Билет №15. электризация тел. два вида электрических зарядов. взаимодействие зарядов. закон сохранения электрического заряда

Содержание

Межмолекулярные химические связи

Здесь взаимодействуют не атомы, а молекулы. Капитан очевидность. В таких связях очень маленькое количество энергии, но их настолько много, что они придают стабильность большим системам – белок, ДНК. Два варианта – водородные связи и и силы Ван-дер-Ваальса.

Водородная связь

Водородная связь – это связь атома водорода одной молекулы с атомом другой молекулы. Звучит просто, но она может образоваться не всегда. Есть условия, о которых мы сейчас поговорим:

  1. Атом водорода связан с сильно электроотрицательным элементом – N, O, F. Из-за этого на нем создается частичный положительный заряд – дельта +. Мы уже об этом говорили.
  2. Атом другой молекулы, с которым должен связаться кислород, имеет сильную электроотрицательность – N, O, F. Из-за этого на нем создается частичный отрицательный заряд – дельта -.

Водородные связи в воде

С помощью водородных связей образуются вторичная структура белка и вторичная структура ДНК.

Основной вклад в образование таких связей вносит электростатическое взаимодействие. Еще пишут про донорно-акцепторный механизм, но если бы он тут был, то образовывались ионы гидроксония, мы уже разобрали это выше.

Силы Ван-дер-Ваальса

Там три варианта, но я остановлюсь только на двух – ориентационных и индукционных взаимодействиях. Сначала ориентационные, с ними полегче. Проще будет просто показать это.

Ориентационные силы Ван-дер-Вальса

Такие молекулы называют диполями – у них есть положительно и отрицательно заряженные части. Молекулы ориентируются друг на друга: положительные части располагаются рядом с отрицательными и между ними образуются слабые связи. Ну вы поняли, что такая тема может идти только в соединениях с ковалентной полярной связью.

Теперь индукционные. Смотрите, есть одна молекула – HCl, у нее есть дельта-положительно заряженный водород. Вдруг такая молекула подходит к молекуле, где связь неполярная, например водороду. Что было дальше? А вот что, дельта-положительный водород начинает оттягивать на себя электронную пару из молекулы. Тут то и образуется диполь.

Индукционные силы Ван-дер-Вальса

Табличка?

Хочешь задать вопрос, похвалить или наговорить гадостей? Тогда залетай в телегу. Там ты сможешь предложить новый формат или разбор темы. А если серьёзно, то эти статьи пишутся для вас, поэтому мне важна обратная связь.

ЭлектроотрицательностьСкачать

Ответы на вопрос

Отвечает Золотова Ева.

1.Частицы, имеющие одноименные заряды

а) отталкиваются

2.Как называется сила, с которой взаимодействуют заряды?

а) кулоновская по фамилии Кулона, придумавшего формулу вычисления взаимодействия зарядов

3.Как изменится сила взаимодействия двух точечных зарядов при увеличении каждого из них в 2 раза?

в) увеличится в 4 раза

Сила Кулона F= (k*q1*q2)/r^2 Если каждый заряд увеличит в 2 раза, то сила увеличится в 4 раза.

4.Как направлен вектор напряженности?

б) от «+» к «-» Так принято

5.В Кулонах измеряется

а) заряд

6.Какая величина является энергетической характеристикой электрического поля

г) напряжение

7.При перемещении электрического заряда q между точками с разностью потенциалов 8В силы, действующие на заряд со стороны электрического поля, совершили работу 4Дж. Чему равен заряд q ?

По формуле A = q*U вычисляем заряд q=A/U = 4Дж/8В = 0,5 Кл

а) 0,5Кл

8.Чему равна электроемкость конденсатора, если напряжение между обкладками равно 2В, а заряд на одной обкладке равен 2Кл

в)1Ф C= q/U

9. Отрицательный заряд имеют

б) электроны

10. Энергия конденсатора емкостью 6пФ и напряжением между обкладками 1000В равна

г) 3∙ 10-6 Дж

W= (CU^2)/2

Электрические заряды

Самое простое явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении

Еще древнегреческий философ Фалес Милетский (VII век до н.э.) обратил внимание на то, что кусок янтаря, будучи натертый кусочком шерстяной ткани, начинает притягивать небольшие предметы

Название элементарной, отрицательно заряженной частицы — электрон — на греческом языке означает янтарь.

Рис. 1. Наэлектризованные трением предметы притягиваются и отталкиваются.

В качестве предметов, которые с помощью трения легко электризуются, можно использовать, например, стекло, эбонит, пластмассу. При этом оказывается, что кусочки бумаги, наэлектризованные от этих разных предметов, могут как притягиваться, так и отталкиваться. Из этих наблюдений были сделаны следующие выводы:

  • Взаимодействие заряженных тел, обнаруженное в подобных экспериментах, называется электрическим взаимодействием;
  • Физическая величина, отвечающая за электрическое взаимодействие, называется электрическим зарядом. Электрический заряд обозначается буквой q;
  • Электрический заряд всегда можно передать от одного тела к другому;
  • Способность электрических зарядов к взаимному притяжению или отталкиванию можно объяснить, предположив, что существуют два вида зарядов. Один вид заряда называется положительным, а другой — отрицательным;
  • Одноименные заряды отталкиваются;
  • Разноименные заряды притягиваются.

Американский ученый Бенджамин Франклин в 1747 г. первым ввел названия для положительных и отрицательных зарядов, а также обозначения “−” и “+”.

Для обнаружения, изучения и измерения величины электрического заряда английский исследователь Уильям Гилберт (1600 г.) придумал специальный прибор — электроскоп.

Рис. 2. Электроскоп.

Свойства электрического заряда

Совокупность всех известных экспериментальных фактов позволяет выделить следующие свойства заряда:

  • Существует два рода электрических зарядов, условно названных положительными и отрицательными. Положительно заряженными называют тела, которые действуют на другие заряженные тела так же, как стекло, наэлектризованное трением о шелк.Отрицательно заряженными называют тела, которые действуют так же, как эбонит, наэлектризованный трением о шерсть. Выбор названия «положительный» для зарядов, возникающих на стекле, и «отрицательный» для зарядов на эбоните совершенно случаен.
  • Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
  • Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.
  • Важным свойством электрического заряда является его дискретность . Это означает, что существует некоторый наименьший, универсальный, далее не делимый элементарный заряд, так что зарядq любого тела является кратным этому элементарному заряду: \(~q = N \cdot e\) , гдеN – целое число,е – величина элементарного заряда. Согласно современным представлениям, этот заряд численно равен заряду электронаe = 1,6∙10-19 Кл. Поскольку величина элементарного зарядавесьма мала, то для большинства наблюдаемых ииспользуемых на практике заряженных тел числоN очень велико, и дискретный характер изменения заряда не проявляется. Поэтому считают, что в обычных условиях электрический заряд тел изменяется практически непрерывно.
  • Закон сохранения электрического заряда .Внутри замкнутой системы при любых взаимодействиях алгебраическая сумма электрических зарядов остается постоянной: \(~q_1 + q_2 + \ldots + q_n = \operatorname{const}\) .Изолированной (или замкнутой) системой мы будем называть систему тел, в которую не вводятся извне и не выводятся из нее электрические заряды.

Нигде и никогда в природе не возникает и не исчезает электрический заряд одного знака. Появление положительного электрического заряда всегда сопровождается появлением равного по модулю отрицательного заряда. Ни положительный, ни отрицательный заряд не могут исчезнуть в отдельности, они могут лишь взаимно нейтрализовать друг друга, если равны по модулю.

Так элементарные частицы способны превращаться друг в друга. Но всегда при рождении заряженных частиц наблюдается появление пары частиц с зарядами противоположного знака. Может наблюдаться и одновременное рождение нескольких таких пар. Исчезают заряженные частицы, превращаясь в нейтральные, тоже только парами. Все эти факты не оставляют сомнений в строгом выполнении закона сохранения электрического заряда.

Причина сохранения электрического заряда до сих пор пока неизвестна.

Как распределяются заряды при соприкосновении

Возьмем два шара, имеющие одинаковые размеры. Один из шаров наэлектризуем, а второй оставим незаряженным. Если шары соприкоснутся, то заряд распределится поровну между двумя шарами (рис. 1).


Рис. 1. Если размеры совпадают, то при контакте тел между телами заряд распределяется на две равные части

Заменим теперь шар незаряженный шаром, имеющим большие размеры. При соприкосновении на большой шар перейдет большая часть заряда (рис. 2). То есть, заряд теперь распределяется не поровну.


Рис. 2. Когда размеры различаются, при контакте тел заряд между телами распределяется на неравные части

Это свойство используется при заземлении. Земной шар имеет значительно большие размеры, по сравнению с телами, которые на нем находятся.

Передавая заряд земле, тело становится электрически нейтральным, потому, что на землю стекает почти весь заряд тела (рис. 3).


Рис. 3. Заземляя тело, мы передаем весь его заряд на земной шар

В левой части рисунка 3 изображено тело до заземления. Оно имеет заряд «+q». А в правой — после заземления, тело заряда не имеет.

Примечание: Заземление – это передача избыточного заряда от тела к земле. Тела заземляют, соединяя с землей отрезком толстой проволоки, или кабеля. Заземление металлических корпусов электроприборов применяют для защиты людей от удара электрическим током.

Несколько случаев для контакта двух одинаковых тел удобно объяснить на примере решения задач.

1 вариант

A1. Тела, имеющие электрические заряды одинакового знака

1) притягиваются
2) отталкиваются
3) вблизи притягиваются, на расстоянии отталкиваются
4) никак не взаимодействуют

А2. Сообщить телу заряд можно

1) только трением
2) только при соприкосновении с телом, уже имею­щим заряд
3) только на расстоянии при взаимодействии с телом, уже имеющим заряд
4) трением и при соприкосновении с телом, уже имеющим заряд

А3. Самый маленький положительный заряд имеет

1) нейтрон
2) протон
3) электрон
4) ион

А4. На рисунке изображены подвешен­ные на непроводящих нитях шари­ки.

Можно утверждать, что

1) шарики 1 и 2 не заряжены
2) шарик 1 заряжен положительно, шарик 2 заряжен отрицательно
3) шарик 1 заряжен отрицательно, шарик 2 заряжен положительно
4) шарики 1 и 2 заряжены зарядами одинаковых знаков

А5. Тела, имеющие свободные электроны, называются

1) полупроводниками
2) проводниками
3) диэлектриками
4) непроводниками

А6. К диэлектрикам относится

1) вода
2) резина
3) почва
4) металл

А7. Полупроводники — это тела, через которые

1) всегда может проходить электрический заряд
2) никогда не проходит электрический заряд
3) при высокой температуре заряды проходят, при низкой — нет
4) при низкой температуре заряды проходят, при вы­сокой — нет

Взаимодействие заряженных тел

Еще много веков назад заметили, что если потереть кусочек янтаря о шерсть, то он начнет притягивать различные мелкие предметы – ворсинки, кусочки бумаги, пушинки и т. д.

А позже выяснили, что такими же свойствами могут обладать и другие вещества – стекло, эбонит и т. п. Для того, чтобы тело приобрело возможность притягивать мелкие предметы, его нужно натереть, например, о сукно, шерсть, бумагу.

При этом, оба трущихся тела получат возможность притягивать другие предметы. На сайте есть отдельная статья о том, как соотносятся заряды трущихся тел.

Примечание: Янтарь (рис. 1) – застывшая смола хвойных деревьев, аморфное тело. Не проводит электроток — диэлектрик, но хорошо электризуется. Обладает малой плотностью, потому, может плавать в соленой воде, имеет поры, гигроскопичен (т. е. впитывает воду). В ультрафиолете может светиться – люминесцировать. В основном, состоит из углерода (примерно 70%), есть сера, азот. Растворяется в спирте, кислотах. В основном, это камень желтого цвета, однако, встречается красный, зеленый, голубой янтарь. Греческое название янтаря – электрон.

Рис. 1. Зеленый янтарь, янтарь бывает не только желтым

Что такое электрический заряд в каких единицах он измеряется

Простое объяснение понятия электрический заряд. Что это за величина, в чем она измеряется и как, собственно, ее измеряют.

В природе не все можно объяснить с точки зрения механики, МКТ и термодинамики, есть и электромагнитные явления, которые воздействуют на тело, при этом не зависят от их массы. Способность тел быть источником электромагнитных полей характеризуется физической скалярной величиной – электрическим зарядом

Его впервые вывели в законе Кулона в 1785 году, но обратили внимание на его существование еще до нашей эры. В этой статье мы простыми словами расскажем о том, что такое электрический заряд и как он измеряется

История открытий

Еще в древности было замечено, что если потереть янтарь о шелковую материю, то камень начнет притягивать к себе легкие предметы. Уильям Гильберт изучал эти опыты до конца XVI века. В отчете о проделанной работе предметы, которые могут притягивать другие тела, назвал наэлектризованными.

Следующие открытия в 1729 году сделал Шарль Дюфе, наблюдая за поведением тел при их трении об разные материи.

Таким образом он доказал существование двух видов зарядов: первые образуются при трении смолы о шерсть, а вторые – при трении стекла о шелк. Следуя логике, он назвал их «смоляными» и «стеклянными».

Шарлем Кулоном, портрет которого изображен ниже, был открыт закон, который впоследствии был назван Законом Кулона. Он описывал взаимодействие двух точечных зарядов. Также смог измерить величину и изобрел для этого крутильные весы, о которых мы расскажем позже.

И уже в начале прошлого века Роберт Милликен, в результате проведенных опытов, доказал их дискретность. Это значит, что заряд каждого тела равен целому кратному элементарного электрического заряда, а элементарным является электрон.

Теоретические сведения

Электрическим зарядом называется способность тел создавать электромагнитное поле. В физике раздел электростатики изучает взаимодействия неподвижных относительно выбранной инерциальной системы отчета зарядов.

В чем выражается взаимодействие

Электрические заряды притягиваются и отталкиваются друг от друга. Это похоже на взаимодействие магнитов. Всем знакомо, что если потереть линейку или шариковую ручку о волосы – она наэлектризуется.

Если в этом состоянии поднести её к бумаге, то она прилипнет к наэлектризованному пластику.

При электризации происходит перераспределение зарядов, так что на одной части тела их становится больше, а на другой меньше.

По этой же причине вас иногда бьёт током шерстяной свитер или другие люди, когда вы их касаетесь.

Вывод: электрические заряды с одним знаком стремятся друг к другу, а с разными – отталкиваются. Они перетекают с одного тела на другое, когда касаются друг друга.

Способы измерения

Существует ряд способов измерения электрического заряда, давайте рассмотрим некоторые из них. Измерительный прибор называется крутильными весами.

Весы Кулона – это крутильные весы его изобретения. Смысл заключается, в том, что в сосуде на кварцевой нити подвешена легкая штанга с двумя шариками на концах, и один неподвижный заряженный шарик. Вторым концом нить закреплена за колпак.

Неподвижный шарик вынимается, для того чтобы сообщить ему заряд, после этого нужно установить его обратно в сосуд. После этого подвешенная на нити часть начнет движение. На сосуде нанесена проградуированная шкала.

Принцип его действия отражен на видео.

Другой прибор для измерения электрического заряда – электроскоп. Он, как и предыдущие, представляет собой стеклянный сосуд с электродом, на котором закреплено два металлических листочка из фольги.

Заряженное тело подносят к верхнему концу электрода, по которому заряд стекает на фольгу, в результате оба листочка окажутся одноименно заряженными и начнут отталкиваться.

Величину заряда определяют по тому, насколько сильно они отклонятся.

Электрометр – еще один измерительный прибор. Состоит из металлического стержня и вращающейся стрелки. При прикосновении к электрометру заряженным телом, заряды стекают по стержню к стрелке, стрелка отклоняется и указывает на шкале определенную величину.

Напоследок рекомендуем просмотреть еще одно полезное видео по теме:

Ионизаторы воздуха положительно воздействуют на организм человека: ускоряют процесс доставки кислорода из воздуха к клеткам. Примером такого прибора является люстра Чижевского.

Теперь вы знаете, что такое электрический заряд и как его измеряют.

Материалы по теме:

  • Как перевести ватты в киловатты
  • Закон Джоуля-Ленца простыми словами
  • Что такое статическое электричество

Физика

Учебник для средней школы

Электрический заряд

Из всех известных фундаментальных типов взаимодействия наиболее распространенными являются электромагнитные. Простейший пример этих взаимодействий — притяжение и отталкивание наэлектризованных тел.

Впервые его наблюдал Фал ее (VII в. до н.э.), используя янтарную палочку, потертую о шерсть. Позже В.Гильберт (XVI в.) обнаружил, что свойством притягивать легкие предметы обладают, кроме янтаря, фарфор и многие другие тела, предварительно натертые кожей или другими мягкими материалами. Это явление В. Гильберт назвал электризацией (electron по-гречески — янтарь).

О телах, способных к таким взаимодействиям, говорят, что они электрически заряжены, т.е. им сообщен электрический заряд.

Электрический заряд q — это количественная мера способности тел к электромагнитным взаимодействиям.

Единицей электрического заряда в СИ является кулон. 1 кулон есть электрический заряд, переносимый через поперечное сечение проводника за 1 с при силе тока 1 А.

Опыты по электризации тел трением, взаимодействию незаряженной станиолевой гильзы с заряженной палочкой показывают, что:

  1. существуют два рода электрических зарядов, которые условно называют положительными и отрицательными; заряд элементарных частиц — протонов, входящих в состав любого ядра, называют положительным, а заряд электронов — отрицательным;
  2. при взаимодействии одноименные заряды отталкиваются, разноименные притягиваются. На этом свойстве зарядов основано действие простейших приборов — электроскопа и электрометра;
  3. современная физика приводит к выводу о существовании элементарного заряда, являющегося неотъемлемым свойством ряда элементарных частиц. Впервые немецкий физик Г. Гельмгольц в 1881 г. высказал гипотезу, объясняющую электрические явления существованием электрически заряженных элементарных частиц. Впоследствии эта гипотеза подтвердилась открытием электрона (в 1897 г. английским физиком У. Томсоном) и протона (в 1919 г. Э. Резерфордом).

    Электрон — это элементарная частица, заряд которой е = -1,6·10-19 Кл, масса me = 9,1·10-31 кг. Протон имеет положительный заряд е = 1,6·10-19 Кл, а масса протона в 1836 раз больше массы электрона;

  4. электрический заряд дискретен (это доказано опытным путем американским физиком Р. Милликеном и русским физиком А. Ф. Иоффе). Это значит, что любой заряд, больший элементарного, состоит из целого числа элементарных зарядов q = ±N·e, где N = 1, 2, 3…

    В теле, электрически нейтральном, число протонов и электронов одинаково и они равномерно распределены по объему. Если число электронов в теле меньше числа протонов, то оно заряжено положительно, а если заряд обусловлен избытком электронов, то тело заряжено отрицательно.

    Именно этот избыточный заряд определяет собой электрические свойства тела, и его называют зарядом тела, q = (N+ — N-) e, где N+ — число протонов, N- — число электронов.

    Процесс, приводящий к появлению на телах или разных частях тела избыточного заряда, называют электризацией;

  5. заряд инвариантен, т.е. не зависит от характера движения заряженной частицы, ни от ее взаимодействия с другими частицами, ни от выбора системы отсчета. Об этом свидетельствуют многие факты. Так, неионизированный атом и молекула нейтральны: заряды электронной оболочки атома и ядра в точности равны друг другу. А между тем характер движения электронов и ядер совершенно различен. Кроме того, при химических превращениях движение электронов в оболочках атомов изменяется, что приводит к изменению характера спектров атомов. Если бы заряд зависел от скорости движения частиц, то в химических реакциях могли бы появиться нескомпенсированные электрические заряды, но это не обнаружено.

Любопытно, что…

…Францу Эпинусу — немецкому ученому, работавшему в конце XVIII века в Петербурге, построить свою теорию электрических явлений помогла аналогия с теорией тяготения Ньютона. Исходя «из экономии и гармонии в природе», Эпинус предположил, что электрические и магнитные силы обратно пропорциональны квадрату расстояния.

…закон взаимодействия электрических зарядов первым экспериментально установил Генри Кавендиш. Однако эту работу, как и многие другие, он сделал «для собственного удовлетворения» и не обнародовал своего открытия. О нем узнали лишь в середине прошлого столетия благодаря Дж. Максвеллу.

…согласно теоретическим представлениям, бытовавшим до Кулона, считалось, что электрическое воздействие проявляется лишь в особой «атмосфере», непосредственно окружающей наэлектризованное тело.

…свой прибор, служащий «для измерения мельчайших степеней силы», сам Кулон назвал крутильными весами и прежде всего использовал для изучения трения. А исследования, обессмертившие его имя, Кулон проводил в качестве побочного занятия, никогда ранее особенно не интересуясь электричеством и магнетизмом.

…повторив опыт Кавендиша, Кулон установил, что электричество распределяется по поверхности проводников. Основываясь же на законе обратных квадратов, он доказал это свойство и теоретически.

…будучи «убежден в том, что все силы природы находятся во взаимной связи», Майкл Фарадей пытался экспериментально обнаружить зависимость между электричеством и тяготением. Он поставил чрезвычайно изящные опыты для обнаружения этой связи, но результаты оказались отрицательными.

…при внешнем сходстве закона Кулона с законом всемирного тяготения Ньютона между этими видами взаимодействия лежит глубокая пропасть. Электрические силы при прочих равных условиях значительно превосходят гравитационные, также не обнаружено пока гравитационного отталкивания. Однако наличие двух видов электрических зарядов приводит к тому, что в любом куске вещества заряды настолько точно сбалансированы, что наблюдать электрические силы довольно трудно. При мало-мальски серьезном нарушении нейтральности тел у зарядов возникает неудержимое стремление ее восстановить.

…происхождение сил упругости и трения нашло свое (и то частичное) объяснение лишь тогда, когда стала понятна природа электрических сил между нейтральными системами — молекулами.

…для «домашнего потребления» в физике и почти всегда в технике принято рассматривать электрические и магнитные силы отдельно друг от друга. Однако вопрос о том, какая из двух составляющих — электрическая или магнитная — проявляется при движении свободных носителей заряда, целиком зависит только от системы отсчета.

…объяснение явления сверхпроводимости заключается в объединении свободных электронов в пары, которые могут двигаться в металле без трения. Несмотря на то, что по закону Кулона электронам положено отталкиваться, их взаимодействие с кристаллической решеткой меняет знак силы.

… недавние эксперименты с проводящими сферами позволяют утверждать, что показатель степени в законе Кулона равен двойке с точностью до 10-13.

Последние заданные вопросы в категории Физика

Физика 08.05.2021 02:46 996 Захаркина Саша.

Какое количество теплоты необходимо, чтобы из льда массой 2 кг, взятого при температуре -10 градусов

Ответов: 1

Физика 08.05.2021 02:28 649 Остроушко Юлия.

С какой силой притягиваются два коробля массой 10000т каждый на расстоянии 120 м друг от друга?

Ответов: 1

Физика 08.05.2021 02:33 462 Медведев Никита.

Уравнение зависимости скорости от времени для тела 1 имеет вид

Ответов: 1

Физика 08.05.2021 01:11 594 Романова Софья.

Перевести 3000Н в кН

Ответов: 2

Физика 08.05.2021 01:53 565 Гура Коля.

На рисунке представлена схема электрической цепи, состоящей из трёх параллельно соединённых резистор

Ответов: 1

Физика 08.05.2021 01:06 434 Морозов Виктор.

Приведите примеры показывающие что действие силы зависит от площади опоры к которой она приложении

Ответов: 1

Физика 08.05.2021 01:07 459 Сапронова Наталия.

Работа выхода электронов из металла равна 6 эВ. Определите энергию фото на , соответствующего электр

Ответов: 1

Физика 08.05.2021 01:09 467 Миронова Ульяна.

Радиус луны в 3,7 раза меньше радиуса земли а масса в 81 раз меньше массы земли каково ускорение сво

Ответов: 1

Физика 08.05.2021 01:08 283 Катлюшкин Сергей.

1.Укажите какая физическая величина измеряется в А? 2.Какой формулой выражается закон Ома для учас

Ответов: 1

Физика 08.05.2021 00:10 427 Маркелов Артём.

РЕБЯТ СРОЧНО ПРОШУ ВАС ОЧЕНЬ СРОЧНО!!!! ДАЮ 35 БАЛЛОВ+9 ЗА ПРАВИЛЬНЫЙ ОТВЕТ

Ответов: 1

Единицы измерения

Единица измерения заряда была названа в честь Кулона. 1 кулон — это заряд, проходящий при силе тока 1 ампер за 1 секунду через поперечное сечение проводника.

В международной системе единиц СИ:

$$ 1 K = 1 A * 1 c $$

Константа k законе Кулона в единицах системы СИ будет равна:

$$ k = {{9,0*10^9*Н*м^2}\over Кл^2}$$

Приведенная здесь формула закона Кулона справедлива для зарядов, находящихся в вакууме. Для зарядов, которые взаимодействуют в какой-либо среде, формула будет иметь такой же вид, но величина постоянной k будет другой. Значения k для разных веществ измерены экспериментально и приведены в справочных таблицах.

Что мы узнали?

Итак, мы узнали, что физическая величина, отвечающая за электрическое взаимодействие, называется электрическим зарядом. Одноименные заряды отталкиваются, а разноименные — притягиваются. Сила взаимодействия зарядов рассчитывается с помощью формулы закона Кулона.

  1. /5

    Вопрос 1 из 5

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:

Полезное по теме:

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряжен­ных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов. Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

.

где |q1| и |q2| — модули зарядов; r — расстояние между ними; k — коэффициент пропорциональнос­ти, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединя­ющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока — 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока 1 А за 1 с.

Заряд в 1 Кл очень велик. Сила взаимодействия двух точечных зарядов по 1 Кл каждый, расположенных на расстоянии 1 км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой 1 т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в 1 А — вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент k в законе Кулона при его записи в СИ выражается в Н · м 2 /Кл 2 . Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

k = 9 · 10 9 Н·м 2 /Кл 2 .

Часто его записывают в виде , где ɛ =8,85 · 10 — 12 Kл 2 H·м 2 — электрическая постоянная. В среде с диэлектрической проницаемостью ɛ закон Кулона имеет вид:

.

Два рода электрических зарядов

Впервые подобные эффекты были обнаружены с янтарем, потому и были названы электрическими от греческого слова «электрон» – янтарь. И способности тел притягивать другие предметы после соприкосновения, а натирание – это лишь способ увеличить площадь соприкосновения, назвали электризацией или приданием телу электрического заряда. Опытным путем установили, что существует два рода электрических зарядов. Если натереть стеклянную и эбонитовую палочки, то они будут притягиваться между собой. А две одинаковые – отталкиваться. И это происходит не потому, что они не нравятся друг другу, а потому, что у них разные электрические заряды. Электрический заряд стеклянной палочки условились называть положительным, а эбонитовой – отрицательным. Обозначаются они, соответственно, знаками «+» и «-». Опять-таки, эти названия взяты не в смысле того, то один вид заряда хороший, а второй плохой. Имеется в виду, что они противоположны друг другу.

В наше время широко используют легко электризующиеся предметы – пластмассы, синтетические волокна, нефтепродукты. При трении таких веществ возникает электрический заряд, который иногда бывает как минимум неприятен, как максимум он может быть вреден. В промышленности с ними борются специальными средствами. В быту же самый простой способ избавиться от электризации – это смочить наэлектризованную поверхность. Если воды под рукой нет, то поможет прикосновение к металлу или земле. Эти тела снимут электризацию. А чтобы вообще не ощущать на себе эти неприятные эффекты рекомендуется пользоваться антистатиками.

Электроотрицательность

Электроотрицательность – это способность атома оттягивать на себя электроны с внешнего электронного слоя.

Да-да, ЕГЭ вы сдали хорошо – электроотрицательность увеличивается слева направо и сверху вниз, но почему? Выделим две причины, но для второй нам потребуется немного физики. Ну все, ты закрываешь статью и говоришь: “Какая физика?”

  1. Чем меньше электронов нужно принять для завершения слоя, тем проще их присоединить, так как они будут меньше отталкивать друг друга. Одноименные заряды отталкиваются. Зачем я это написал, ты ведь и так это знаешь…
  1. Сила притяжения электрона к ядру и радиус атома. Радиус атома в одном периоде плюс-минус одинаковый, но вот сила притяжения электрона к ядру слева направо увеличивается. Мы построим небольшую модельку. Пусть она и не совсем верная, но даст понимание вещей.  

Так, начнем с закона Кулона – он показывает силу взаимодействия между двумя электрическими зарядами. Наши заряды разноименные. Атомный остов – положительный, а электрон – отрицательный. Значит они притягиваются друг к другу.   

Закон Кулона

Сразу скажу, что ничего считать мы не будем. Коэффициент – k нас не интересует. Нам просто нужно понять, что чем больше q1 и q2, тем больше сила притяжения между зарядами. Радиус, как я писал до этого, примерно одинаковый в одном периоде. Теперь мы можем сравнить электроотрицательность атомов второго периода с помощью небольшого рисунка. Для этого мы предположим, что электроны находятся примерно на одном расстоянии атомного остова.

Электроотрицательность и закон Кулона

Получается, что q1 – это заряд атомного остова, а q2 – заряд электрона, который всегда одинаковый. Вот мы и нашли легкую зависимость – чем больше заряд атомного остова, тем с большей силой он притягивает электрон, и тем больше электроотрицательность. У кислорода заряд ядерного остова 6, а у азота только 5. Самый большой заряд у фтора – 7. С увеличением периода возрастает радиус атома – электроотрицательность становится меньше. Получается, что максимальная электроотрицательность у элементов второго периода и растет она слева направо, так как увеличивается заряд атомного остова.. Хоть мы это и знали, но прикольно же понять почему такое происходит?