Биполярный транзистор

Содержание

Характеристики биполярного транзистора.

Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач.

И первая на очереди – входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:

I_{б} = f(U_{бэ}), \medspace при \medspace U_{кэ} = const

В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_{кэ}):

Входная характеристика, в целом, очень похожа на прямую ветвь . При U_{кэ} = 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_{кэ} ветвь будет смещаться вправо.

Переходим ко второй крайне важной характеристике биполярного транзистора – выходной! Выходная характеристика – это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы. I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const

I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const

Для нее также указывается семейство характеристик для разных значений тока базы:

Видим, что при небольших значениях U_{кэ} коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения – изменение тока очень мало и фактически не зависит от U_{кэ} (зато пропорционально току базы). Эти участки соответствуют разным .

Для наглядности можно изобразить эти режимы на семействе выходных характеристик:

Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.

Для управления током базы мы увеличиваем напряжение U_{бэ}, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано

Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_{кэ} (возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно – при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta, несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:

I_к = \beta I_б

Двигаемся дальше!

На участке 2 транзистор находится в режиме насыщения. При уменьшении U_{кэ} уменьшается и напряжение на коллекторном переходе U_{кб}. И при определенном значении U_{кэ} = U_{кэ \medspace нас} напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина – эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.

В этом режиме основные носители заряда начинают двигаться из коллектора в базу – навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_{кэ} ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.

Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора!

И, наконец, область 3, лежащая ниже кривой, соответствующей I_{б} = 0. Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.

Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_{FE}) от тока коллектора для биполярного транзистора BC847:

Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды! Разным значениям температуры соответствуют разные кривые.

Виды транзисторов

В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.

В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.

Другие классификации транзисторов:

  1. По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
  2. Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
  3. Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
  4. К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
  5. В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.

Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.

Режим — насыщение — транзистор

Режим насыщения транзистора характеризуется малым падением напряжения на р-п переходах, так как они смещены в прямом направлении.

Чтобы обеспечить режим насыщения транзистора, его ток базы / Б выбирается больше критического значения тока базы.

Для исключения режима насыщения транзисторов необходимо ограничить входное напряжение. Следовательно, не посредственное последовательное соединение переключателей тока для полного исключения режима насыщения недопустимо и нужны дополнительные согласующие схемы, предотвращающие режим насыщения, — схемы смещения уровня.

Этот режим называется режимом насыщения транзистора.

Этот режим называется режимом насыщения транзистора. Коллекторный ток, соответствующий этому режиму, называется током насыщения / к. В режиме насыщения внут-ренее сопротивление транзистора уменьшается почти до нуля, так что все напряжение источника Ек оказывается почти целиком приложенным к RK ( резистор как бы накоротко соединяется с землей) и на выходе устанавливается потенциал, близкий к нулю.

В схеме с ОЭ режим насыщения транзистора реализуется либо увеличением тока на входе при заданном напряжении питания на коллекторе и сопротивлении нагрузки, либо при заданном токе на входе увеличением сопротивления нагрузки или уменьшением напряжения питания.

Величина сопротивления RK должна обеспечить режим насыщения транзистора при минимальном коэффициенте усиления, и в то же время максимальный ток коллектора транзистора не должен превышать предельно допустимого.

Для того чтобы был обеспечен режим насыщения транзистора Qz, напряжение на его коллекторе должно быть равно напряжению на эмиттере или положительно относительно него.

Для нормальной работы ключа необходимо обеспечить режим насыщения транзистора во всем интервале рабочих температур и при наихудшем сочетании параметров.

На коллекторе сохраняется положительное напряжение, и режим насыщения транзистора не наступает.

Этим же током открывается и переходит в режим насыщения транзистора VT2, причем напряжение на его коллекторе уменьшается почти до нуля, что соответствует логическому 0 на выходе схемы.

Для увеличения перепада выходного напряжения в переключающих схемах в состоянии открыт обычно используют режим насыщения транзистора.

Принципиальная схема элемента ЭСЛ.| Схемы асинхронных Д5 — триггеров.

Кроме того, эмиттерные повторители снижают входное напряжение с 5 до 4 2 В, что необходимо для предотвращения режима насыщения транзисторов следующей логической ступени.

Здесь и далее все величины с индексом о относятся к ре-жи му отсечки и с индексом н — к режиму насыщения соответствующего транзистора.

Предупреждение об использовании файлов cookies на сайте Info KS

В соответствии с законами ЕС, поставщики цифрового контента обязаны предоставлять пользователям своих сайтов информацию о правилах в отношении файлов cookie и других данных. Администрация сайта должна получить согласие конечных пользователей из ЕС на хранение и доступ к файлам cookie и другой информации, а также на сбор, хранение и применение данных при использовании продуктов Google.

Файл cookie – файл, состоящий из цифр и букв. Он хранится на устройстве, с которого Вы посещаете сайт Info KS. Файлы cookie необходимы для обеспечения работоспособности сайтов, увеличения скорости загрузки, получения необходимой аналитической информации.

Сайт использует следующие cookie:

Необходимые для работы сайта: навигация, скачивание файлов. Происходит отличие человека от робота.

Файлы cookie для увеличения быстродействия и сбора аналитической информации. Они помогают администрации сайта понять взаимодействие посетителей сайтом, дают информацию о страницах, которые были посещены. Эта информация помогает улучшать работу сайта.

Рекламные cookie. В эти файлы предоставляют сведения о посещении наших страниц, данные о ссылках и рекламных блоках, которые Вас заинтересовали. Цель — отражать на страницах контент, наиболее ориентированный на Вас.

Если Вы не согласны с использованием нами файлов cookie Вашего устройства, пожалуйста покиньте сайт.

Продолжением просмотра сайта Info KS Вы даёте своё согласие на использование файлов cookie.

Полевой транзистор

Если в биполярном транзисторе управление происходило с помощью тока, то в полевом – с помощью напряжения. Состоит он из пластинки полупроводника, которую называют каналом. С одной стороны к ней подключен исток – через него в канал входят носители электрического тока, а с другой сток – через него они покидают канал.

Сам канал как бы «зажат» между затвором, который обладает обратной проводимостью, то есть если канал имеет n-проводимость, то затвор – p-проводимость. Затвор электрически отделен от канала. Изменяя напряжение на затворе, можно регулировать зону p-n перехода. Чем она больше, тем меньше электрической энергии проходит через канал. Существует значение напряжения, при котором затвор полностью перекроет канал и ток между истоком и стоком прекратится.

Наиболее наглядная иллюстрация в этом случае – садовый шланг, который проходит через камеру небольшого колеса. В таком случае, даже когда в него подается небольшое давление воздуха (напряжение затвор-исток), оно значительно увеличивается в размерах и начинает пережимать шланг, перекрывается просвет шланга и прекращается подача воды (увеличивается зона p-n перехода и через канал перестает идти электроток).

Другой тип полевого триода имеет небольшое различие в конструкции затвора. На слое кремния с помощью окисления образуется слой диэлектрика оксида кремния. Уже на него методом напыления металла наносят затвор. Получаются чередующиеся слои Металл -Диэлектрик – Полупроводник или МДП-затвор.

Такой полевой транзистор с изолированным затвором обозначается латинскими буквами MOSFET.

Существует два вида МДП-затвора:

  1. МДП-затвор с индуцированным (или инверсным) каналом в обычном состоянии закрыт, то есть при отсутствии напряжения на затворе электроток через канал не проходит. Для того, чтобы открыть его, к затвору необходимо приложить напряжение.
  2. МДП-затвор со встроенным (или собственным) каналом в обычном состоянии открыт, то есть при отсутствии напряжения на затворе электроток через канал проходит. Для того, чтобы закрыть его, к затвору необходимо приложить напряжение.

Динамический режим работы транзисторного ключа.

⇐ ПредыдущаяСтр 34 из 34

Динамическим режимом работы транзистора называется такой режим, при котором в выход-

ной цепи стоит нагрузочный резистор, за счёт которого изменение входного тока или напря-

жения будет вызывать изменение выходного напряжения.

На Рис. 76 резистор Rк – это коллекторная нагрузка для транзистора, включённого по схеме с

ОЭ, обеспечивающая динамический режим работы.

2) Динамические характеристики и понятие рабочей точки. Уравнение динами-

ческого режима является уравнением выходной динамической характеристики. Так как это

уравнение линейное, выходная динамическая характеристика представляет собой прямую ли-

нию и строится на выходных статических характеристиках (смотрите Рис. 77).

Две точки для построения прямой находятся из начальных условий.

Iк при Uкэ=0 называется током коллектора насыщения. Выходная динамическая характери-

стика получила название нагрузочной прямой. По нагрузочной прямой можно построить вход-

ную динамическую характеристику. Но поскольку она очень близка к входной статической ха-

рактеристике при Uкэ>0, то на практике пользуются входной статической характеристикой.

Точка пересечения нагрузочной прямой с одной из ветвей выходной статической характери-

стикой для заданного тока базы называется рабочей точкой транзистора. Рабочая точка позво-

ляет определять токи и напряжения, реально существующие в схеме.

3) Ключевой режим работы транзистора (транзистор в режиме ключа). В за-

висимости от состояния p-n переходов транзисторов различают 3 вида его работы:

1.Режим отсечки. Это режим, при котором оба его перехода закрыты (и эмиттерный и

коллекторный). Ток базы в этом случае равен нулю. Ток коллектора будет равен обрат-

ному току. Уравнение динамического режима будет иметь вид:

2.Режим насыщения – это режим, когда оба перехода – и эмиттерный, и коллекторный

открыты, в транзисторе происходит свободный переход носителей зарядов, ток базы будет

максимальный, ток коллектора будет равен току коллектора насыщения.

3.Линейный режим – это режим, при котором эмиттерный переход открыт, а коллекторный

закрыт.

Ключевым режимом работы транзистора называется такой режим, при котором рабочая точка

транзистора скачкообразно переходит из режима отсечки в режим насыщения и наоборот, ми-

нуя линейный режим.

Резистор Rб ограничивает ток базы транзистора, чтобы он не превышал максимально допустимого значения. В промежуток времени от 0 до t1 входное напряжение и ток базы близки кнулю, и транзистор находится в режиме отсечки. Напряжение Uкэ, является выходным и будет близко к Eк. В промежуток времени от t1 до t2 входное напряжение и ток базы транзистора становятся максимальными, и транзистор перейдёт в режим насыщения. После момента времени t2 транзистор переходит в режим отсечки. Вывод: транзисторный ключ является инвертором, т. е. изменяет фазу сигнала на 180є.

Билет 30

⇐ Предыдущая34

Рекомендуемые страницы:

Работа биполярного транзистора.

Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.

Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.

В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE, и большой — от коллектора к эмиттеру ICE.

Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы I B , сильно меняется ток коллектора I С. Так и происходит усиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току. Обозначается β, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзистором.

Строение транзистора

Биполярный транзистор относится к полупроводникам — материалам, которые хуже проводят электричество, чем проводники, но и не являются диэлектриками. Но если его температуру довести до абсолютного нуля, он станет диэлектриком. С другой стороны, при повышении температуры проводимость прибора будет увеличиваться. Это делает его уязвимым к перегреву. Повышение проводимости увеличивает ток, который может вывести устройство из строя.

Для наглядности можно привести в пример алмаз (адамант). В естественных условиях он является полупроводником, но если поместить его в вакуум или инертный газ и нагреть, он превратится в графит, который является хорошим проводником. В промышленных целях для производства транзисторов широко используют такие материалы, как кремний, германий и другие. По используемому материалу транзисторы бывают:

  • германиевые;
  • кремниевые;
  • арсенид-галлиевые.

Сам по себе полупроводник очень чувствителен к внешнему влиянию (деформации, облучению и температуре), внутренним дефектам и примесям. В естественных условиях он ведет себя как переменный резистор, сопротивление которого меняется от температуры (используется для производства варисторов). При добавлении примесей свойства полупроводника резко меняются, и он превращается в проводник. Примеси делятся на:

  • донорные;
  • акцепторные.

Донорные, например, мышьяк, легко отдают свои электроны, переводя полупроводник в отрицательно заряженный материал. Для обозначения такого материала используют букву «п». К акцепторным относится трехвалентный индий. При соединении с кремнием, у которого четырехвалентная связь, одного электрона не хватает, поэтому образуется так называемая «дырка». Такой материал обозначают буквой «р».

Биполярные транзисторы: принцип работы, характеристики и параметры

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда.

В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки.

Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.

Особенности устройства биполярного транзистора

Биполярный транзистор включает в себя три области:

  • эмиттер;
  • базу – очень тонкую, которая изготавливается из слаболегированного полупроводника, сопротивление этой области высокое;
  • коллектор – его область больше по размерам, чем область эмиттера.

К каждой области припаяны металлоконтакты, служащие для подсоединения прибора в электроцепь.

Электропроводность коллектора и эмиттера одинакова и противоположна электропроводности базы. В соответствии с видом проводимости областей, различают p-n-p или n-p-n приборы. Устройства являются несимметричными из-за разницы в площади контакта – между эмиттером и базой она значительно ниже, чем между базой и коллектором. Поэтому К и Э поменять местами путем смены полярности невозможно.

Принцип работы биполярного транзистора

Этот тип транзистора имеет два перехода:

  • электронно-дырочный между эмиттером и базой – эмиттерный;
  • между коллектором и базой – коллекторный.

Дистанция между переходами маленькая. Для высокочастотных деталей она составляет менее 10 мкм, для низкочастотных – до 50 мкм. Для активации прибора на него подают напряжение от стороннего ИП. Принцип действия биполярных транзисторов с p-n-p и n-p-n переходами одинаков. Переходы могут функционировать в прямом и обратном направлениях, что определяется полярностью подаваемого напряжения.

Режим отсечки

Переходы закрыты, прибор не работает. Этот режим получают при обратном подключении к внешним источникам. Через оба перехода протекают обратные малые коллекторные и эмиттерные токи. Часто считается, что прибор в этом режиме разрывает цепь.

Активный инверсный режим

Является промежуточным. Переход Б-К открыт, а эмиттер-база – закрыт. Ток базы в этом случае значительно меньше токов Э и К. Усиливающие характеристики биполярного транзистора в этом случае отсутствуют. Этот режим востребован мало.

Режим насыщения

Прибор полностью открыт. Оба перехода подключаются к источникам тока в прямом направлении. При этом снижается потенциальный барьер, ограничивающий проникновение носителей заряда. Через эмиттер и коллектор начинают проходить токи, которые называют «токами насыщения».

С общим эмиттером

Эта схема включения биполярных транзисторов обеспечивает наибольшее увеличение вольтамперных характеристик (ВАХ), поэтому является самой востребованной. Минус такого варианта – ухудшение усилительных свойств прибора при повышении частоты и температуры. Это означает, что для высокочастотных транзисторов рекомендуется подобрать другую схему.

С общей базой

Применяется для работы на высоких частотах. Уровень шумов снижен, усиление не очень велико. Каскады приборов, собранные по такой схеме, востребованы в антенных усилителях. Недостаток варианта – необходимость в двух источниках питания.

С общим коллектором

Для такого варианта характерна передача входного сигнала обратно на вход, что существенно уменьшает его уровень. Коэффициент усиления по току – высокий, по напряжению – небольшой, что является минусом этого способа. Схема приемлема для каскадов приборов в случаях, если источник входного сигнала обладает высоким входным сопротивлением.

Какие параметры учитывают при выборе биполярного транзистора?

  • Материал, из которого он изготовлен, – арсенид галлия или кремний.
  • Частоту. Она может быть – сверхвысокая (более 300 МГц), высокая (30-300 МГц), средняя – (3-30 МГц), низкая (менее 3 МГц).
  • Максимальную рассеиваемую мощность.

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.