Роторы асинхронных двигателей как определить

Содержание

Ввод — ротор

Приспособление для.| Телескопический удлинитель ротора.

Ввод ротора в статор производится в обратном порядке.

Ввод ротора в статор и его выем осуществляют весьма осторожно, так как при этом из-за значительной массы ротора и малого воздушного зазора между ротором и статором возможно повреждение лобовых частей статорной обмотки.

Ввод ротора в статор производится теми же приемами, что и вывод его, но в обратном порядке. Подшипниковые щиты должны с достаточным натягом садиться на центрирующие заточки статора. Посадка их на место достигается равномерной подтяжкой болтов, крепящих щиты к станине. Для осуществления насадки допускаются удары свинцовой болванкой по окружности щита

Однако здесь нужна осторожность, чтобы не разбить щит.

Ввод ротора с достаточно длинным валом может быть осуществлен при помощи крана. Для этого ротор захватывают стропом за оба конца вала и подводят к статору. Перед началом ввода ротора нижнюю часть полости статора, чтобы предохранить железо и обмогку от повреждения, выкладывают картоном. Застропован-ный ротор продвигают вдоль статора до тех пор, пока конец вала не выйдет за его пределы

В таком положении ротор опускают на временные подставки, перехватывают стропы и осторожно вводят ротор в статор, тщательно следя за сохранностью обмотки и железа статора.

Приспособление для ввода ротора в статор в горизонтальном положении.

Ввод ротора может быть выполнен и в один прием, если применить показанное на рис. 147 приспособление. Трубу 3 приспособления надевают на конец вала ротора. Ротор сохраняет горизонтальное положение благодаря установке кольца по центру тяжести ротора.

Ввод ротора в статор делается аналогичным образом с последовательной постепенной пооперационной посадкой статора на отжимных болтах до соприкосновения опор статора с плитой, а ротора с вкладышами подшипников.

Ввод ротора в полость статора является сложной монтажной операцией

Ввиду того что зазор между статором и ротором очень мал, при неосторожном выполнении этой операции можно повредить сердечники и обмотки статора или ротора.

Заводка ротора в статор, ные прокладки.

Ввод ротора в полость статора при достаточной длине вала производят, как указано выше. После ввода временно снятый подшипниковый стояк устанавливают на место, а ротор опускают на сталь статора, ранее выложенную прессшпаном или картоном. Затем статор стропят и одновременно с ротором приподнимают настолько, чтобы можно было вынуть шпалы из-под лап. Весь груз медленно опускают и шейки вала укладывают в подшипники. Пользуясь отжимными винтами, для которых в лапах станины специально предусмотрены отверстия с нарезкой, статор приподнимают и под лапы станины вновь укладывают подкладки, которыми регулировали ранее установку статора по высоте.

Выверка нижней половины статора по главной оси.

Ввод ротора в статор является сложной монтажной операцией.

Выверка положения подшипников на фундаментной.

Ввод ротора ( якоря) в неразъемный статор представляет определенные трудности, так как возникает опасность их взаимного повреждения. В особенности это относится к машинам переменного тока, воздушный зазор в которых мал.

Принцип действия и устройство синхронного двигателя

Название синхронные относится к электрическим машинам переменного тока, в которых ротор и магнитное поле статора вращаются с одной и той же скоростью, т.е. синхронно.

Как и все электрические машины синхронные машины обратимы и могут работать как в режиме генератора, так и в режиме двигателя. Трехфазные синхронные машины это обычно машины большой мощности.

По устройству статора синхронная машина не отличается от асинхронной. Обмотка статора обычно соединяется звездой. Отличие синхронной машины от асинхронной заключается в различной конструкции ротора.

Ротор синхронной машины представляет собой постоянный магнит. В машинах средней и большой мощности ротор превращается в постоянный магнит с помощью электрического тока, т.е. это электромагнит. Для этого на роторе располагается отдельная обмотка (сосредоточенная), которая называется обмоткой возбуждения, по ней протекает постоянный ток, который называется током возбуждения. Обмотка ротора вращается вместе с ротором, поэтому требуется устройство подвода тока. На роторе располагается 2 медных кольца, к которым подсоединены выводы обмотки ротора, к неподвижной части крепятся графитовые щетки в щеткодержателях, эти щетки скользят по кольцам, обеспечивая контакт.

Источник постоянного тока, служащий для создания тока возбуждения обычно называется возбудителем. В качестве возбудителя используется генератор постоянного тока, генератор переменного тока с выпрямителем, полупроводниковый выпрямитель управляемый или не управляемый.

По конструкции ротора синхронные машины делятся на два типа:

· машины, имеющие ротор с неявно выраженными полюсами, в этом случае ротор имеет вид гладкого цилиндра.

· синхронные машины, имеющие ротор с явно выраженными полюсами. Такой ротор делается в тихоходных машинах с большим числом пар полюсов.

Формула электромагнитного момента такая же как и для асинхронного двигателя:

Синхронный двигатель, как и асинхронный имеет физическое ограничение по моменту. Если к валу ротора приложить тормозной момент, то двигатель его преодолеет, но оси полюсов ротора и статора разойдутся на некоторый угол.

Изобразим условно вращающееся магнитное поле в виде магнита.

При увеличении момента сопротивления увеличивается угол расхождения полюсов ротора и статора.

Обычно угол Θ берут ≤ 30°, поэтому перегрузочная способность синхронного двигателя: больше чем у асинхронного двигателя.

Перегрузочную способность можно изменить воздействуя на ток возбуждения увеличивая ток возбуждения Iв увеличивается магнитный поток Ф. увеличивается ЭДС E и увеличивается максимальный момент Mмакс .

Механическая характеристика синхронного двигателя абсолютно жесткая, при любом моменте сопротивления скорость его вращения одна и та же. Если MсMмакс. двигатель такой момент не преодолеет и остановится.

185.154.22.117 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Главная | О нас | Обратная связь

Статор

Статор асинхронного двигателя состоит из трёх частей: корпуса, сердечника и обмотки. Корпус статора служит в качестве опоры для электродвигателя. Изготавливают его из стали или чугуна, сваркой или литьём. К прочности корпуса предъявляются высокие требования, так как при работе возникают вибрации в результате которых может сместиться ротор, что приведёт к заклиниванию мотора и выходу его из строя.

Статор асинхронного двигателя

Есть и ещё одно требование — геометрия корпуса должна быть идеальной. Между обмоткой статора и ротором зазор делают в несколько миллиметров, так что малейшие отклонения могут быть критичны.

Сердечник статора

Сердечник статора асинхронного электродвигателя изготавливают из наборных металлических пластин. Так как сердечник является магнитопроводом, металл используется магнитная электротехническая сталь. Для уменьшения потерь из-за вихревых потоков сердечник набирается из пластин, покрытых слоем диэлектрика (лак).

Сердечник статора набирается из тонких металлических изолированных пластин

Толщина одной пластины — 0,35-0,5 мм. Они собираются в единый пакет, так чтобы пазы всех пластин совпадали. В эти пазы затем укладываются витки обмотки.

Обмотка статора и количество оборотов электродвигателя

Статор асинхронного электромотора чаще всего имеет трёхфазную обмотку возбуждения. Она называется так, потому что является причиной движения ротора. Обмотка статора состоит из катушек, навитых из медной проволоки которые укладываются в пазы сердечника. Каждая обмотка может состоять из нескольких витков проволоки или из одного витка. Провод используется специальный, с лаковым покрытием, которое изолирует витки друг от друга и от стенок сердечника.

Как уже говорили, чаще всего обмотка статора асинхронного двигателя имеет три фазы. В этом случае оси катушек расположены со сдвигом 120°. При таком строении магнитное поле имеет два полюса и делает один полный оборот за один цикл трёхфазного питания. При частоте в электросети равной 50 Гц, скорость вращения поля (и ротора) 50 об/сек или 3000 об/мин.

Укладка катушек обмотки статора асинхронного двигателя

Для уменьшения скорости вращения ротора в асинхронном двигателе обмотку делают с большим количеством полюсов. Так с четырехполюсным стартером скорость вращения будет вдвое меньше — 1500 об/мин. Обмотка с шестью полюсами статора даёт втрое меньшую скорость — 1000 об/мин. С восемью полюсами — в четыре раза меньше, т. е. 750 об/мин. Ещё более «медленные» электромоторы делают очень редко.

Концы обмоток статора выводятся на клеммную коробку корпуса. Тут они могут соединяться по принципу «звезда» или «треугольник» в зависимости от типа подаваемого питания (220 В или 380 В).

Корпус роторного двигателя

Корпус роторного двигателя, словно многослойный пирог. Он имеет свои крышки, рабочие камеры, разделительные стенки. Лучше всего понять конструкцию корпуса можно будет взглянув на картинку. Из нее видно, что двигатель имеет две камеры, разделенные стенкой и крышки с двух сторон. Все остальное конечно тоже имеет значение, но первостепенно именно то, что мы перечислили. А теперь мы расскажем о рабочих камерах корпуса роторного двигателя.

Внутренняя полость корпуса представляет из себя сложную форму, напоминающую овал. На самом деле овал имеет определенные компенсирующие отливы, которые обеспечивают герметизацию всех трех камер разделенных ротором, вне зависимости от угла его поворота и происходящего цикла. Для каждого цикла, в корпусе роторного двигателя, отведено свое место. В зависимости от угла поворота ротора выполняется соответствующий цикл, который повторяется с периодичностью через каждые 360 градусов поворота ротора Выпускные отверстия для выброса сгоревших газов, находятся также в корпусе рабочей камеры. Промежуточная стенка между камерами (на фото ниже)

удерживает вал в совеем центральном отверстии, уплотняется с роторами по боковым стенкам, имеет элементы системы охлаждения, инжекционные порты, направляющие втулки.

Виды электродвигателей и их особенности

Экономичность и надежность оборудования напрямую зависят от электродвигателя, поэтому его выбор требует серьезного подхода.

Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели.

Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее. Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения.

При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.

Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.

  • Электродвигатели постоянного токаИспользуются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.
  • Электродвигатели переменного токаПользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста. Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д. В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.
  • Шаговые электродвигателиДействуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.
  • СерводвигателиОтносятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.
  • Линейные электродвигателиОбладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.
  • Синхронные двигателиЯвляются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.
  • Асинхронные двигателиТакже, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.

Электродвигатели незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.

Как отремонтировать якорь в домашних условиях

Из-за якоря происходит треть поломок шуруповёрта. При каждодневном интенсивном режиме работы неисправности могут возникнуть уже в первые полгода, например, при несвоевременной замене щёток. При щадящем использовании шуруповёрт продержится год и более.

Якорь можно спасти, если не нарушена балансировка. Если во время работы прибора слышен прерывистый гул и идёт сильная вибрация, то это нарушение балансировки. Такой якорь подлежит замене. А отремонтировать можно обмотку и коллектор. Небольшие короткие замыкания устраняются. Если повреждена значительная часть обмотки, её можно перемотать. Изношенные и сильно повреждённые ламели проточить, нарастить или впаять. К тому же не стоит браться за ремонт якоря, если вы неуверены в своих возможностях. Лучше его заменить или отнести в мастерскую.

Чередование полюсов с помощью переменного тока

Чередование полюсов с помощью переменного тока

Полярность постоянно меняется с помощью переменного тока (AC). Далее мы увидим, как ротор заменяется магнитом, который вращается под действием индукции. Здесь важную роль играет переменный ток, поэтому будет полезно привести здесь краткую информацию о нём:

Под переменным током понимается электрический ток, периодически изменяющий свое направление в цепи так, что среднее значение силы тока за период равно нулю. Вращающееся магнитное поле можно создать с помощью трёхфазного питания. Это означает, что статор подсоединяется к источнику переменного тока с тремя фазами. Полный цикл определяется как цикл в 360 градусов. Это значит, что каждая фаза расположена по отношению к другой под углом в 120 градусов. Фазы изображаются в виде синусоидальных кривых, как представлено на рисунке.

Трёхфазный переменный ток

Трёхфазное питание — это непрерывный ряд перекрывающихся напряжений переменного тока (AC).

На следующих страницах объясняется, как взаимодействуют ротор и статор, заставляя электродвигатель вращаться.

Для наглядности мы заменили ротор вращающимся магнитом, а статор — катушками. В правой части страницы приведено изображение двухполюсного трёхфазного электродвигателя. Фазы соединены парами: 1-й фазе соответствуют катушки A1 и A2, 2-й фазе — B1 и B2. а 3-й соответствуют C1 и C2. При подаче тока на катушки статора одна из них становится северным полюсом, другая — южным. Таким образом, если A1 — северный полюс, то A2 — южный.

Питание в сети переменного тока

Обмотки фаз A, B и C расположены по отношению друг к другу под углом в 120 градусов.

Количество полюсов электродвигателя определяется количеством пересечений поля обмотки полем ротора. В данном случае каждая обмотка пересекается дважды, что означает, что перед нами двухполюсный статор. Таким образом, если бы каждая обмотка появлялась четыре раза, это был бы четырехполюсный статор и т.д.

Когда на обмотки фаз подаётся электрический ток, вал электродвигателя начинает вращаться со скоростью, обусловленной числом полюсов (чем меньше полюсов, тем ниже скорость)

Ниже рассказывается о физическом принципе работы электродвигателя (как ротор вращается внутри статора). Для наглядности, заменим ротор магнитом. Все изменения в магнитном поле происходят очень быстро, поэтому нам необходимо разбить весь процесс на этапы. При прохождении трёхфазного переменного тока по обмоткам статора в нем создается магнитное поле, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля.

Начав вращение, магнит будет следовать за меняющимся магнитным полем статора. Поле статора меняется таким образом, чтобы поддерживалось вращение в одном направлении.

Ранее мы установили, как обыкновенный магнит вращается в статоре. В электродвигателях переменного тока AC установлены роторы, а не магниты. Наша модель очень схожа с настоящим ротором, за исключением того, что под действием магнитного поля ротор поляризуется. Это вызвано магнитной индукцией, благодаря которой в проводниках ротора наводится электрический ток.

В основном ротор работает так же, как магнит. Когда электродвигатель включен, ток проходит по обмотке статора и создаёт электромагнитное поле, которое вращается в направлении, перпендикулярном обмоткам ротора. Таким образом, в обмотках ротора индуцируется ток, который затем создаёт вокруг ротора электромагнитное поле и поляризацию ротора.

В предыдущем разделе, чтобы было проще объяснить принцип действия ротора, заменив его для наглядности магнитом. Теперь заменим магнитом статор. Индукция — это явление, которое наблюдается при перемещении проводника в магнитном поле. Относительное движение проводника в магнитном поле приводит к появлению в проводнике так называемого индуцированного электрического тока. Этот индуцированный ток создаёт магнитное поле вокруг каждой обмотки проводника ротора. Так как трёхфазное AC питание заставляет магнитное поле статора вращаться, индуцированное магнитное поле ротора будет следовать за этим вращением. Таким образом вал электродвигателя будет вращаться. Электродвигатели переменного тока часто называют индукционными электродвигателями переменного тока, или ИЭ (индукционными электродвигателями).