? как подключить rgb светодиод к ардуино

Подключение светодиодной RGB ленты

Правильный порядок подключения элементов цепи выглядит следующим образом:

Правильный порядок подключения

Запомните. Участки ленты, длиной больше 5 метров, должны подключаться только параллельно.

Что будет, если подключить последовательно?

Во-первых, вы заметно потеряете в яркости на конце участка. Хотя светодиоды и имеют очень малое сопротивление, но потери есть. При такой протяженности на конце напряжение будет порядка 10В. Пониженное напряжение даст пониженную яркость, уже заметную для глаза.

Неправильное подключениеПравильное подключение

Во-вторых, токопроводящие дорожки ленты рассчитаны на максимальную длину 5м. Подключив последовательно еще 5, дорожки будут перегреваться и освещение скорее всего перегорит в самом начале участка.

RGB коннектор

Соединять ленту между собой можно с помощью пайки или клеммами. Для одноцветных вариантов продаются двухвыводные клеммы (коннекторы), для RGB – четырёх или пяти. Уточняйте этот момент при покупке.

Подробнее как соединять rgb ленту между собой.

Блок питания подключается в сеть 220В (клеммы AC, полярность не важна), преобразует переменное напряжение в постоянное 12В (клеммы V+, V-)

При подключении следующих элементов цепи важно соблюдать полярность

Клеммы подключения на БП

RGB контроллер подключается после блока питания (с соблюдением полярности), а в него подключается ргб лента. Каждый вывод на корпусе предназначен для конкретного вывода светодиодов. Если перепутаете местами, ничего страшного не произойдет, просто цвета будут перепутаны.

Клеммы подключения контроллера к светодиодам

В результате готовая схема в сборе должна иметь вид:

Схема в сборе

Усилитель внешне похож на контроллер, отдельно подключается к БП, только имеет не одну плашку с клеммами, а две. Маркируется чаще всего как Led Amplifier, устанавливается в разрыв ленты. Подключается по схеме:

Порядок подключения RGB усилителя в цепьНазначение клемм led amplifier

Разберем теперь схемы подключения лент разной длины с усилителем и без, с одним или несколькими блоками питания.

Схема подключения RGB светодиодной ленты без усилителя

Это простейшая схема включения rgb светодиодной ленты длиной до 5 метров через контроллер с пультом.

Электрическая схема подключения RGB освещения

Для подключения светодиодной RGB ленты длиной 10 или 15 метров, убедитесь, что хватает мощности контроллера и БП (с запасом), и подключайте по следующей схеме:

Схема подключения 10 или 15 

Схема подключения ленты с RGB усилителем

Усилитель используем, если не хватает мощности контроллера. Если мощность блока питания позволяет подключить контроллер и усилитель, используем следующую схему:

Когда суммарная мощность контроллера и усилителя выше мощности БП или блок такой мощности использовать нерационально (большой, сильно греется или шумит), тогда подключаем led amplifier к отдельному питанию по схеме:

Схема подключения усилителя с 2 блоками питания

По такой схеме наращивать суммарную длину ленты можно сколько угодно. Вся она будет управляться с одного пульта.

Помимо последовательного подключения, как в примерах выше, усилители можно подключать параллельно.

Схема параллельного подключения нескольких RGB усилителей с одним блоком питания.

Схема: один БП несколько усилителей

Схема с несколькими параллельными усилителями с отдельным питанием.

Схема: несколько параллельных усилителей с отдельными БП

Если клемм нет – используйте паяльник и монтажный провод, НО не перегревайте контактные площадки. Подробнее как соединять ленту.

Правильная схема подключения 20 метров RGB ленты показана на видео.

Правильная покупка светодиодной ленты на AliExpress.

Что еще можно сказать по сечению проводов? Например,
лента 2812 на один диод потребляет порядка 60мА. При длине подсветки в 5 метров
ток составит 18 Ампер!

По всем расчетным таблицам для такого тока требуются
провода сечением 2,0-2,5мм2. Даже на самой ленте медные дорожки такого сечения
не обеспечивают.

Поэтому, если хотите нормального свечения и яркости, даже
на стандартные отрезки по 5 метров всегда подключайте питание с обоих концов.

Помимо сечения проводов важное значение играет и качество
самих дорожек. Конечно, китайцы вам будут говорить, что у них самая лучшая
продукция и никто не жаловался

Но как это проверить, не покупая изделие? Элементарно –
запросите информацию по весу ленты. После этого сравните одинаковые модели от
разных производителей.

Так например, у ленты длиной 5м (60 светодиодов на метр)
при весе менее 100гр просадки напряжения начинаются уже через 1,5 метра!

Объясняется это очень тонкими медными дорожками или
некачественной медью в них.

Принцип управления нагрузкой через Ардуино

управление Arduino

На плате есть много выходов, как цифровых, имеющих два состояния — включено и выключено, так и аналоговых, управляемых через ШИМ-controller с частотой 500 Гц.

Но выходы рассчитаны на ток 20 – 40 мА с напряжением 5 В. Этого хватит для питания индикаторного RGB-светодиода или матричного светодиодного модуля 32×32 мм. Для более мощной нагрузки это недостаточно.

Для решения подобной проблемы во многих проектах нужно подключить дополнительные устройства:

  • Реле. Кроме отдельных реле с напряжением питания 5В есть целые сборки с разным количеством контактов, а также со встроенными пускателями.
  • Усилители на биполярных транзисторах. Мощность таких устройств ограничена током управления, но можно собрать схему из нескольких элементов или использовать транзисторную сборку.
  • Полевые или MOSFET-транзисторы. Они могут управлять нагрузкой с токами в несколько ампер и напряжением до 40 – 50 В. При подключении мосфета к ШИМ и электродвигателю или к другой индуктивной нагрузке, нужен защитный диод. При подключении к светодиодам или LED-лампам в этом нет необходимости.
  • Платы расширения.

Подключение светодиодной ленты к Ардуино

подключение светодиодной ленты к Arduino Мнение экспертаАлексей БартошСпециалист по ремонту, обслуживанию электрооборудования и промышленной электроники.Задать вопрос экспертуArduino Nano могут управлять не только электродвигателями. Они используются также для светодиодных лент. Но так как выходные ток и напряжение платы недостаточны для прямого подключения к ней полосы со светодиодами, то между контроллером и светодиодной лентой необходимо устанавливать дополнительные приспособления.

Через реле

Подключение через реле Реле подключается к устройству на цифровой выход. Полоса, управляемая с его помощью имеет только два состояния — включенная и выключенная. Для управления red-blue-green ленточкой необходимы три реле. Ток, который может контролировать такое устройство, ограничен мощностью катушки (маломощная катушка не в состоянии замыкать большие контакты). Для подсоединения большей мощности используются релейные сборки.

С помощью биполярного транзистора

Подключение с помощью транзистора Для усиления выходного тока и напряжения можно использовать биполярный транзистор. Он выбирается по току и напряжению нагрузки. Ток управления не должен быть выше 20 мА, поэтому подается через токоограничивающее сопротивление 1 – 10 кОм.

Транзистор лучше применять n-p-n с общим эмиттером. Для большего коэффициента усиления используется схема с несколькими элементами или транзисторная сборка (микросхема-усилитель).

С помощью полевого транзистора

Кроме биполярных, для управления полосами используются полевые транзисторы. Другое название этих приборов – МОП или MOSFET-transistor.

Подключается элемент через токоограничивающее сопротивление. Кроме того, он чувствителен к помехам, поэтому выход контроллера следует соединить с массой резистором в 10 кОм.

С помощью плат расширения

Подключение Arduino с помощью плат расширения

Это может быть Wi-Fi или Bluetooth, драйвер управления электродвигателем, например, модуль L298N или эквалайзер. Они предназначены для управления нагрузками разной мощности и напряжения. Такие устройства бывают одноканальными – могут управлять только монохромной лентой, и многоканальными – предназначены для устройств RGB и RGBW, а также лент со светодиодами WS 2812.

Принцип работы транзистора для плавного управления светодиодной лентой

Транзистор работает как водопроводный кран, только для электронов.  Чем выше напряжение, подаваемое на базу биполярного транзистора либо сток полевого, тем меньше сопротивление в цепочке эмиттер-коллектор, тем выше ток, проходящий через нагрузку.

Подключив транзистор к аналоговому порту Ардуино, присваиваем ему значение от 0 до 255, изменяем напряжение, подаваемое на коллектор либо сток от 0 до 5В. Через цепочку коллектор-эмиттер будет проходить от 0 до 100% опорного напряжения нагрузки.

Для управления светодиодной лентой arduino необходимо подобрать транзистор подходящей мощности. Рабочий ток для питания метра светодиодов 300-500мА, для этих целей подойдет силовой биполярный транзистор. Для большей длины потребуется полевой транзистор.

Схема подключения LED ленты к ардуино:

Виды транзисторных ключей

  • Биполярный;
  • Полевой;
  • Составной (сборка Дарлингтона).
<center>Способы подключения нагрузки</center>
Через биполярный транзистор Через полевой транзистор Через коммутатор напряжения

При подаче высокого логического уровня (digitalWrite(12, HIGH);) через порт вывода  на базу транзистора через цепочку коллектор-эмиттер потечет опорное напряжение на нагрузку. Таким образом можно включать и отключать светодиод.

Аналогичным образом работает и полевой транзистор, но поскольку у него вместо «базы» сток, который управляется не током, а напряжением, ограничительный резистор в этой схеме необязателен.

Биполярный вид не позволяет регулировать мощные нагрузки. Ток через него ограничен на уровне 0,1-0,3А.

Полевые транзисторы работают с более мощными нагрузками с током до 2А. Для ещё более мощной нагрузки используют полевые транзисторы Mosfet с током до 9А и напряжением до 60В.

Вместо полевых можно использовать сборку Дарлингтона из биполярных транзисторов на микросхемах ULN2003, ULN2803.

Микросхема ULN2003 и принципиальная схема электронного коммутатора напряжения:

Вентиляторы Gelid Radiant-D

Иметь в ассортименте продвинутый контроллер и при этом не иметь вентиляторов с ARGB-подсветкой – непочетно. Для Codi6 компания предлагает 120-мм пропеллеры Radiant-D.

«Карлсоны» поставляются в коробке из неплотного картона, на которой сразу приведены технические спецификации и особенности модели. В комплекте поставляются лишь 4 крепёжных винта.

В Gelid Radiant-D первоочерёдное внимание было уделено именно подсветке, а не технической стороне. Подсветка обеспечивается девятью светодиодами, каждым из которых можно управлять, на то подсветка и называется адресной, что выливается в красивейшие эффекты

Диоды сосредоточены вокруг ротора, поэтому он получился столь массивным (53 мм против ~40 мм обычно).

Полупрозрачная 7-лопастная крыльчатка выполнена с геометрическими изысками. Производитель именует эту технологию High Precision Shark-Tooth Blade. Теоретически акуловидные зазубрины на кромках препятствует образованию завихрений, благодаря чему обеспечивается высокое статическое давление.

Radiant-D базируются на надёжном подшипнике двойного качения с заявленным сроком наработки в 100 тыс. часов (11,4 года), что весьма немалый срок для такого подшипника. Но Gelid подкрепляет уверенность 5-летним гарантийным сроком. В характеристиках значится скорость вращения в диапазоне 500-2000 об/мин, производительность до 131 м3/ч, что для 120-мм крыльчатки серьёзное заявление, а также уровень шума до 40,4 дБА.

В заявленное количество прокачиваемых кубов воздуха в час охотно верится. Дуют они действительно очень прилично.

В плане нюансов исполнения Gelid Radiant-D представляют собой самые обычные вентиляторы. Простая цельнопластиковая рамка без изысков, кабель без оплётки. Жаль, что не позаботились даже о антивибрационных проставках по углам.

Из корпуса выходят разом два длинных (500 мм) кабеля: 4-контактный с PWM-разъёмом для ротора крыльчатки, и 3-pin для ARGB-подсветки. Отмечу, что 3-pin разъём подсветки нельзя подключать к 4-pin разъёму подсветки, поскольку первый рассчитан на напряжение 5 В, а второй на 12 В. Здесь производителям не плохо было бы позаботиться о защите от дурака. Длина кабеля однозначно радует.

Что касается подсветки, как и у всех ARGB-вентиляторов она смотрится умопомрачительно.

Основные различия

Различие определяют элементы, из которых изготовлен источник света, плотность их расположения и напряжение питания.

Цвет и температура светодиодной ленты

Цвет свечения светодиодной ленты может быть разный.

Классификация по этому параметру:

  • монохромные (одноцветные);
  • RGB (многоцветные).

Самые популярные изделия с белым и желтым свечением различных оттенков.

Белая светодиодная лента изготовлена из синих диодов, цвет меняется за счет люминофора. Во время эксплуатации он постепенно выгорает, свечение приобретает синеватый оттенок. Основной недостаток этого вида светодиодных полос – ослабевание яркости свечения в процессе эксплуатации.

Виды белого свечения:

  • теплое;
  • нейтральное;
  • холодное.

В LED RGB устанавливаются разноцветные элементы с одним кристаллом (красным, зеленым, синим). Цвета их свечения смешиваются за счет близкого расположения. При изменении интенсивности излучения каждого из них можно получить разные виды оттенков. Другой вариант исполнения – установка RGB светодиодов, чаще всего SMD 5050. В их корпусе 3 разноцветных кристалла.

Сравнительно новые типы светодиодов в лентах — RGBW и RGBWW. Это чипы с четырьмя кристаллами, подключаются при помощи пяти проводов и специального RGBW контроллера. Наличие кристалла с белым свечением дает возможность получить больше видов цветовой гаммы свечения.

В RGBW и RGBWW могут использоваться трехцветные и белые SMD. Оттенок свечения последних теплый и холодный.

Существуют так же светодиодные полосы с инфракрасным и ультрафиолетовым излучением, которые используются для оформления ночных клубов, подсветки растений в оранжереях и теплицах.

Соединение ленты с контроллером

После того как контакты ленты с RGB-светодиодами подготовлены, можно приступить к ее подключению. Здесь также никаких проблем не возникает – все контакты промаркированы. Если же по какой-то причине наклейка с обозначениями отсутствует, нужно снова брать в руки мультиметр. Алгоритм действий таков.

  • На контроллер подается питание. Переключатель устанавливается на 20 В постоянного тока.
  • Крайний правый контакт – «+». К нему присоединяется красный щуп мультиметра.
  • При помощи пульта включается зеленый цвет, находится и маркируется контакт.
  • Те же действия проводят с оставшимися двумя оттенками.

Подключение контроллера производится после того, как монтаж RGB-ленты завершен. А провода от нее протянуты до места установки устройства управления.

Признаки и симптомы ВПЧ 45 у женщин

Признаками папилломавируса 45 типа у женщин являются остроконечные генитальные бородавки. Они появляются на малых и больших половых губах, но чаще – во влагалище и шейке матки, поэтому обнаружить их может только гинеколог или дерматовенеролог во время осмотра. Дискомфорт кондиломы начинают доставлять, когда увеличиваются в размерах и сливаются в большие конгломераты.

Папилломавирус 45 не имеет характерных признаков, но заподозрить инфекцию можно по следующим симптомам:

  • зловонный запах из половых органов;
  • боль во время полового акта и при оргазме;
  • зуд и другие неприятные ощущения внутри половых органов;
  • болезненное мочеиспускание;
  • боль внизу живота, которая не проходит и в состоянии покоя.

Когда инфекция, вызванная вирусом папилломы человека, переходит в 3 стадию (после которой развивается рак), у представителей обоих полов появляются головокружения, слабость, снижается аппетит, сексуальная активность.

Принцип работы транзистора для плавного управления светодиодной лентой

Транзистор работает как водопроводный кран, только для электронов.  Чем выше напряжение, подаваемое на базу биполярного транзистора либо сток полевого, тем меньше сопротивление в цепочке эмиттер-коллектор, тем выше ток, проходящий через нагрузку.

Подключив транзистор к аналоговому порту Ардуино, присваиваем ему значение от 0 до 255, изменяем напряжение, подаваемое на коллектор либо сток от 0 до 5В. Через цепочку коллектор-эмиттер будет проходить от 0 до 100% опорного напряжения нагрузки.

Для управления светодиодной лентой arduino необходимо подобрать транзистор подходящей мощности. Рабочий ток для питания метра светодиодов 300-500мА, для этих целей подойдет силовой биполярный транзистор. Для большей длины потребуется полевой транзистор.

Схема подключения LED ленты к ардуино:

Виды транзисторных ключей

  • Биполярный;
  • Полевой;
  • Составной (сборка Дарлингтона).

При подаче высокого логического уровня (digitalWrite(12, HIGH);) через порт вывода  на базу транзистора через цепочку коллектор-эмиттер потечет опорное напряжение на нагрузку. Таким образом можно включать и отключать светодиод.

Аналогичным образом работает и полевой транзистор, но поскольку у него вместо «базы» сток, который управляется не током, а напряжением, ограничительный резистор в этой схеме необязателен.

Биполярный вид не позволяет регулировать мощные нагрузки. Ток через него ограничен на уровне 0,1-0,3А.

Полевые транзисторы работают с более мощными нагрузками с током до 2А. Для ещё более мощной нагрузки используют полевые транзисторы Mosfet с током до 9А и напряжением до 60В.

Вместо полевых можно использовать сборку Дарлингтона из биполярных транзисторов на микросхемах ULN2003, ULN2803.

Микросхема ULN2003 и принципиальная схема электронного коммутатора напряжения:

ШИМ и Arduino

Широтно импульсная модуляция (ШИМ (PWM на английском)) – это один из методов управления питанием. В нашем случае ШИМ используется для управления яркостью каждого отдельного светодиода.

На рисунке ниже схематично изображен сигнал с одного из ШИМ пинов Arduino.

Каждую 1/500 секунды ШИМ выход генерирует импульс. Длина этого импульса контролируется функцией ‘analogWrite’. То есть, ‘analogWrite(0)’ не будет генерировать никакого импульса, а ‘analogWrite(255)’ сгенерирует сигнал, который будет длится до самого начала следующего. То есть, будет создаваться впечатление, что подается один непрерывный импульс.

Когда в пределах функции analogWrite мы указываем значение в диапазоне от 0 до 255, мы генерируем импульс определенной длительности. Если длина импульса составляет 5%, мы подадим на указанный выход Arduino 5% от максимально доступного питания и создается впечатление, что светодиод горит не на максимальную яркость.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Как подключить светодиодную ленту к Ардуино

Для этого занятия нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • источник постоянного тока 12 Вольт;
  • светодиодная лента;
  • полевые / биполярные транзисторы;
  • реле Ардуино 12 Вольт;
  • датчик движения;
  • макетная плата;
  • резисторы;
  • провода «папа-папа», «папа-мама».


Подключение светодиодной ленты к Ардуино через реле

На картинке мы представили первый вариант подключения светодиодной ленты к Ардуино: через реле, а полевой транзистор рассмотрим далее. Первый и второй скетч, размещенные ниже, можно применять на двух схемах. Третий пример с плавным включением / затуханием можно использовать только в схеме с транзистором. После сборки схемы загрузите следующие примеры программ в плату Arduino.

Программа для светодиодной ленты Ардуино

void setup() {
   pinMode(12, OUTPUT); // объявляем пин 12, как выход
}

void loop() {
   digitalWrite(12, HIGH);
   delay(1000);
   digitalWrite(12, LOW)
   delay(1000);
}

Пояснения к коду:

  1. Для зажигания LED ленты через реле можно использовать цифровой пин;
  2. Код повторяет программу для мигания светодиода на Ардуино;
  3. Для данного примера датчик движения к Ардуино можно не подключать.

Скетч для светодиодной ленты с датчиком движения

unsigned long counttime;
byte w = 1;

#define LED  12 // назначаем порт для реле
#define PIR  2    // назначаем порт для датчика

void setup() {
   pinMode(LED, OUTPUT); // объявляем пин LED, как выход
   pinMode(PIR, INPUT);      // объявляем пин PIR, как вход
   }

void loop() {
   delay(200);

   // если есть движение - включаем свет
   if (digitalRead(PIR) == HIGH) { digitalWrite(LED, HIGH); w = 1; }

   // если движения нет - включаем счетчик
   if (digitalRead(PIR) == LOW) { counttime = millis(); w = 0;

       while (w == 0) {
         delay(200);

         // если движения нет в течении 10 секунд - выключаем свет и выходим из цикла
         if (millis() - counttime > 10000) { digitalWrite(LED, LOW); w = 1; }

         // если обнаружено движение в течении 10 сек. - включаем свет и выходим из цикла
         if (digitalRead(PIR) == HIGH) { digitalWrite(LED, HIGH); w = 1; }
      }

   }
}

Пояснения к коду:

  1. В выражении можно поставить любое значение в миллисекундах, при котором свет не будет выключаться;
  2. Задержка может влиять на скорость срабатывания датчика, но позволяет немного разгрузить процессор.

Ардуино – принцип действия

плата Arduino

Плата Ардуино – это устройство, на котором установлен программируемый микроконтроллер. К нему подключены различные датчики, органы управления или encoder и, по заданному скетчу (программе), плата управляет моторами, светодиодами и прочими исполнительными механизмами, в том числе и другими платами Ардуино по протоколу SPI. Контроль устройства может осуществляться через дистанционный пульт, модуль Bluetooth, HC-06, Wi-Fi, ESP или internet, и кнопками. Одни из самых популярных плат – Arduino Nano и Arduino Uno, а также Arduino Pro Mini – устройство на базе микроконтроллера ATmega 328

Внешний вид Arduino Pro MiniВнешний вид Arduino UnoВнешний вид Arduino micro

Программирование осуществляется в среде Ардуино с открытым исходным кодом, установленным на обычном компьютере. Программы загружаются через USB.

Контроллер Gelid Codi6

Gelid Codi6 поставляется в маленькой коробке с габаритами чуть крупнее, чем пачка сигарет. С лицевой стороны размещено схематическое изображение контроллера с отмеченными основными разъёмами и портами.

С оборота приведено более расширенное описание и некоторые технические параметры. Ключевое – Codi6 базируется на платформе Arduino UNO, что и обеспечивает огромные возможности настройки.

Внутри коробки содержится немногочисленный комплект. Помимо самого контроллера, он включает:

  • Крепёжные винты и магниты;
  • Клейкую диэлектрическую прокладку;
  • Короткий USB-кабель;
  • Кабель питания.

Производитель предусмотрел два варианта закрепления Codi6. Можно либо воспользоваться винтами и магнитами для фиксации к стенке корпуса, либо приклеить на дно устройства двухсторонний скотч. Правда, место размещения будет всё равно резко ограничено, ведь длинна USB-кабеля едва достигает 200 мм.

Для Arduino UNO выпускается множество так называемых Arduino Shield. Это платы, которые просто вставляется в коннекторы самой Arduino, и имеют самый различный функционал. Кратко говоря, Gelid Codi6 – это комплект из Arduino UNO, Shield от Gelid, акрилового корпуса и кабелей.

Gelid Codi6 представляет собой двухуровневую плату в полуоткрытом акриловом корпусе. На верхнем «этаже» расположены по шесть разъёмов для вентиляторов и столько же колодок для подключения устройств с подсветкой. Также здесь размещена кнопка, на функцию которой можно запрограммировать что угодно, и колодка для подключения датчика звукового давления.

На днище контроллера никаких примечательных элементов нет.

Верхняя часть – лишь надстройка с разъёмами. Вся логика располагается на нижнем «этаже». Gelid Codi6 базируется на платформе Arduino UNO версии R3 (микроконтроллер ATmega328). Здесь есть: 14 цифровых выходов, 6 аналоговых, 16-мегагерцовый кварцевой генератор, колодка ICSP и кнопка перезагрузки. 32 КБ постоянной памяти и 2 КБ оперативной выглядят не густо, но для управления несколькими сотнями диодов хватит.

USB-порт типа B предназначен для «общения» Codi6 и компьютера, и частично для подачи питания. Изначально запланировано запитывать плату от SATA-разъёма и самого USB-порта, но можно обойтись только SATA, или опционально можно подать на плату напряжение через AC/DC адаптер или аккумулятор. Сфера применения Gelid Codi6 не ограничивается одними лишь домашними ПК, но для настройки он обязательно понадобится.

В целом, для базового подключения будет достаточно только USB-порта. Его мощности достаточно для программирования контроллера, но для работы вентиляторов при приличных оборотах и работы подсветки потребуется дополнительное питание. На один канал подсветки контроллер способен отдавать до немалых 4 А тока (20 Вт мощности).

Естественно, к Codi6 можно подключить любые вентиляторы. Сторонним пропеллерам в любом случае можно будет задавать скорость вращения (при условии коннектора 4-pin PWM), но подсветка будет работать только у вентиляторов с ARGB-подсветкой (3-pin разъём ARGB).

Принципы работы трехцветного светодиода

Внешний вид трехцветного светодиода показан на следующем рисунке:

Трехцветный светодиод имеет 4 контакта как показано на рисунке ниже:

  • контакт 1: цвет 1 отрицательный вывод при общем аноде или цвет 1 положительный вывод при общем катоде;
  • контакт 2: общий положительный вывод для всех трех цветов при общем аноде или общий отрицательный вывод для всех трех цветов при общем катоде;
  • контакт 3: цвет 2 отрицательный вывод или цвет 2 положительный вывод;
  • контакт 4: цвет 3 отрицательный вывод или цвет 3 положительный вывод.

Таким образом, есть 2 типа трехцветных светодиодов – с общим катодом (ОК) и с общим анодом (ОА). При общем катоде (общий отрицательный вывод) мы имеем три положительных вывода, где каждый вывод отвечает за свой цвет, и один общий отрицательный вывод. Внутренняя схема подключений трехцветного светодиода с общим катодом показана на следующем рисунке:

В таком светодиоде (с ОК) если мы хотим зажечь красный цвет мы должны подать питание на контакт, отвечающий за красный цвет, и подать землю на общий отрицательный вывод. Аналогично и для других цветов.

При общем аноде (общий положительный вывод) мы имеем три отрицательных вывода, где каждый вывод отвечает за свой цвет, и один общий положительный вывод. Внутренняя схема подключений трехцветного светодиода с общим анодом показана на следующем рисунке:

В таком светодиоде (с ОА) если мы хотим зажечь красный цвет мы должны подать землю на контакт, отвечающий за красный цвет, и подать питание на общий положительный вывод. Аналогично и для других цветов.

В нашей схеме мы будем использовать трехцветный светодиод с общим анодом (ОА). Если вам будет необходимо подсоединить больше подобных светодиодов к плате Arduino Uno, к примеру 5, то вам будет нужно 5×4= 20 контактов, но можно уменьшить количество контактов в этом случае до 8 если мы соединим трехцветные светодиоды параллельно и будем использовать технологию мультиплексирования.

Устройство и назначение RGB светодиода

RGB светодиоды объединяют три кристалла разных цветов в одном корпусе. RGB LED имеет 4 вывода — один общий (анод или катод имеет самый длинный вывод) и три цветовых вывода. К каждому цветовому выходу следует подключать резистор. Кроме того, модуль RGB LED Arduino может сразу монтироваться на плате и иметь встроенные резисторы — этот вариант более удобный для занятий в кружке робототехники.


Фото. Распиновка RGB светодиода и модуль с RGB светодиодом для Ардуино

Распиновка RGB светодиода указана на фото выше. Заметим также, что для многих полноцветных (трехцветных) светодиодов необходимы светорассеиватели, иначе будут видны составляющие цвета. Далее подключим трехцветный светодиод к Ардуино и заставим его сначала мигать разными цветами, а затем плавно переливаться разными цветами с помощью «широтно импульсной модуляции».

Подключение светодиодной ленты к Ардуино

подключение светодиодной ленты к Arduino

Мнение экспертаАлексей БартошСпециалист по ремонту, обслуживанию электрооборудования и промышленной электроники.Задать вопрос экспертуArduino Nano могут управлять не только электродвигателями. Они используются также для светодиодных лент. Но так как выходные ток и напряжение платы недостаточны для прямого подключения к ней полосы со светодиодами, то между контроллером и светодиодной лентой необходимо устанавливать дополнительные приспособления.

Через реле

Подключение через реле

Реле подключается к устройству на цифровой выход. Полоса, управляемая с его помощью имеет только два состояния — включенная и выключенная. Для управления red-blue-green ленточкой необходимы три реле. Ток, который может контролировать такое устройство, ограничен мощностью катушки (маломощная катушка не в состоянии замыкать большие контакты). Для подсоединения большей мощности используются релейные сборки.

С помощью биполярного транзистора

Подключение с помощью транзистора

Для усиления выходного тока и напряжения можно использовать биполярный транзистор. Он выбирается по току и напряжению нагрузки. Ток управления не должен быть выше 20 мА, поэтому подается через токоограничивающее сопротивление 1 – 10 кОм.

Транзистор лучше применять n-p-n с общим эмиттером. Для большего коэффициента усиления используется схема с несколькими элементами или транзисторная сборка (микросхема-усилитель).

С помощью полевого транзистора

Кроме биполярных, для управления полосами используются полевые транзисторы. Другое название этих приборов – МОП или MOSFET-transistor.

Подключается элемент через токоограничивающее сопротивление. Кроме того, он чувствителен к помехам, поэтому выход контроллера следует соединить с массой резистором в 10 кОм.

С помощью плат расширения

Подключение Arduino с помощью плат расширения

Это может быть Wi-Fi или Bluetooth, драйвер управления электродвигателем, например, модуль L298N или эквалайзер. Они предназначены для управления нагрузками разной мощности и напряжения. Такие устройства бывают одноканальными – могут управлять только монохромной лентой, и многоканальными – предназначены для устройств RGB и RGBW, а также лент со светодиодами WS 2812.