ШИ-стабилизатор
Широтно-импульсные стабилизаторы характеризуются более стабильной работой, то есть в сеть автомобиля подается почти постоянное напряжение, а небольшие отклонения в пределах нормы носят плавный характер. В схеме устройства использованы те же детали, что и в оригинале, но в то же время включена микросхема К561ТЛ1. Это позволило собрать мультивибратор и формирователь коротких импульсов на 1-м узле. Также упрощен узел управления выходным ключом за счет применения полевого транзистора, повышенной мощности.
Основные узлы:
Цикл работы стабилизатора
С включением зажигания на выходе триггера DD1.1 появляется низкий логический уровень. В следствии, этого током зарядки конденсатора СЗ открывается транзистор VT1. Он в свою очередь начинает подавать на входы элемента DD1.2 высокий уровень, единовременно разряжая конденсатор С4. С появлением на выходе низкого уровня DD1.2 открывает полевой транзистор VT3. Ток с вывода стабилизатора протекает обмотку возбуждения генератора.
После прекращения импульса на выходе DD1.1 образуется высокий уровень и транзистор VT1 закрывается. Происходит зарядка конденсатора С4 током, проходящим через резистор R5 от генератора, который управляется транзистором VT2. В то время как напряжение на конденсаторе С4 опуститься до нижнего предела переключения триггера DD1.2, он переключится. На его выходе возникнет высокий уровень, который закроет транзистор VT3. В целях защиты входных цепей микросхемы DD1 напряжение конденсатора С4 ограничивается диодом VD4, что при его последующей зарядке не приведет к переключению DD1.2. Когда же на выходе генератора снова формируется импульс низкого уровня, процесс начинает повторяться.
Таким образом, стабилизация осуществляется длительностью включенного состояния полевого транзистора, а процессом управляет измерительное устройство, а также генератор тока. Когда возрастает напряжение на выводе генератора нарастает ток коллектора транзистора VT2. При увеличении ампеража конденсатор С4 начинает заряжаться быстрее и продолжительность включенного состояния транзистора VT3 уменьшается. В следствии ток, который протекает через обмотку возбуждения генератора уменьшается и, конечно же, уменьшается выходное напряжение генератора.
При понижении напряжения на выводе от генератора ток на коллекторе транзистора VT2 снижается. В результате время зарядки конденсатора С4 возрастает. Это приводит к более длительному периоду включенности транзистора VT3 и ток, который протекает через обмотку возбуждения генератора, возрастает. Выходное напряжение генератора также увеличивается.
Широтно-импульсный стабилизатор своими руками
Хотя эффективность представленного реле и его серийного производства устройство трудно найти в продаже. К тому же узнать о нем что-либо у продавцов консультантов не всегда удается. Поэтому если есть опыт в радиотехнике, реле регулятор напряжения генератора можно собрать своими руками.
Для приведенной выше принципиальной схемы можно применить следующие элементы и их альтернативные замены.
Схема регулятора с обратной связью
Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:
- Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
- Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.
Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.
Регулятор мощности с обратной связью
Обозначения:
- Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
- Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
- Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
- Симистор Т1 – BTA24-800.
- Микросхема – U2010B.
Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):
- А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
- В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
- С – Режим индикации перегрузки.
Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.
Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.
Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя
Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.
Ограничители максимального и обратного тока
При заполнении сильно разряженного аккумулятора или одновременном включении всех потребителей автомобиля возможно разрушение обмотки возбуждения или якоря. В обычном случае ток не превышает 18 – 20 А, что при напряжении 12 В эквивалентно мощности чуть более 200 Вт. Схема защиты выполняется по электромеханическому шаблону. Это подпружиненное реле, в момент превышения током порога максимума перебрасывающее контакты, втягивая сердечник магнитным полем индуктивности.
В цепь обмотки возбуждения включается резистор, гасящий часть разницы потенциалов на своём сопротивлении. Это вызывает снижение тока. Потом расход закономерно снижается, контакты замыкаются вновь. Реле работает аналогично предыдущему, но настроено по-другому и функционирует реже.
Самодельное устройство
Подобная защита способна отказать при образовании короткого замыкания или резкого повышения оборотов. От указанных недостатков избавлена электронная схема ограничителей тока.
Реле обратного тока блокирует разряд аккумулятора через обмотки генератора. Отключает батарею, когда напряжение генератора слишком низкое (11,8 – 13 В). Все время, пока работает генератор, ток течёт по параллельной обмотке. Когда напряжение превышает порог, подключается аккумулятор для зарядки. Реле устроено хитро, содержит две обмотки:
- Последовательная включена по цепи между генератором и ответвлением проводки к аккумулятору.
- Параллельная обмотка включена после ответвления, но перед нагрузкой.
В результате при включении генератора аккумулятор от него отделен разомкнутым контактом. По мере роста тока, текущего по обеим обмоткам, усиливается поле катушек. В момент достижения порогового значения реле замыкается и начинается зарядка аккумулятора. Если напряжение падает, батарея разряжается. Причём в последовательной обмотке ток теперь направлен к генератору (там потенциал ниже), а в параллельной течёт в том же направлении. Как результат, половинное усилие не способно удержать сердечник, и тот обрывает связь с генератором. Питание бортовой сети идёт от батарей.
По мере набора оборотов ситуация повторяется заново. В какой-то момент потенциал генератора превышает напряжение аккумулятора, и сеть начинает питаться отсюда. Через обе обмотки протекает полный прямой ток нагрузки, контакты замыкаются, батарея заряжается. И так далее. Помимо перечисленных выше минусов, присущих электромеханическим реле, на регулятор действует непостоянство напряжения аккумулятора. Вольтаж резко проседает при запуске стартера ввиду очевидных причин.
Как избежать 3 частых ошибок при работе с симистором.
- Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
- Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
- При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.
Регулятор на тиристоре КУ 202
Тиристорный регулятор напряжения КУ 202 оснащается двухканальным микроконтроллером. Всего разъемов у него предусмотрено три. Диодные мосты в стандартной схеме используются довольно редко. В некоторых случаях можно встретить различные стабилитроны. Применяются они исключительно для увеличения предельной выходной мощности. Также они способны стабилизировать рабочую частоту в регуляторах. Конденсаторы в таких устройствах целесообразнее использовать комбинированного типа. За счет этого можно значительно понизить коэффициент рассеивания. Также следует учитывать пропускную способность тиристоров. Для выходной анодной цепи лучше всего подходят биполярные резисторы.
Виды и критерии выбора
Для выбора регулятора нужно руководствоваться определенными характеристиками для конкретного случая. Среди всех критериев можно выбрать следующие:
- По типу управления. Для двигателей коллекторного типа применяются регуляторы с векторной или скалярной системой управления.
- Мощность является основным параметром, от которого нужно отталкиваться.
- По диапазону U.
- По диапазону частот. Нужно выбирать модель, которая соответствует требованиям пользователя для конкретного случая.
- Прочие характеристики, в которые включены гарантия, габариты, комплектация.
Устройство на тиристорах
В этой модели, представленной на схеме 1, применяются 2 тиристора, включенных встречно-параллельно, хотя их можно заменить одним симистором.
Схема 1 — Тиристорная регулировка оборотов коллекторного двигателя без потери мощности.
Эта схема производит регулирование с помощью открытия или закрытия тиристоров (симистора) при фазовом переходе через нейтраль. Для корректного управления коллекторным двигателем применяют следующие способы модификации схемы 1:
- Установка защитных LRC-цепей, состоящих из конденсаторов, резисторов и дросселей.
- Добавление на входе емкости.
- Использование тиристоров или симистора, ток которых превышает номинальное значение силы тока двигателя в диапазоне от 3..8 раз.
Этот тип регуляторов имеет достоинства и недостатки. К первым относятся низкая стоимость, маленький вес и габариты. Ко вторым следует отнести следующие:
- применение для моторов небольшой мощности;
- происходит шум и рывки мотора;
- при использовании схемы на симисторах происходит попадание постоянного U на двигатель.
Этот тип регулятора ставится в вентиляторы, кондиционеры, стиральные машины и электродрели . Отлично выполняет свои функции, несмотря на недостатки.
Транзисторный тип
Еще одним названием регулятора транзисторного типа является автотрансформатор или ШИМ-регулятор (схема 2). Он изменяет номинал U по принципу широтно-импульсной модуляции (ШИМ) при помощи выходного каскада, в котором применяются транзисторы типа IGBT.
Схема 2 — Транзисторный ШИМ-регулятор оборотов.
Коммутация транзисторов происходит с высокой частотой и благодаря этому можно изменить ширину импульсов. Следовательно, при этом изменится и значение U. Чем длиннее импульс и короче паузы, тем выше значение U и наоборот. Положительные аспекты применения этой разновидности следующие:
- Незначительный вес прибора при низких габаритах.
- Довольно низкая стоимость.
- При низких оборотах отсутствие шума.
- Управление за счет низких значений U (0..12 В).
Основной недостаток применения заключается в том, что расстояние до электромотора должно быть не более 4 метров.
Регулирование за счет частоты
Регулирование оборотов моторов различных типов за счет частоты получило широкое применение. Частотное преобразование занимает лидирующую позицию на рынке сбыта устройств-регуляторов оборотов и осуществления плавного пуска. Благодаря своей универсальности возможно влиять на мощность, производительность и скорость любого устройства с электродвигателем. Эти устройства применяются для однофазных и трехфазных двигателей. Применяются такие виды частотных преобразователей:
- Специализированные однофазные.
- Трехфазные без конденсатора.
Для регулирования оборотов используется конденсатор, включенный с обмотками однофазного двигателя (схема 3). Этот преобразователь частоты (ПЧ) имеет емкостное R, которое зависит от частоты протекающего переменного тока. Выходной каскад такого ПЧ выполнен на IGBT-транзисторах.
Схема 3 — Частотный регулятор оборотов.
У специализированного ПЧ есть свои преимущества и недостатки. Преимуществами являются следующие:
- Управление АД без участия человека.
- Стабильность.
- Дополнительные возможности.
Существует возможность управлять работой электромотора при определенных условиях, а также защита от перегрузок и токов КЗ. Кроме того, возможно расширять функционал при помощи подключения цифровых датчиков, мониторинга параметров работы и использования PID-регулятора. К минусам можно отнести ограничения при управлении частотой и довольно высокую стоимость.
Для трехфазных АД применяются также устройства регулирования частоты (схема 4). Регулятор имеет на выходе три фазы для подключения электромотора.
Схема 4 — ПЧ для трехфазного двигателя.
У этого варианта тоже есть свои сильные и слабые стороны. К первым можно отнести следующие: низкую стоимость, выбор мощности, широкий диапазон частотной регуляции, а также все преимущества однофазных преобразователей частоты. Среди всех отрицательных сторон можно выделить основные: предварительный подбор и нагрев при пуске.
Особенности изготовления
Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.
Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.
Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:
- паяльник;
- мультиметр;
- припой;
- пинцет;
- кусачки;
- флюс;
- технический спирт;
- соединительные медные провода.
Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.
Читать также: Пресс форма для штамповки металла
При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать
Регуляторы для активной нагрузки
Схема регулятора тока для активной нагрузки тиристоры предполагает использовать триодного типа. Сигнал они способны пропускать в обоих направлениях. Снижение тока анода в цепи происходит за счет понижения предельной частоты устройства. В среднем данный параметр колеблется в районе 5 Гц. Напряжение максимум на выходе должно составлять 5 В. С этой целью резисторы применяются только полевого типа. Дополнительно используются обычные конденсаторы, которые в среднем способны выдерживать сопротивление 9 Ом.
Импульсные стабилитроны в таких регуляторах не редкость. Связано это с тем, что амплитуда электромагнитных колебаний довольно большая и бороться с ней нужно. В противном случае температура транзисторов быстро возрастает, и они приходят в негодность. Чтобы решить проблему с понижающимся импульсом, преобразователи используются самые разнообразные. В данном случае специалистами также могут применяться коммутаторы. Устанавливаются они в регуляторах за полевыми транзисторами. При этом с конденсаторами они соприкасаться не должны.
Устройство и принцип работы
Если рассматривать реостатную конструкцию, то необходимо отметить несколько основных его частей:
- это трубка из керамики;
- на нее намотана металлическая проволока, концы которой выведены на контакты, расположенные на противоположных концах керамической трубки;
- выше трубки установлена металлическая штанга, на одной стороне которой установлен контакт;
- на штанге закреплен движущийся контакт, который электрики называют ползун.
Теперь, как все это работает
Обратите внимание на рисунок ниже
Первая позиция (а) – контакт (движущийся) посередине. Это говорит о том, что ток будет проходить только через половину прибора. Вторая позиция (б) говорит о том, что задействован проводник полностью. То есть, его длина максимальная, значит, и сопротивление максимальное, при этом сила тока уменьшилась. Понятно, что чем больше сопротивление, тем меньше сила тока. Третья позиция (в) – здесь все наоборот: снижается сопротивление, увеличивается сила тока.
Хотелось бы обратить ваше внимание на то, что керамическая трубка, используемая в реостатной конструкции, полая. Это необходимая составляющая, которая позволяет прибору охлаждаться при прохождении через проводник электроэнергии
Добавим: считается, что самые безопасные реостаты – это те, которые закрыты кожухом.
Разновидности приборов
По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.
При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:
- резисторы;
- тиристоры или транзисторы;
- цифровые или аналоговые интегральные микросхемы.
Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.
РН на 2 транзисторах
Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.
СНиП 3.05.06-85
Ответы на 4 самых частых вопроса по регуляторам:
- Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
- От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
- Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
- Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.
Как сделать регулятор из диммера?
Весьма эффективным и легким решением данного вопроса станет создание выносного частотного преобразователя. В роли преобразователя можно задействовать диммер – приспособление для регулирования уровня освещенности. При создании понадобятся электророзетка и вилка. Надо сказать, что реализация подобного устройства может быть выполнена разными методами. Особенно простыми являются 2: с использованием автомата и без него.
- Прикрутите к концам электророзетки 2 провода таким образом, чтобы один при этом был подлиннее. После этого длинный конец подключите к одному из контактов на вилке. Окончание 2-го провода фиксируете на контактах диммера, а другой его вывод подсоединяете ко 2-му контакту вилки.
- При применении 2-го варианта требуется внести ряд модификаций в схему, а конкретно разместить на шнуре промеж вилки и диммера автомат. В основном в диммерах предусмотрены обыкновенные выключатели, но нам требуется автоматический, который, если что-то пойдет не так, выключит наше приспособление от электросети.
Итак, частотный преобразователь углошлифовальной машины готов, и для практичности его можно разместить в специализированном корпусе либо же зафиксировать на панели из древесины. Следует только принять в расчет, что подобное приспособление – самодельное, а работая с электросетью, надо быть осмотрительным.
Регулятор тока и напряжения
Основными рабочими элементами регуляторов служат тиристоры, а также различные типы конденсаторов и резисторов. В высоковольтных устройствах дополнительно используются магнитные усилители. Модуляторы обеспечивают плавность регулировок, а специальные фильтры способствуют сглаживанию помех в цепи. В результате, электрический ток на выходе приобретает более высокую стабильность, чем на входе.
Регуляторы постоянного и переменного тока имеют свои особенности и отличаются основными параметрами и характеристиками. Например, регулятор напряжения постоянного тока имеет более высокую проводимость, при минимальных потерях тепла. Основой прибора является тиристор диодного типа, обеспечивающий высокую подачу импульса за счет ускоренного преобразования напряжения. Резисторы, используемые в цепи, должны выдерживать значение сопротивления до 8 Ом. За счет этого снижаются тепловые потери, предохраняя модулятор от быстрого перегрева. Регулятор постоянного тока может нормально функционировать при максимальной температуре 40С. Этот фактор следует обязательно учитывать в процессе эксплуатации. Полевые транзисторы располагаются следом за тиристорами, поскольку они пропускают ток лишь в одном направлении. За счет этого отрицательное сопротивление будет сохраняться на уровне, не превышающем 8 Ом.
Основным отличием регулятора переменного тока является использование в его конструкции тиристоров исключительно триодного типа. Однако полевые транзисторы применяются такие же, как и в регуляторах постоянного тока. Конденсаторы, установленные в цепь, выполняют лишь стабилизирующие функции. Фильтры высокой частоты встречаются очень редко. Все проблемы, связанные с высокими температурами, решаются установкой импульсных преобразователей, расположенных следом за модуляторами. В регуляторах переменного тока, мощность которых не превышает 5 В, применяются фильтры с низкой частотой. Управление по катоду в таких приборах выполняется путем подавления входного напряжения.
Во время регулировок в сети должна быть обеспечена плавная стабилизация тока. При высоких нагрузках схема дополняется стабилитронами обратного направления. Для их соединения между собой используются транзисторы и дроссель. Таким образом, регулятор тока на транзисторе выполняет преобразование тока быстро и без потерь.
Следует отдельно остановиться на регуляторах тока, предназначенных для активных нагрузок. В схемах этих устройств используются тиристоры триодного типа, способные пропускать сигналы в обоих направлениях. Ток анода в цепи снижается в тот период, когда понижается и предельная частота данного устройства. Частота может колебаться в пределах, установленных для каждого прибора. От этого будет зависеть и максимальное выходное напряжение. Для обеспечения такого режима используются резисторы полевого типа и обычные конденсаторы, способные выдерживать сопротивление до 9 Ом.
Очень часто в таких регуляторах применяются импульсные стабилитроны, способные преодолевать высокую амплитуду электромагнитных колебаний. Иначе, в результате быстрого роста температуры транзисторов, они сразу же придут в нерабочее состояние.
Проведение диагностики регулятора напряжения своими руками
Как проверить регулятор напряжения автомобиля для выявления неисправностей своими руками? Что лучше замерить своими руками — амперы или вольты, чем лучше воспользоваться. Для выявления неисправностей своими руками необходимо использовать мультиметр или вольтметр. Необходимо, чтобы на устройстве была шкала для измерений на 15-30 вольт. Диагностику неисправностей автомобильного реле на 40 ампер или ниже своими руками с помощью мультиметра необходимо осуществлять только при заряженном аккумуляторе.
Диагностика вышедшего из строя реле с помощью вольтметра
- Сначала необходимо включить зажигание.
- Запустите своими руками двигатель, дайте ему поработать, при этом фары необходимо включить. Пусть мотор работает, пока количество оборотов не составит около 2.5-3 тыс. Как правило, для этого необходимо подождать около 10 минут.
- При помощи вольтметра произведите замер напряжения на клеммах АКБ. Параметр должен составлять около 14.1-14.3 вольт.
В том случае, если во время диагностики показатели получились ниже или выше, лучше приобрести новое реле на 40 ампер. В ходе диагностики штекеры ни в коем случае нельзя перемыкать, поскольку это может привести к деформации и неработоспособности выпрямительного блока. Для получения более точных показателей необходимо убедиться в том, что ремень генератора натянут хорошо.
Трехфазный регулятор мощности своими руками.
(данный раздел статьи будет дополняться по мере изготовления 3-фазного регулятора)
Что-же, давайте перейдем от теории к практике и соберем такой регулятор. Он будет использоваться для автоматического управления температурой в печи отжига отливок. В литейном цеху.
Условно трехфазный регулятор можно изобразить так:
Модуль синхронизации — три трансформатора для синхронизации по 3-м фазам.
Плата регулятора — схема трехфазного регулятора представлена выше, печатная плата показана ниже)
Модуль согласования. Разные типы тиристоров требуют разных по форме импульсов открытия. В модуле согласования мы настраиваем ширину и амплитуду импульса в зависимости от выбранных тиристоров.
Делаем печатную плату
так выглядит наша готовая плата регулятора
Теперь собираем синхронизацию. В данном случае будет использован трехфазный тиристорно-диодный выпрямитель без понижающего трансформатора. Поэтому схему синхронизации подключаем так:
Схема платы согласования выглядит следующим образом:
Показан только один канал. Нужно собрать таких три.
Все регулятор готов. Подключаем его к трехфазному выпрямителю, а на вход задания подаем сигнал 0-10В температурного контроллера. (или потенциометра, для ручного управления).
Подытожим. Если у вас есть трехфазная установка, печь, нагреватель, да что угодно, любой потребитель мощности с максимальным потребляемым током до 2500 А. Можете смело использовать такой трехфазный регулятор мощности. Подобрав при этом трансформатор в зависимости от потребляемой мощности вашей установки. Или подключить регулятор напрямую от питающей трехфазной сети без использования понижающего трансформатора. Данный трехфазный регулятор мощности испытан и отлично себя зарекомендовал на более чем 10-ти печах мощностью до 300 000 W (срок эксплуатации уже более 6 лет).
Эндоскоп с Aliexpress. Обзор, примеры фото и видео.
on 23 августа, 2021 by admin
Эндоскоп представляет из себя шнур диаметром 5мм , на конце которого размещена видеокамера со светодиодной п�…
Как летнюю жару превратить в тепло зимой. Автономное отопление на солнечных батареях.
on 16 апреля, 2021 by admin
В этом материале постараемся теоретически решить задачу автономное отопление на солнечных батареях. Посчит�…
Трехфазный регулятор мощности на тиристорах
on 22 марта, 2021 by admin
Данный трехфазный регулятор мощности был разработан для управления током нагревателя в вакуумной печи 150…
Садовый пруд на солнечных батареях. Биоплато, экопруд.
on 24 января, 2021 by admin
Чтобы очистить садовый пруд нужно организовать биоплато. Чем больше солнца тем больший объем воды солнечные …
Можно ли заряжать литиевые аккумуляторы напрямую от солнечных батарей
on 27 сентября, 2021 by admin
Возможно ли использовать солнечную панель как зарядное для литиевых аккумуляторов li ion типа 18650. Мы решили…
Aiek M-5 телефон-кредитка. Обзор
on 31 июля, 2021 by admin
Aiek M5 из магазина AliExpress. Начну с главного. Телефончик действительно хорош, вызывает много положительных эмоци�…
Источник
Проведение диагностики РН своими руками
Теперь расскажем о том, как проверить трехуровневый регулятор напряжения своими руками. Процедура проверки регулятора может быть произведена как на СТО, так и в гаражных условиях, мы же рассмотрим второй вариант. Проверка регулятора напряжения на 40 ампер или меньше должна выполняться с помощью тестера — вольтметра либо мультиметра. Также следует учитывать, что выявление неисправностей в работе РН должно производиться исключительно при полностью заряженной АКБ.
Итак, как проверить регулятор напряжения генератора с помощью тестера:
Если проверка показала другие значения, будь они более высокими или низкими, то нужно заняться ремонтом генераторного узла. Но как показывает практика, проблема обычно кроется именно в РН, поэтому вероятнее всего, его придется заменить. Перед тем, как приступить к диагностике, удостоверьтесь в том, что ремень нормально натянут. Во время диагностики не допускается замыкание контактов, так как это может стать причиной деформации и выхода из строя выпрямительного блока.
Изготовление регулятора сварочного тока
Простое устройство можно собрать из мощных проволок, используемых в подъемных механизмах. При отсутствии такого материала регулятор изготавливают из дверной пружины.
Такое сопротивление подключают стационарным или съемным способом. Один конец пружины подсоединяют к выходу трансформатора. Другую сторону снабжают зажимом, который может перемещаться по спирали.
Снизить их выраженность помогают растягивание спирали, увеличение толщины основания. Сгибание проволоки змейкой уменьшает размер резистора.
Регулятор тока для сварочного аппарата.
Необходимые элементы
При сборке регулятора могут потребоваться:
- стальная пружина;
- нихромовая спираль;
- шнур;
- переключатель;
- резистор;
- катушка;
- готовая схема сборки.