Как возникает резонанс напряжения и токов: в чем опасность явления, как его можно использовать

Содержание

Расчет цепей в резонансе и построение векторной диаграммы

Задачи, как обычно, принес студент. Они “родом” из нашего Ленинградского Политеха.

Задача 1. В цепи на рисунке В, А, А, Ом. В цепи резонанс. Определить: напряжения на всех ветвях, ток , напряжение , мощность . Построить векторную диаграмму.

Цепь к задаче 1

Решение.

По первому закону Кирхгофа (учитываем, что в цепи резонанс и токи в емкости и индуктивности находятся в противофазе, то есть на векторной диаграмме направлены в противоположные стороны)

Это абсолютное значение тока.

По закону Ома

Нам известно емкостное сопротивление – оно по условию равно 5 Ом. Поэтому, зная это сопротивление и ток в данной ветви, найдем напряжение на ней.

Так как индуктивность и емкость включены параллельно, то на индуктивности такое же напряжение – 50 В. Тогда по закону Ома индуктивное сопротивление

Теперь вернемся к напряжению . Это сумма двух напряжений – на емкости и на резисторе. Мы знаем, что напряжение на резисторе совпадает с током, а напряжение на емкости – нет. Его вектор будет перпендикулярен вектору тока и будет отставать от тока на . В то же время, поскольку цепь в резонансе, то напряжение на емкости должно быть скомпенсировано напряжением на индуктивности, а оно равно напряжению на емкости и опережает ток на . Изобразим все на векторной диаграмме (здесь ):

Векторная диаграмма

Из диаграммы понятно, что

Тогда

Определим мощность (активную), считая, что нам даны действующие значения токов.

Ответ: ток А, В, Вт, В.

Задача 2. В цепи на рисунке В, B, А, А. В цепи резонанс. Определить: напряжения на всех ветвях, ток , напряжение . Построить векторную диаграмму.

Схема к задаче 2

Решение.

Определим сразу напряжение на верхней ветви. Там протекает ток , и напряжение на резисторе с этим током совпадает, а вот напряжение на емкости должно отставать на . Поэтому, чтобы найти напряжение на обоих элементах, понадобится теорема Пифагора:

Понятно, что на второй ветви (с индуктивностью) такое же точно напряжение, потому что она включена параллельно.

Так как цепь в резонансе, то в итоге должно получиться так, что вектор тока и вектор напряжения (входное) совпадают по направлению на векторной диаграмме. При этом ток (в емкостной ветви) будет опережать это входное напряжение, а вот ток (в индуктивной) будет отставать от входного напряжения. И это опережение (и отставание тоже) будет на угол, меньший , так как сопротивление ветвей не чисто емкостное и не чисто индуктивное. При этом направление тока будет совпадать с направлением напряжения , а ток – с направлением напряжения .

Своим студентам я придумала подсказку:

«Каждый студент, запомни твердо!

От этого твой зависит зачет:

В емкости ток опережает,

А в индуктивности – отстает!»

Входное напряжение – это в данном случае и есть .

Чтобы дальше решать эту задачу, призовем векторную диаграмму на помощь. Построим сначала вектор тока и совпадающий с ним вектор напряжения , затем – отстающий на вектор напряжения . Сложим вектора обоих напряжений и получим вектор напряжения . Проведем ток , совпадающий с ним по направлению (резонанс).

Векторная диаграмма (не полная) – начало построения.

Таким образом, становится понятно, что, так как тангенс угла между напряжением и напряжением равен 2, то и между векторами токов точно такой же угол – потому что соотношение между их модулями тоже 2. Значит, вектор тока направлен вертикально вниз. Туда же должно быть направлено и напряжение , а вот напряжение на индуктивности должно опережать ток на – значит, оно совпадает с . Причем, оба последних вектора должны в сумме давать !

Векторная диаграмма к задаче 2

Значит, В, В. Таким образом, напряжение В (по второму закону Кирхгофа). Ток по теореме Пифагора

Можно воспользоваться законом Ома и определить Ом, Ом, Ом, Ом – вы можете это легко теперь сделать сами.

Ответ: А, В.

Резонанс в линейных системах с одной степенью свободы

К этой группе можно причислить рассмотренные последовательные и параллельные электрические схемы. Механический пример – пружина с грузом, который способен перемещаться только по вертикальной прямой. Исключены порывы ветра, вибрации, другие «паразитные» внешние воздействия. В подобных условиях можно применять типовые формулы для систем линейного типа.

Отмеченная выше добротность является определяющим фактором для избирательности по частоте. Сужение ширины резонансного диапазона помогает улучшить характеристики приемных и передающих устройств. Кроме экономного расходования электроэнергии, при правильном расчете схемы существенно улучшается помехозащищенность.

Резонанс напряжения

Это явление возникнет, когда к генератору последовательно подключить катушку с конденсатором с одинаковыми реактивными сопротивлениями.

Обращаем ваше внимание, что ситуации, когда реактивными бывают только ёмкость и индуктивность, существуют только в идеале. А в реальности всегда есть сопротивление проводов, хотя и незначительное

При резонансном эффекте конденсатор с дросселем обмениваются энергией. При запуске генератора, конденсатор начинает накапливать энергию, а затем, после выключения, в результате обмена начинают происходить колебания.

Периодичность вычисляется формулой Томпсона:

Поскольку сопротивление зависимо от частоты, соответственно, при увеличении частоты сопротивляемость индуктивности возрастает, при этом у ёмкости, наоборот, снижается.

Общий показатель сопротивления будет ощутимо понижаться, когда сопротивления одинаковые.

К главным показателям контура относятся частота и передаточный коэффициент. Если разобрать контур с четырьмя полюсами, становится понятно, что передаточный коэффициент равен добротности (Q).

В резонансе, чем значительнейпоказатель добротности, тем значительней напряжение на контурных элементах по сравнению с напряжением на генераторе.

В контуре показатели мощности падают из-за сопротивления. Энергия поставщика используется лишь для поддержки колебаний.

Резонанс напряжений

Резонанс напряжений возникает в последовательной RLC-цепи.

Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=wр, а следовательно и индуктивного и емкостного сопротивлений xL=xC. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке UL и на конденсаторе UC будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.

При резонансе напряжения UC и UL могут быть намного больше, чем напряжение источника, что опасно для цепи.

С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.

Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту

Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.

Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.

Для чего используется резонанс

Как явление, резонанс напряжений часто используется в различных фильтрах электрического типа. Например, если есть необходимость устранения из сигнала передачи некоторой составляющей тока определенной частоты, то к приемнику параллельно подключают катушку и конденсатор, которые по отношению друг к другу соединены последовательно. В результате подобных действий электроток определенной резонансной частоты замкнется через цепочку дроссель-конденсатор и не попадет на приемник.


Колебательный контур

Важно! Сам по себе резонанс напряженности в электричестве — явление негативное, так как он способствует появлению перенапряжений на некоторых участках соединения и выводит из строя приборы

Применение

Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор. Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн. Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.

Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.

Резонанс в обычной жизни

В быту мы часто сталкиваемся с резонансом, даже не задумываясь о смысле явления. Он используется в:

  • радиопередатчиках и приемных устройствах;
  • микроволновых печах;
  • музыкальных инструментах.

В поле акустики при игре на гитаре в определенный момент струны начинают вибрирующие движения. Слышен звук при отсутствии непосредственного воздействия игрока. Энергия от поглощения колебаний сильно возрастает к моменту, когда толчки (воздействие) совпадают с естественными движениями.

Отклик распространен в природе и искусственных устройствах. Многие слышат звук, источником которого является удар твердого предмета (металл, стекло, дерево). Они вызываются колебаниями малой частоты.

Феномен залива Фанди

Между Нью-Брансуик и Новой Шотландией в Канаде на побережье Атлантического океана расположен залив, известный на весь мир самым сильным приливом. Перепад в отметках между уровнями в момент максимальных значений достигает 18 метров. За один цикл свыше ста миллиардов тонн воды проходит через центральный вход залива. Продолжительность одного периода отлива-прилива постоянна – около 6 часов 13 минут.

Уникальностью природное явление «обязано» природными характеристиками:

  • огромному количеству воды, проходящем через горловину залива;
  • неповторимым очертаниям берегов;
  • резонансному эффекту.

По сравнению со средней высотой прилива в океанах – 3 фута (около 1 м) гигантский размах поступательных движений водяной массы поражает. Физический смысл явления объясняется причинами:

  • жидкость в любом объеме имеет свой период «колебаний», она постоянно движется с одним ритмом;
  • частота движений полностью зависит от размеров резервуара – длины и глубины;
  • большие размеры залива обеспечивают постоянство внутренних колебаний воды;
  • цикл прилива (отлива) совпадает с внутренними колебаниями воды.

При начале прилива огромная водяная масса доходит до противоположного берега, затем движется в обратном направлении. Происходит совпадение момента отката воды и отлива. При этом волна получает дополнительное ускорение.

Для модели подойдет емкость длинной формы с водой, если ее раскачивать вдоль в одном ритме с движением жидкости. Спустя несколько колебаний вода будет переливаться через край. В заливе Фанди система более уравновешенная, и поэтому перелива нет.

Резонанс токов, параллельный резонанс

Заземляющий контур

В электротехнике часто применяют не последовательное, а параллельное соединение конденсатора и катушки.

Следует помнить! В такой ситуации реактивные элементы рассматривают по измененной схеме. Вместо сопротивлений оперируют суммой проводимостей.

Электрические параметры и компоненты, векторные диаграммы напряжений и токов

В этом примере рассмотрим уточненные параметры. Величину (I) определяют по сумме токов, которые проходят по индуктивному и емкостному участкам цепи. В обеих ситуациях определенное значение имеет частота (w):

  • IL=E/(RL+Кз*w*L);
  • Ic=E/(Rc+(1/Кз*w*С).

Диаграммы наглядно демонстрируют характерные изменения физических параметров при работе контура в трех типовых режимах. На рисунке а) изображен емкостной вариант. Предполагается что w*L больше, чем 1/w*С. В этом случае минимальным значением RL можно пренебречь, что несколько упрощает приведенную выше формулу для расчета тока. Он будет отставать от вектора напряжения на угол ϕL. Второй рисунок демонстрирует обратную ситуацию, когда IL больше Ic.

Для резонансных условий надо, чтобы фазы совпадали. Это показано векторами на рисунке в). Такая ситуация получится, если w*L равно 1/ w*С. В этом случае наблюдается примерное равенство IL и Ic, что определено во втором названии явления – «резонанс токов».

Рекомендуемые файлы

FREE

Учебный план для ИУ3, ИУ4, ИУ5, ИУ6, ИУ7, РК 6, РЛ6, МТ4, МТ8, МТ11, СМ13
Физика
-60%

Решенные все 35 билетов 2021 (теории + задач)
Физика
FREE

Э-69
Физика
FREE

Сборник вопросов и задач по общей физике И.В. Савельева
Савельев (Физика)
FREE

Все лекции по физике в пдф
Физика
FREE

Все Лекции PDF
Физика

2.      Ток в цепи будет наибольшим и как следствие Pmax= I2maxR тоже максимальна, а реактивная мощность равна нулю.

3.      Резонансная частота

4.       

Резонанс можно достигнуть, изменяя L, C или ω.

Векторные диаграммы при резонансе напряжений

LC цепь                                                               RLC цепь

Случаи других режимов работы RLC цепи

  1. Если XL>XC т.е. 

U опережает I, значит цепь имеет активно-индуктивный характер

   напряжение на катушке больше напряжения на конденсаторе.

Векторная диаграмма

  1. Если XL<XC , т.е. 

U отстает от  I, значит цепь имеет активно-емкостной характер

               напряжение на конденсаторе больше напряжения на катушке.

Векторная диаграмма

Параллельное соединение элементов в цепи синусоидального тока

На входе параллельной цепи напряжение

 Закон Ома

Эквивалентные сопротивления ветвей:

Запишем эквивалентные проводимости:

;      

по первому закону Кирхгофа:

где

,    где

Треугольники проводимостей и токов

 алгебраическая форма

G – действительная часть, активная составляющая

B – мнимая часть, реактивная составляющая.

Треугольник проводимости

; ;;

; ;

;

или ;

Треугольник тока

;  ;  

Резонанс токов

Режим, при котором в цепи, содержащей параллельные ветви с индуктивными и емкостными элементами, ток неразветвленного участка цепи совпадает по фазе с напряжением (φ=0), называют резонансом токов.

Условие резонанса токов:

В1 – реактивная проводимость первой ветви,

В2 – реактивная проводимость второй ветви

Признаки резонанса токов:

  1. Реактивные составляющие токов ветвей равны IPCIPL и находятся в противофазе в случае, когда напряжение на входе чисто активное;
  2. Токи ветвей превышают общий ток цепи, который имеет минимальное значение;
  3. и совпадают по фазе

RLC – цепь                                                                                      Векторная диаграмма

LC– цепь                                                                             Векторная диаграмма

Резонансная частота

Случаи резонансных цепей

цепей

Если R2=0 резонанс наступит, при

Случаи резонанса токов

Случай 1. Один резонанс в цепи, при условии:

Случай 2.  Два резонанса в цепи, при определенном соотношении сопротивлений элементов

Случай 3.  Нет резонанса в цепи – частота является величиной неопределенной, при

Частотные характеристики колебательного контура

Баланс мощностей в цепях переменного тока

Коэффициент мощности

•         Генератор или электрооборудование энергетически выгодно эксплуатировать, если оно совершает максимальную работу. Работа в электрической цепи определяется активной мощностью Р.

•         Коэффициент мощности показывает, насколько эффективно используется генератор или электрооборудование

λ=P/S=cosφ≤1

С уменьшением коэффициента мощности стоимость потребляемой электроэнергии возрастает.

Способы увеличения коэффициента мощности

Обратите внимание на лекцию «Франко-китайская и японо-китайская войны». •         Мощность максимальна в случае, когда Р = S, т.е

в случае резистивной цепи

•         Мощность максимальна в случае, когда Р = S, т.е. в случае резистивной цепи.

•         Генератор осуществляет только необратимые преобразования энергии и не участвует в колебательных процессах обмена энергией с электромагнитным полем приемников, в режиме максимальной мощности.

•         Потребители электрической энергии в основном имеют схему замещения RL элемента, поэтому увеличение коэффициента мощности возможен с помощью компенсации реактивной мощности подключением емкостного элемента (QLQС),  подключение емкостного элемента снижает ток в линии электропередачи, что позволяет уменьшить сечение электропроводов, а это приводит к экономии электропроводящих материалов.

•         Значение коэффициента мощности в энергосистемах зависит насколько грамотно эксплуатируется электротехнические установки и приборы.

•          сosφ может снижаться, если установки работают в режиме холостого хода, или недогружены.

Резонанс токов

Резонанс токов

1. Для контура (рис. 5.31) параметры которого равны: определить, чему равны эквивалентные резистивное, реактивное и полное сопротивления контура, если вследствие расстройки частота станет на 0,2% больше резонансной. Для этого случая вычислить все токи и мощность, выделяемую полагая, что значение приложенного к цепи осталось прежним (U=200 В).Решение:
Вначале определим добротность Q и сопротивление контура при резонансе:

Произведем расчеты при . Найдем абсолютную и обобщенную расстройки и искомые сопротивления: имеет емкостный характер, так как x, положительно.Полное сопротивление при расстройке

Так как отрицательно, ток опережает напряжение
Расходуемая мощность
Заметим, что даже при небольшой расстройке (0,2%) в полном сопротивлении контура появилась значительная реактивная составляющая , вследствие которой и оказался сдвиг фаз между током I и напряжением U. Ввиду небольшого изменения частоты реактивные сопротивления каждой из параллельных ветвей и токи в них почти не изменились и не намного изменился ток в неразветвленной части цепи.2. Параллельный контур с малыми потерями (т. е. Q>>1) включен к источнику с ЭДС Е=200 В и внутренним сопротивлением (см. рис. 5.35). Определить параметры контура R и L, если известны резонансная частота , емкость С=300 пФ и что сопротивление контура при резонансе равно внутреннему сопротивлению генератора . Вычислить токи источника, каждой из ветвей, мощность, доставляемую источником, и выделяемую в нем и в параллельном контуре при резонансе.Решение:
Находим индуктивность:
Имея в виду, что по условию находим резистивное сопротивление

Ток источника и напряжение на параллельном контуре при резонансе
В каждой из ветвей контура токи

Мощность, доставляемая источником , расходуемая в нем и выделяемая в контуре :
3. Для задачи 2. определить абсолютное значение и относительную величину полосы пропускания контура по напряжению.Решение:
Предварительно вычислим характеристическое сопротивление и добротность контура
Искомые значения абсолютной и относительной величины полосы пропускания контура по напряжению равны:

4. Параллельный контур, параметры которого , подключен к источнику с ЭДС Е=200 В и внутренним сопротивлением .1. Вычислить эквивалентную добротность контура и полосу его пропускания. Найти все токи и расходуемую в контуре мощность при резонансе.2. Чему равны эквивалентная добротность контура и полоса его пропускания, если его нагрузить на резистивное сопротивление (рис. 5.41, а)? Определить для данного случая токи, мощности, доставляемую источником и расходуемую в контуре и нагрузочном сопротивлении при резонансе.

Решение:
1. Для заданного контура вычисляем
Эквивалентную добротность заданного контура с учетом внутреннего сопротивления источника ЭДС и полосу его пропускания определяем: Так как данные контура, ЭДС источника и его внутреннего сопротивления те же, что и в задаче 2., то в решении были уже вычислены требуемые по условию 2. Решение задачи в случае нагрузки контура на сопротивление проще всего получить, осуществив замену относительно зажимов ab заданного источника ЭДС с и подключенным к нему параллельно сопротивлением (рис. 5.41, б), эквивалентным с ЭДС и внутренним сопротивлением (рис. 5.41,в). Для определения отключим параллельный контур (см. рис. 5.41,б и в) и вычислим напряжение холостого хода равное :
Сопротивление короткого замыкания равно внутреннему сопротивлению эквивалентного источника (рис. 5.41,г):
Для схемы рис. 5.41 эквивалентные добротность и полоса пропускания соответственно равны
Следует отметить, что подключение к контуру сопротивления приводит к уменьшению эквивалентной добротности и увеличению полосы пропускания.Рассчитываем ток в неразветвленной части заданной цепи, напряжение на контуре, токи в ветвях контура и нагрузочном сопротивлении , мощности, доставляемую источником и выделяемую в контуре и сопротивлении :
Проверка показывает, что

Смотри полное содержание по представленным решенным задачам.

Резонанс токов

Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.

Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=wр, следовательно проводимости BL=BC. То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.

Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.

Выразим резонансную частоту

Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.

Явление резонанса может носить как положительный, так и отрицательный характер. Например, любой радиоприемник имеет в своей основе колебательный контур, который с помощью изменения индуктивности или емкости настраивают на нужную радиоволну. С другой стороны, явление резонанса может привести к скачкам напряжения или тока в цепи, что в свою очередь приводит к аварии.

Резонанс переменного электрического тока

Знание физики и теории этой науки напрямую связано с ведением домашнего хозяйства, ремонтом, строительство и машиностроением. Предлагаем рассмотреть, что такое резонанс токов и напряжений в последовательном контуре RLC, какое основное условие его образования, а также расчет.

Применение токового резонанса

Основная область активного применения широко востребованных резонансных токов сегодня представлена:

  • некоторыми видами фильтрующих систем, в которых току с определенными частотными параметрами оказываются значительные показатели сопротивления;
  • радиотехникой в виде приемников, выделяющих сигналы, предназначенные для конкретных точек радиостанций. Оказание значительного сопротивления току сопровождается снижением показателей контурного напряжения при максимальной частоте;
  • асинхронного типа двигателями, в особенности функционирующими в условиях неполной нагрузки;
  • установками высокоточной электрической сварки;
  • колебательными контурами внутри узлов генераторов электронного типа;
  • приборами, отличающимися высокочастотной закалкой;
  • снижением показателей генераторной нагрузки. При таких условиях в приемном трансформаторе с первичной обмоткой делается колебательный контур.


Схема цепи

Особенно часто колебательные контуры или токовые резонансы применяются в производстве современного промышленного индукционного котлового оборудования, что позволяет в значительной степени улучшить стартовые показатели коэффициента полезного действия.

Стандартные колебательные контуры, функционирующие в условиях режима токового резонанса, массово применяются в качестве одного из наиболее важных узлов в современных электронных генераторах.

Электрический резонанс

Для полноценного изучения (применения) явления надо учитывать полное сопротивление цепи (Z). Вместе с потерями его можно выразить следующей формулой при последовательном подключении функциональных элементов:

Z = √ R2 + (2π * f * L — 1/2π * f * C)2.

По закону Ома:

I = U/Z = U/ √ R2 + (2π * f * L — 1/2π * f * C)2.

Если соблюдается равенство реактивных составляющих, сопротивление уменьшается с одновременным увеличением силы тока. При соблюдении такого условия несложно вычислить резонансную частоту (Fрез):

  • 2π * f * L = 1/2π * f * C;
  • Fрез = 1/2π * √ L*C.

Резонанс напряжений, достигающих максимальной амплитуды

Получить наибольшую амплитуду в последовательном контуре можно с помощью изменения следующих параметров:

  • индуктивности;
  • емкости;
  • частоты.

Значения отдельных компонентов устанавливают с применением рассмотренных выше формул. Так, величину емкости можно вычислить следующим образом:

C = 1/ f2 * L.

Если реактивные компоненты значительно больше активного сопротивления, на клеммах конденсатора или катушки можно получить повышение напряжения, по сравнению с источником.

Резонанс токов через реактивные элементы

В параллельном контуре оперируют с понятиями реактивных проводимостей (BL и Bc). Как и в предыдущем примере, для создания резонансного режима необходимо обеспечить равенство этих параметров. Дополнительным условием является совпадение частот (источника и контура). Ток при резонансе будет проходить только через активное сопротивление R.

Принцип резонанса токов

Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:


Схема для питания конденсатора

Переключатель будет отвечать за направление колебаний.


Схема: переключатель резонансной схемы

Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.


Схема: ток в резонансной схеме равен нулю

Направленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.

Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.

Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.

В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0. Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны. Если сопротивление достаточно высокой, ток не будет колебаться вообще.

Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.

Реактивные сопротивления индуктивности и емкости

Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.

Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.

Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся. Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине

Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.

Использование резонанса напряжений для передачи радиосигнала

Колебательный контур этого типа создают из последовательной комбинации трех базовых компонентов: резистор, конденсатор, индуктивность. Подходящим для резонанса условием является нулевое сопротивление цепи (комплексное). Для решения такой задачи следует изучить основные формулы.

Комплексное сопротивление Rк=R+j(wL-1/wC). Постоянный резистор (R) не зависит от частоты (w). Значит, придется оперировать с индукционными и емкостными элементами. Резонансный эффект получают при (wL-1/wC)=0. Для вычисления необходимых значений пользуются следующими расчетами:

  • Lп=1/w2*C;
  • Сп=1/w2*L;
  • Wп=1/√L*C.

Из приведенных данных понятно, что корректировать можно любой из параметров при одновременном сохранении двух других. В практической схемотехнике удобнее работать с частотой, поэтому рассмотрим подробнее применение такого варианта.

Последовательный контур с графиками

На рисунках показаны условия возникновения резонанса напряжений. В точке, обозначенной w0, наблюдается равенство индуктивной и емкостной составляющих на определенной частоте. Небольшой сдвиг влево по оси обусловлен резистивным компонентом цепи.

Напряжение на конденсаторе (Uc) при частоте резонанса (W0) равно волновому сопротивлению колебательного контура (p=√L/C). Аналогичная разница потенциалов будет на клеммах катушки при частоте W0. Данная особенность объясняет особое название процесса – «резонанс напряжений». Также в электротехнических расчетах применяют следующие определения:

  • Добротность – Q=p/R;
  • Затухание – 1/Q.

Отмеченные свойства используют в радиоприемной и передающей аппаратуре. Выделение контуром определенного диапазона позволяет выполнять настройку станции на определенную частоту с определенной параметрами цепи погрешностью. Для контроля избирательности оценивают амплитуду сигнала относительно резонансной частоты. Уровень отклонения на 3 дБ в обе стороны (0,7 от максимума) называют полосой пропускания.

Амплитудно-частотная характеристика (АЧХ) и полоса пропускания

Электроника

В электрических цепях резонансом называется такой режим пассивной цепи, содержащий катушки индуктивности и конденсаторы, при котором ее входное реактивное сопротивление или ее входная реактивная проводимость равны нулю. При резонансе ток на входе цепи, если он отличен от нуля, совпадает по фазе с напряжением.

В электрических цепях резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.

Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.

Электрическое устройство, состоящее из ёмкости и индуктивности, называется колебательным контуром. Элементы колебательного контура могут быть включены как последовательно (тогда возникает резонанс напряжений), так и параллельно (резонанс токов). При достижении резонанса, импеданс последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства. Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.

Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения

ωL=1ωC⇒ω=1LC{\displaystyle \omega L={\frac {1}{\omega C}}\Rightarrow \omega ={\frac {1}{\sqrt {LC}}}},

где ω=2πf{\displaystyle \omega =2\pi f} ; f — резонансная частота в герцах; L — индуктивность в генри; C — ёмкость в фарадах

Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания, то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы.. В электронных устройствах также применяются различные электромеханические резонансные системы.

В электронных устройствах также применяются различные электромеханические резонансные системы.

Подробнее по этой теме см. Кварцевый резонатор.
Подробнее по этой теме см. Электромеханический фильтр.

Резонанс токов

Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.

Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:

В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:

  1. Частота питания аналогична резонансной у контура.
  2. Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.

Задача из ЕГЭ по физике про резонанс в цепи переменного тока

При под­клю­че­нии трех не­из­вест­ных эле­мен­тов A, B и C элек­три­че­ской цепи к вы­хо­ду ге­не­ра­то­ра пе­ре­мен­но­го тока с из­ме­ня­е­мой ча­сто­той гар­мо­ни­че­ских ко­ле­ба­ний при не­из­мен­ной ам­пли­ту­де ко­ле­ба­ний на­пря­же­ния, об­на­ру­же­ны следующие зависимости действующих значений силы тока от ча­сто­ты: Установите соответствие между буквой графика и соответствующим элементом из списка, который был подключен:

1) активное сопротивление 2) кон­ден­са­то­р 3) ка­туш­ка 4) RLC-контур

C
A
  • Правильный ответ для графика A — 1 (активное сопротивление), поскольку из представленных в списке элементов лишь активное сопротивление не имеет зависимости от частоты в цепи переменного тока.
  • Правильный ответ для графика B — 2 (катушка), поскольку индуктивное сопротивление катушки возрастает пропорционально частоте переменного тока. Тогда действующее значение силы переменного тока уменьшается обратно пропорционально частоте.
  • Правильный ответ для графика B — 4 (RLC-контур), так как на кривой зависимости действующего значения силы переменного тока от частоты имеется ярко выраженный резонансный максимум, что является характерным признаком RLC-контура.

Материал подготовлен репетитором по физике на Юго-Западной, сергеем Валерьевичем