуют следующие виды счетчиков расхода:

  • электроэнергии;
  • воды как горячей, так и холодной;
  • газа;
  • гигакалорий – устанавливается в системе отопления.

Подобные приборы учета используются для бытовых нужд, однако существует оборудование и промышленного типа, способное работать с большими объемами. Подобные счетчики устанавливаются в подвалах многоквартирников и называются общедомовыми.

Асинхронные счётчики

Данные типы счётчиков состоят из цепочёк JK-триггеров, которые работают в счётном режиме, когда выход предыдущего триггера служит входом для следующего. В такой схеме триггеры включаются последовательно, а, следовательно, и выходы счётчика также переключаются последовательно, один за другим (отсюда второе название асинхронных счётчиков – последовательные счётчики). Так как переключение разрядов происходит с некоторой задержкой, поэтому и сигналы на выходах счётчика появляются не одновременно с входным сигналом и между собой, то есть асинхронно.

Микросхемы асинхронных счётчиков применяются не очень часто, в качестве примера можно привести микросхемы типа ИЕ2 (четырёхразрядный двоично-десятичный счётчик), ИЕ5 (четырёх разрядный двоичный счётчик) и ИЕ19 (сдвоенный четырёхразрядный счётчик).

Асинхронные счётчики: слева направо ИЕ2, ИЕ5, ИЕ19.

Данные типы счётчиков имеют входы сброса в нуль (вход R), вход установки в 9 (вход S у ИЕ2), счётный или тактовый вход (вход С) и выходы, которые могут обозначаться как номера разрядов (0, 1, 2, 4) или как вес каждого разряда (1, 2, 4, 8).

Микросхема К555ИЕ2 относится к двоично-десятичным счётчикам, то есть счёт у неё идет от 1 до 9, а потом выводы обнуляются и счёт идёт сначала. Внутренне данный счётчик состоит из четырёх триггеров, которые разделены на две группы: один триггер (вход С1, выход 1) и три триггера (вход С2, выходы 2, 4, 8). Такая внутренняя организация позволяет значительно расширить применение данного типа микросхемы, например данную микросхему можно использовать в качестве делителя на 2, на 5 или на 10. Счётчик ИЕ2 имеет два входа для сброса в нуль объединенных по И, а так же два входа для установки в 9 тоже объединённых по И.

Для реализации счёта необходимо сбросить счётчик подачей на входы R высокого логического уровня, а на один из входов S сигнал низкого уровня. В таком режиме счётчик будет «обнулён» и последовательный счёт заблокирован. Чтобы восстановить функцию счета необходимо установить на входы R низкий уровень сигнала.

Для организации делителя на 2 необходимо подавать сигнал на С1, а снимать с выхода 1; делитель на 5 подавать сигнал на С2, а снимать с выхода 8; делитель на 10 выход 8 соединяют с С1, сигнал подают на С2, а снимают с выхода 1.

Микросхема К555ИЕ5 представляет собой двоичный счётчик, в отличие от ИЕ2 считает до 16 и сбрасывается в нуль. Также как и ИЕ2 состоит из двух групп триггеров со входами С1 и С2, а выходы 1 и 2,4,8. В отличии от ИЕ2 имеет только два входа сброса в нуль, а входов установки нет.

Микросхема К555ИЕ19 практически идентична двум микросхемам К555ИЕ5 и представляет собой два чётырёхразрядных двоичных счётчика, каждый счётчик имеет свой счётный вход С и вход сброса R. Если объединить выход 8 первого счётчика и вход С второго счётчика, то можно получить восьмиразрядный двоичный счётчик.

Трехразрядный вычитающий счетчик с последовательным переносом

Рассмотрим трехразрядный вычитающий счетчик с последовательным переносом, схема и временные диаграммы работы которого приведены на рис. 3.68.

На входы J и К каждого триггера поданы логические 1, поэтому по приходу заднего фронта импульса, подаваемого на его вход синхронизации С, каждый триггер изменяет предыдущее состояние. Вначале сигналы на выходах всех триггеров равны 1. Это соответствует хранению в счетчике двоичного числа 111 или десятичного числа 7. После окончания первого импульса F первый триггер изменяет состояние: сигнал Q1 станет равным 0, a ¯ Q1 − 1.

После первого импульса F счетчик хранит состояние 11О. Дальнейшее изменение состояния счетчика происходит аналогично изложенному выше. После состояния 000 счетчик вновь переходит в состояние 111.

Сборка

Первое, что нужно сделать, это настроить вольтаж на высоковольтном DC-DC с потенциометром. Для STS-5 нам нужно примерно 410V. Затем просто спаяйте все модули по схеме, я использовал однопроволочные провода, это повышает стабильность конструкции и даёт возможность собрать устройство на столе, а затем просто поместить его в кейс. Важный момент состоит в том, что нам нужно соединить минус на входе и выходе высоковольтного конвертера, я просто припаял штекер.

Так как мы не можем просто присоединить Ардуино к 400V, нам понадобится простая схема с транзистором, я просто спаял их навесным методом и обернул в термоусадочную трубку, резистор 10MΩ от +400V был закреплен прямо на коннекторе. Лучше сделать медный кронштейн для трубки, но я просто накрутил провод по кругу, всё работает нормально, не меняйте плюс и минус счетчика Гейгера. Соединяем дисплей съемным кабелем, тщательно его изолировал, так как он располагался очень близко к высоковольтному модулю.

Схема самодельного дозиметра.

Схема дозиметра на микроконтроллере

Прибор предназначен для измерения ионизирующих излучений, вызванных бета — и гамма-лучи и имеет следующие параметры:

  • Диапазон измеряемой дозы: 0 — 250 миллирентген/час
  • Напряжение питания: 2 – 3.3 В две батареи АА
  • Средний потребляемый ток: 0.5 мА при отключенной звуковой индикации
  • Время выхода на рабочий режим: 30 секунд
  • Период обновления показаний: 1 секунда

Прибор состоит из следующих функциональных блоков: генератор высокого напряжения для питания газоразрядного счетчика, формирователь импульсов счетчика, узел управления жидкокристаллическим дисплеем, блок звуковой индикации, и стабилизаторы напряжения для питания различных цепей устройства.

Синхронное управление всеми блоками обеспечивается микроконтроллером DD2. Высокое напряжение формируется преобразователем на транзисторе VT2 и трансформаторе T1

На затвор VT2 поступают импульсы частотой 244 Гц и скважностью примерно 4-15% от микроконтроллера DD2. В момент импульса транзистор открыт и в магнитопроводе T1 накапливается магнитная энергия

Схема самодельного радиометра.

При закрывании транзистора в обмотке I трансформатора формируется ЭДС самоиндукции, приводящая к короткому импульсу положительной полярности амплитудой порядка 60 В на стоке VT2. Это напряжение повышается обмоткой II и поступает на утроитель напряжения на диодах VD3-VD5 и конденсаторах C12-C14. Использование утроителя напряжения снижает требования к трансформатору и упрощает его конструкцию. Высокое напряжение порядка 400 В поступает на счетчик Гейгера BD1 через нагрузочный резистор R10.

Без стабилитронов напряжение на конденсаторах может превысить 800-900 В и привести к их пробою. Средний потребляемый ток по цепи T1-VT2 не превышает 0.3 мА при сопротивлении нагрузки от 40 МОм и выше.