Разъединители

Содержание

Выключатели нагрузки

Что такое выключатели нагрузки?

Выключатель нагрузки представляет собой трехполюсный коммутационный аппарат переменного тока для напряжения свыше 1 кВ, рассчитанный на отключение рабочего тока, и снабженный приводом для неавтоматического или автоматического управления.

Выключатели нагрузки не предназначены для отключения тока короткого замыкания, но их включающая способность соответствует электродинамической стойкости при коротких замыканиях. В распределительных сетях 6-10 кВ, выключателями нагрузки часто называют выключатели с отключающей способностью меньше 20 кА.

Выключатель нагрузки — высоковольтный коммутационный аппарат, занимающий по уровню допускаемых коммутационных токов промежуточное положение между разъединителем (коммутации под нагрузкой запрещены, как исключение допускается включение на холостой ход трансформаторов и линий) и выключателем (масляным,вакуумным, воздушным, электромагнитным, элегазовым) который способен отключать без повреждения как номинальные нагрузочные токи так и сверхтоки при аварийных режимах. Выключатель нагрузки допускает коммутацию номинального тока, но не рассчитан на разрыв токов при к.з. Отключение сверхтоков в таких выключателях осуществляется специальными предохранителями.

Привод выключателей нагрузки

Привод выключателей нагрузок может быть мускульным непосредственного включения и отключения от предварительно натянутой пружины. Иногда применяется электропривод включения и соленоид дистанционного отключения.

Применение

Выключатели нагрузки устанавливаются в распредустройствах и подстанциях 6-10 кВ и допускают коммутацию до нескольких МВА, в зависимости от конструкции и номинального тока.

Выключатели нагрузки применяют в присоединениях силовых трансформаторов на стороне высшего напряжения (6-10 кВ) вместо силовых выключателей, если это возможно по условиям работы электроустановки. Поскольку они не рассчитаны на отключение тока короткого замыкания, функции автоматического отключения трансформаторов в случае их повреждения возлагают на плавкие предохранители либо на выключатели, принадлежащие предшествующим звеньям системы, например на линейные выключатели, расположенные ближе к источнику энергии.

В распределительных сетях наиболее распространены конструкции выключателей нагрузки (ВНР, ВНА, ВНБ) с гасительными устройствами газогенерирующего типа.

Преимущества

  • Простота в изготовлении и эксплуатации;
  • Значительно меньшая стоимость по сравнению с другими выключателями — в несколько раз (особенно у автогазовых);
  • Возможность отключения и включения номинальных токов нагрузок;
  • Наличие дешёвой защиты от сверхтоков в виде предохранителей. обычно заполненных кварцевым песком (типа ПК, ПКТ);
  • Наличие видимого разрыва между контактами, что исключает установку дополнительного разъединителя (видимый разрыв необходим для безопасности работ на отходящей линии).

Особенности выбора

Ввиду наличия высокого спроса на такой вид выключателей, их производство налажено огромным количеством независимых компаний. Это порождает различие конструкций, технических характеристик, а значит, вынуждает использовать определенные критерии выбора.

Для подбора правильного исполнительного механизма необходимо точно определить такие показатели (критерии):

  • Характеристики оборудования,
  • Номиналы напряжения, мощности, сопротивления,
  • Значения токов отключения, динамической устойчивости,
  • Номинал теплового импульса сети,
  • Принцип работы бортового микропроцессора,
  • Входные, выходные значения сигнала,
  • Мощность дуги.

Основные параметры разъединителей.

Основными электрическими параметрами разъединителя являются: номинальное напряжение, номинальный ток и токи устойчивости, то есть токи, определяющие термическую и электродинамическую устойчивость разъединителя при прохождении по его токоведущим частям токов КЗ.
Токоведущие части во время работы разъединителя находятся под напряжением как относительно земли, так и относительно токоведущих частей соседних полюсов (или фаз). Поэтому они должны быть надежно отделены от земли и от токоведущих частей других полюсов каким-либо изоляционным материалом, например воздухом, фарфором. Расстояние между токоведущими частями и от этих частей до земли определяется напряжением, при котором аппарат рассчитан на длительную работу. Это напряжение называется номинальным.
Разъединители должны надежно работать при напряжении, на 10- 15% превышающем номинальное и называемом наибольшим (максимальным) рабочим напряжением.
Кроме того, изоляция разъединителей должна выдерживать коммутационные перенапряжения заданной кратности (под кратностью понимается отношение действующего значения коммутационного перенапряжения к действующему значению наибольшего фазного напряжения сети), а также заданные импульсные воздействия, ограниченные соответствующими разрядниками.
Каждый разъединитель рассчитывается на определённый, называемый номинальным, ток, при котором он может длительно работать.
При выборе размеров и конструкции элементов токоведущей системы учитывается, с одной стороны, необходимость выбора возможно меньших поперечных сечений и размеров токоведущих и контактных частей с целью экономии металлов, а с другой — необходимость ограничения температуры нагрева токоведущих частей во избежание порчи как их самих (отжиг, окисление контактов), таки окружающих их изоляционных материалов. Стандартом установлены нормы максимально допустимого нагрева токоведущих частей разъединителей.
При прохождении токов короткого замыкания по токоведущим частям разъединителя последние вместе с поддерживающими их изоляционными деталями подвергаются значительным термическим и электродинамическим воздействиям. Разъединитель должен выдерживать воздействия токов КЗ без разрушений и последствий, препятствующих его дальнейшей эксплуатации. Эта способность разъединителя называется устойчивостью при сквозных токах КЗ, так как в данном случае токи КЗ проходят как бы сквозь токоведущие части разъединителя.
Устойчивость разъединителя определяется следующими величинами, нормируемыми для каждой серии и типа разъединителей:
а) амплитудой предельного сквозного тока;
б) предельным током термической стойкости;
в) временем протекания предельного тока термической стойкости.
Завод-изготовитель гарантирует предельный сквозной ток — наибольший начальный ток КЗ, который разъединитель выдерживает
без повреждений. Предельный сквозной ток определяется его амплитудой и начальным эффективным значением периодической составляющей (принято, что амплитуда больше эффективного значения в 2,55 раза).
Для оценки способности разъединителя выдерживать термическое действие тока (термической стойкости) необходимо знать не только предельно допустимое значение тока, но и время его прохождения. При КЗ это время определяется уставками реле, подающих команду на отключение аварийных участков цепи, и колеблется в пределах от десятых долей до нескольких секунд.
Завод-изготовитель устанавливает предельный ток термической стойкости — наибольшее среднеквадратичное значение гока за время, соответствующее термическому эффекту тока КЗ, выдерживаемого разъединителем в течение этого нее времени без нагрева токоведущих частей до температур, превышающих допустимые при токах КЗ, и без повреждений.
Предельный ток термической стойкости не должен превосходить начальное эффективное значение периодической составляющей предельного сквозного тока.
В каталогах обычно указывается десятисекундный ток термической устойчивости, т.е. максимальное эффективное значение тока КЗ, которое выдерживается разъединителем в течение 10 с без повреждений или перегрева деталей, препятствующих его дальнейшей работе.

Отделители

Что такое отделитель?

Отделитель — высоковольтный аппарат, предназначенный для автоматического отключения повреждённых участков цепи в бестоковую паузу АПВ, поскольку его конструкция не рассчитана на гашение электрической дуги. Устройство отделителя такое же как и разъединителя. Отличие от последнего в том, что отделитель в комбинации с короткозамыкателем создаёт систему отделитель-короткозамыкатель которая представляет альтернативу высоковольтному выключателю.

Отделитель представляет собой разъединитель, который быстро отключает обесточенную цепь после подачи команды на его привод. Если в обычном разъединителе скорость отключения очень мала, то в отделителе процесс отключения длится 0,5-1,0 с. Отделитель отсоединяет поврежденные участки электрической цепи после отключения защитного выключателя. Выключатель срабатывает от искусственного короткого замыкания, создаваемого короткозамыкателем.

Отделители представляют собой двухколонковый разъединитель с ножами заземления (ОДЗ); одним ОДЗ-1А, ОДЗ-1Б, двумя ОДЗ-2 или без них (ОД), управляемый приводом ШПО (привод отделителя в шкафу). До 110 кВ включительно три полюса отделителя соединяются в общий трехполюсный аппарат и управляются одним приводом ШПО.

Отделители на 220 кВ выполняются в виде трех отдельных полюсов, каждый из которых управляется самостоятельным приводом.

Отключение отделителя происходит автоматически под действием заведенных пружин при срабатывании блокирующего реле или отключающего электромагнита, освобождающих механизм свободного расцепления привода. Включение отделителя производится вручную.

Операции, производимые отделителями

Отделителями допускаются операции отключения и включения:

  • трансформаторов напряжения, зарядного тока шин и подстанционного оборудования всех напряжений (кроме конденсаторных батарей);
  • параллельных ветвей, находящихся под током нагрузки, если разъединители этих ветвей шунтированы другими включенными разъединителями или выключателями;
  • намагничивающих токов силовых трансформаторов и зарядных токов воздушных и кабельных линий;
  • нейтралей трансформаторов и дугогасящих катушек при отсутствии в сети замыкания фазы на землю.

Принцип действия отделителей

Обычно отделитель представляет контактную систему рубящего типа без дугогашения и снабжённого пружинно — моторным приводом. В нормальном режиме электродвигателем осуществляется натяжение пружины и постановку механизма на защёлку. При подаче сигнала защелка освобождается специальным расцепителем электромагнитного действия и под действием натянутой пружины отделитель размыкает цепь. Такой принцип (пружинное отключение) необходим для энергонезависимости срабатывания отделителя (для надёжной его работы). Необходимо также отметить обязательную блокировку отключения отделителя под током.

Недостатки отделителей

Низкая надёжность — поскольку отделители располагаются в основном в ОРУ, то осадки могут привести к отказу срабатывания отделителя.

1.4. Блокировка разъединителей и выключателей

Отключение разъединителя при прохождении через него номинального тока ведет к тяжелой аварии, возможно поражение людей. Образующаяся дуга очень подвижна, быстро удлиняется, что ведет к перемыканию полюсов и возникновению КЗ. Во избежание таких последствий разъединители блокируются с выключателями с помощью механических, механических замковых и электромагнитных замковых блокировок. В первом случае рычаг привода разъединителя оказывается свободным только при отключенном положении механизма выключателя. При такой блокировке очень трудно связать механизм выключателя со многими приводами разъединителей. В каждом отдельном случае приходится конструировать свой блокирующий механизм применительно к конструкции распредустройства. В силу этого подобная блокировка применяется редко. При механической замковой блокировке на выключателе и связанном с ним разъединителе установлены специальные замки, которые могут быть открыты специальным ключом. Ключ находится в замке, установленном на выключателе. Его можно вынуть из замка только при отключенном состоянии выключателя. Разъединитель может включаться и выключаться только в том случае, когда ключ находится в его замке. Операции с другими разъединителями при этом невозможны, так как отсутствует связь приводов выключателя и разъединителей. Более совершенна электромагнитная замковая блокировка, рис. 1.10. Для операции с разъединителем ключ в виде электромагнита (рис. 1.10.а) должен быть вставлен в замок (рис. 1.10.6). Концы катушки 2 электромагнита выведены на штыревые контакты 3. Если выключатель, связанный с данным разъединителем, отключен, то через его размыкающие блок-контакты и гнезда 4 подается напряжение на катушку 2. При нажатии на кольцо 1 якорь 5 опускается и под действием электромагнитной силы сцепляется с запирающим плунжером 6. В результате деталь 8 привода разъединителя будет освобождена, а штифты 7 войдут в паз А ключа, не допуская его снятия с замка. Для блокировки всех разъединителей достаточно одного ключа на все распределительное устройство.

Рис. 1.10. Электромагнитная блокировка с ключом

Для внутренней установки

ИСПОЛЬЗУЮТСЯ:

  • в целях визуализации подключения и отключения, и реального разрыва предварительно обесточенных участков электрической цепи, для безопасного ремонта оборудования вмонтированного в сеть линий электропередачи;
  • для разрыва электрических цепей работающих под небольшим напряжением, где исключена возможность возникновения разрядной дуги между контактными ножами;
  • для заземления предварительно отключенных участков, при использовании стационарных заземлителей.

Устройства рассчитаны для работы в сетях переменного тока частотой 50 и 60 Гц напряжением 6 и 10 кВ. ОДНОПОЛЮСНЫЕ — типа РВО, РВК, РВР, РВП Р

— разъединитель;В — для внутренней установки;О — однополюсный;Р — вертикально-рубящего типа;К — токоведущая система коробчатого сечения;П — поступательное движение главных ножей Выпускаются на токи до 600 А. Числа в наименовании означают напряжение (кВ) и ток (А). Нож поворачивается на угол до 100 и в отключенном положении удерживается только собственным весом. Угол поворота ножа фиксируется ограничителем. Для этой же серии на 1000 А ради уменьшения усилий выдергивания ножа введен промежуточный вал.

Однополюсные
Марка Стойкость, кА Размеры, мм Масса, кг
Электродинамическая (амплитуда) Термическая Длина Ширина Высота
РВO-10/400 41 16 468 72 156/429 5,9
РВО-10/630 52 20 468 72 160/433 6,3
РВ О-10/1000 100 40 480 92 163/440 11
РЛВОМ-10/1000 100 40 486 380 199/460 14…17
РВ К-10/2000 85 31,5 560 350 280/500 26
РВР(З)-10/2500 125 45 1050 470 318/545 65
РВР(З)-10/4000 200 71 610/1050 470 318/545 65
РВР(3)-20/6300 260 100 910/1400 700 680/1050 222
РВР(3)-20/8000 320 125 1400 700 680/1050 238
РВП(3)-20/12500 490 180 1600 820 857 625
Р В К-3 5/2000 115 45 980 700 550/1010 74

ТРЕХПОЛЮСНЫЕ — типа РВ, РВЗ, РВФ и РВФЗ представляют собой три токопровода, смонтированных на одной раме с общим валом, тягами и приводным рычагом.

РВФЗ — условное обозначение: Ф — фигурный; З — с заземляющими ножами.

Токопровод состоит из двух неподвижных контактов и соединяющих их подвижного ножа. Нож удерживается во включенном положении за счет тяг и вала. Вращая вал посредством привода типа ПР-П (переднего присоединения) или типа ПР (10 — заднего присоединения; 11 — переднего присоединения), производят включение или отключение подвижных ножей. Приборы устанавливаются в сетях переменного тока частоты 50 Гц напряжением 6 и 10 кВ.

Марка Вариант расположения заземляющих ножей Вариант расположения проходных изоляторов Габаритные размеры, мм, не более Масса, кг, не более
L H B
РВ 10/1000 У3 I вар. – без проходных изоляторов. 654 199 472 28
РВ 10/630 У3 182 464 25
РВЗ 10/1000 I У3 I вар. – заземляющие ножи со стороны разъемных контактов рвз I вар. – без проходных изоляторов. 704 197 622 30
РВЗ 10/630 I У3 186 589 28
РВЗ 10/1000 II У3 II вар. – зазем- ляющие ножи со стороны шарнирных контактов I вар. – без проходных изоляторов. 197 622 30
РВЗ 10/630 II У3 186 589 28
РВЗ 10/1000 III У3 III вар. – зазем- ляющие ножи с двух сторон I вар. – без проходных изоляторов. 744 197 745 33
РВЗ 10/630 III У3 186 713 31
РВФ 10/1000 II У3 II вар. – проходные изоляторы со стороны шарнирных контактов. 722 202 437 34
РВФ 10/630 II У3 32
РВФ 10/1000 III У3 III вар. – проходные изоляторы со стороны разъемных контактов. 437 34
РВФ 10/630 III У3 32
РВФ 10/1000 IV У3 IV вар. – проходные изоляторы с двух сторон 406 39
РВФ 10/630 IV У3 37
Р В Ф З 10/1000 I-II У3 I вар. – заземляющие ножи со стороны разъемных контактов II вар. – проходные изоляторы со стороны шарнирных контактов. 199 649 39
Р В Ф З 10/630 I-II У3 35
Р В Ф З 10/1000 II-II У3 II вар. – заземляющие ножи со стороны шарнирных контактов II вар. – проходные изоляторы со стороны шарнирных контактов. 39
Р В Ф З 10/630 II-II У3 35

Вариант расположения заземляющих ножей: I — со стороны разъемных контактов; II — со стороны шарнирных контактов; III — c двух сторон. Вариант расположения проходных изоляторов: II — со стороны шарнирных контактов; III — со стороны разъемных контактов; IV — с двух сторон

Назначение и где применяются

Использование разъединителей в энергетике для разрывов цепей продиктовано, в первую очередь, соображениями безопасности. Их применяют для выполнения подключений контактных сетей для запитки током от питающих линий. Эти механизмы также служат для безопасного изменения схем соединений участков цепей.

На рисунке 1 изображён участок линии с высоковольтными разъединяющими устройствами.


Рисунок 1. Участок линии с высоковольтными разъединителями

Рассматриваемые коммутационные механизмы обладают двумя важными качествами, позволяющими контролировать процесс коммутации:

  1. Возможностью визуального наблюдения за положением подвижных контактов в местах разъединения.
  2. Отсутствием механизма, допускающего вероятность свободного (произвольного) расцепления. Применение ручных приводов гарантирует выполнение специалистом запланированной операции по обесточиванию или подключению электрической сети в нужный момент.

Такая конструкция разъединителя позволяет обслуживающему персоналу быстро оценивать состояние рабочих частей механизма коммутации перед включениями, а также визуально контролировать положение контактных ножей в конкретной ситуации. Разъединители всегда работают с использованием высоковольтных выключателей, как на открытом пространстве, так и в закрытых помещениях.

Время горения дуги сокращает наличие контактных пружин. Исключение составляет класс выключателей нагрузки, в конструкции которых предусмотрены автогазовые дугогасительные устройства – ВНА. Такие выключатели могут использоваться в качестве высоковольтных разъединителей, которые применяются для коммутации участков цепей до 10 кВ. (Рис. 2).


Рисунок 2. Высоковольтный выключатель нагрузки ВНА

Основные области применения

Разъединители высоковольтных цепей используются во многих областях. С их помощью обслуживают:

  • сети комплектных трансформаторных подстанций, в том числе и передвижные КТП;
  • семейство комплектных распределительных устройств КРУ и КРУН;
  • конденсаторные установки;
  • камеры сборные, предназначенные для одностороннего обслуживания;
  • ГРЩ, шкафы ввода и распределения и другое оборудование.

Способность трёхполюсных и однополюсных разъединителей коммутировать зарядные токи воздушных проводов и кабельных линий, включать и отключать индукционные токи силовых трансформаторов, отсекать уравнительные токи, разъединять цепи с небольшими токами нагрузки делает эти приборы незаменимыми в различных энергосистемах.

Сферы применения высоковольтных разъединителей регламентируют ПТЭЭП. Правила разрешают их использование в сетях на 6 – 10 кВ, для включения либо отключения нагрузочных токов до 15 А или до 70 А уравнительных.

Основные виды

По маркировке рубильника в щитке можно узнать его тип, устройство и потенциальные возможности.

Установлена такая расшифровка:

  • Р — рубильник;
  • П — переключатель;
  • П — переднее присоединение проводов;
  • Б — боковая рукоятка;
  • Ц — центральный рычаг;
  • цифры — первые (1-3) число полюсов, (4-6) сила тока (1 – 100 А, 2 – 250 А, 4 – 400 А и 6 – 600 А).


Различные типы рубильников классифицируются по таким направлениям:

  • Сила тока (100-1000 А).
  • Количество полюсов (1-3).
  • Вид тока (постоянный, переменный).
  • Способ управления (сбоку, по центру).
  • Способ присоединения проводов (переднее, заднее).
  • Направления тока (1-3).
  • Присутствие предохранителя в ноже.
  • Наличие системы гашения дуги.
  • Установка вспомогательных контактов.
  • Степень защиты (открытое и закрытое исполнение).
  • Температурный режим эксплуатации (жаркий, холодный, умеренный).

Устройство разъеденителей

Основными узлами разъединителя являются (рисунки 1-4):

  • Рама Р, на которой собраны все остальные узлы разъединителя.
  • Изоляторы (опорные ОИ или проходные ПИ), неподвижно закрепленные на раме; изоляторы поворотные ПвИ, поворачивающиеся вокруг своей оси при включении и отключении разъединителя на тот или иной угол и устанавливаемые на подпятниках Пд.
  • Контактная система, состоящая из:
    • одного или двух неподвижных контактов НК;
    • подвижного контакта ПК, называемого ножом Н разъединителя;
    • устройства для передачи тока с подвижного контакта ПК (или ножа Н) на неподвижный контакт НК, которое представляет собой один из видов скользящих контактов или же гибкую связь ГС;
    • рычажного механизма РМ с изоляционной тягой ИТ, посредством которого осуществляется перемещение подвижного контакта (ножа Н) при включении и отключении разъединителя;
    • ножей заземления НЗ и контактов НКЗ, в которые врубаются ножи заземления; контакты НКЗ крепятся либо на неподвижных контактах НК либо на ножах Н основной контактной системы.

Подводящие шины (провода) присоединяются либо к выводным концам ВК, которые являются самостоятельными деталями, или же объединены с неподвижными контактами.

Разъединитель может не иметь ножей заземления НЗ, иметь ножи заземления с одной стороны или же с двух сторон. Ножи заземления механически сблокированы с ножами Н основной контактной системы таким образом, чтобы при включенных ножах Н нельзя было включить ножи заземления и наоборот.

Повышение механической прочности опорных изоляторов достигается установкой параллельно двух изоляторов.

2.1. Разъединители вертикально-поворотного (рубящего) типа.

В этих разъединителях (рисунок 1,2) нож Н при включении и отключении поворачивается в плоскости, параллельной осям поддерживающих изоляторов (опорных или проходных) данного полюса.
Разъединитель может быть выполнен на двух опорных изоляторах, на одном опорном изоляторе и одном проходном или на двух проходных.

Рисунок 1. Разъединитель вертикально-поворотного типа внутренней установки.

Рисунок 2. Разъединитель вертикально-поворотного типа наружной установки.

Отключение и включение разъединителей осуществляется приводом.

При номинальном токе более 2000А нож разъединителя состоит из четырех и более частей, имеющих коробчатое сечение. В этом случае ножи заземления НЗ при включенном положении могут прижиматься к пластине НКЗ, закрепленной под неподвижным контактом НК, или входить внутрь неподвижного контакта, врубаясь в контакты НКЗ.

В разъединителях наружной установки передача движения ножу Н осуществляется посредством изоляционной тяги, совершающей сложное движение, или посредством изолятора ПвИ, совершающего вращательное движение (рисунок 2).

Разъединители на напряжение до 10 кВ могут не иметь льдоломающих устройств. В разъединителе на рисунке 2 ломание льда достигается сложным поворотом ножа Н: сначала нож Н поворачивается на угол 90 ° вокруг своей продольной оси, разрушая лед между ними и неподвижным контактом НК, а затем уже поднимается вверх.

2.2. Разъединители горизонтально-поворотного типа.

В этих разъединителях (рисунок 3,4) нож Н при включении и отключении поворачивается в плоскости, перпендикулярной осям поддерживающих изоляторов.

Рисунок 3. Разъединитель горизонтально-поворотного типа.

Рисунок 4. Разъединитель горизонтально-поворотного типа SOHK 7-10.

Разъединитель на рисунке 3 имеет один поворотный изолятор, на котором жестко закреплен нож Н, и один неподвижный изолятор ОИ, который служит для усиления. Разъединители также могут иметь два поворотных изолятора, на которых закреплено по ножу; два опорных и один поворотный изолятор.

Устранение обледенения контактов разъединителя в отключенном положении может быть достигнуто установкой специальных неподвижных кожухов, которые закрывают контактные части, находящиеся на концах ножа. Защита контактов разъединителя во включенном положении может быть достигнута применением подвижных кожухов.

2.3. Разъединители качающегося типа.

В этих разъединителях подвижный контакт ПК перемещается совместно с изолятором КИ, который поворачивается (качается) в плоскости, параллельно осям поддерживающих изоляторов – см. рисунок 5.

Рисунок 5. Разъединитель качающегося типа.

Разъединители с поступательным движением ножа, опускающегося типа и специальных конструкций в настоящей инструкции не рассматриваются, так как они на подстанциях данных электрических сетей не эксплуатируются.

  • Следующая страница
  • Предыдущая страница

6590

Закладки

Преимущества разъединителей РЛК в качестве альтернативы РЛНД

Для устранения недостатков, присущих разъединителям РЛНД был разработан принципиально новый тип разъединителей — разъединитель линейный качающегося типа РЛК. Он исключает все известные недостатки разъединителей РЛНД, является практически необслуживаемым и надежным в эксплуатации.

Преимущества разъединителей серии РЛК-10 кВ:

  1. Работоспособность при сильных загрязнениях — полимерные изоляторы с трекингостойким покрытием имеют высокие разрядные характеристики в загрязненном и увлажненном состоянии
  2. Надежная работа разъединителя в сейсмичных регионах при сейсмических воздействиях до 9 баллов по шкале MSK-64;
  3. На концах главных ножей установлены противогололедные кожухи, надежно защищающие разъемный контакт от гололеда при толщине льда до 22 мм;
  4. Монтаж без сварки – только сборочными единицами.

Главный токоведущий контур разъединителя выполнен из луженных медных деталей. Разъединитель надежно защищен от коррозии — основные части разъединителя выполнены имеют стойкое антикоррозионное покрытие (порошковая окраска или термодиффузионный цинк). Разъединитель допускает двигательное управление главными ножами с помощью двигательного привода ПДГ-9УХЛ1 с дистанционным управлением. 

УЗНАТЬ ЦЕНУ

Отправьте запрос в любой форме на электронную почту com@tmtrade.ru. В течение дня мы подготовим для вас предложение со стоимостью и сроком поставки. Или просто позвоните нам по телефону +7 910-973-00-28

Отправить запрос…

Преимущества и недостатки


Реверсивный рубильник ABB OT63F3C 63A

Реверсивные выключатели-разъединители востребованы во всех отраслях хозяйственной деятельности.

Популярность изделий основывается на следующих достоинствах:

  • Прочность и надежность. Устройства устойчивы механическим нагрузкам и вибрации.
  • Длительный срок эксплуатации. Высокая износостойкость контактов и шарнирных соединений обеспечивает долговечность приборов даже при частом использовании. Ресурс устройства составляет 3000-5000 отключений.
  • Безопасность. Отсутствует риск поражения человека током, взрыва или возгорания.
  • Минимум затрат на техническое обслуживание. Достаточно периодической смазки шарнира.
  • Широкий температурный диапазон эксплуатации.
  • Экологическая чистота. Устройства не выделяют вредных веществ в окружающую среду.
  • Компактность. Небольшие размеры дают возможность устанавливать несколько изделий в одном щитке.
  • Доступная стоимость.
  • Простота и быстрота монтажа.

Выключатели нагрузки

Выключатель нагрузки типа ВН-16 (без предохранителей) и ВНП-16 (с предохранителями в комплекте) представляет собой маломощный высоковольтный аппарат, предназначенный для подключения и отключения электрических цепей, которые находятся под нагрузкой

Важно помнить, что он не рассчитан на отключение токов короткого замыкания. Эта задача выполняется при установке выключателей нагрузки с предохранителями типа ПК-6 или ПК-10. Выключатель нагрузки представляет собой обычный трехполюсный разъединитель с пристроенным дугогаситеьным устройством, способным гасить маломощную дугу тока нагрузки в сетях 6 – 10 кВ

Данные выключатели допускают нечастые отключения токов до 800 А при напряжении 6 кВ или до 400 А при напряжении в 10 кВ

Выключатель нагрузки представляет собой обычный трехполюсный разъединитель с пристроенным дугогаситеьным устройством, способным гасить маломощную дугу тока нагрузки в сетях 6 – 10 кВ. Данные выключатели допускают нечастые отключения токов до 800 А при напряжении 6 кВ или до 400 А при напряжении в 10 кВ.

Выключатель ВН-16 устанавливаться на подстанциях городского типа для отключения под нагрузкой кабельных линий и силовых трансформаторов. Довольно часто данные выключатели оборудуются включающими и отключающими магнитами, что позволяет использовать их при дистанционном управлении и в схемах АВР на стороне высокого напряжения.

На рисунке ниже показан общий вид выключателя нагрузки типа ВН-16 на 10 кВ:

На раме выключателя нагрузки 1 установлены отключающие пружины 2, связанные с валом 3. На валу установлен проводной рычаг 4, к которому присоединяется тяга привода выключателя. Тяга привода и вал удерживаются защелкой привода в рабочем положении и отключающие пружины при этом сжаты. При включении вал выключателя нагрузки поворачивается и поступательное вращение фарфоровых тяг 5 приводит к врубанию ножей подвижных контактов 6 в неподвижные 7. Подвижные контакты выполнены в виде двухполосных ножей. Между полосами 8 расположены дугогасительные ножи 9.

Гашению электрической дуги при отключении способствуют газы, выделяемые из органического стекла вкладышей, расположенных внутри пластмассового корпуса дугогасительной камеры 10.

Основные технические данные выключателей нагрузки ВН-16 приведены в таблице ниже:

Описание разъединителей РЛНД

Разъединители РЛНД-1-10/200 У1, РЛНД-1-10/400 У1, РЛНД-1-10/630 У1 предназначены:

  • для создания видимого разрыва электрической цепи с целью обеспечения безопасного обслуживания электротехнического оборудования;
  • для включения и отключения под напряжением обесточенных участков цепи высокого напряжения;
  • заземления отключенных участков при помощи стационарных заземлителей;
  • для отключения и включения тока холостого хода трансформаторов.

Привод ПРНЗ-10 предназначен для ручного включения и отключения главных и заземляющих ножей разъединителей.

Структура условного обозначения:

Разъединитель РЛНД-1-10-200 У1, РЛНД-1-10-400 У1, РЛНД-1-10-630 У1 Разъединитель РЛНД-10-200 У1, РЛНД-10-400 У1, РЛНД-10-630 У1 Разъединитель РЛНД-2-10-200 У1, РЛНД-2-10-400 У1, РЛНД-2-10-630 У1 Разъединитель РЛНД-1-10Б-200 У1, РЛНД-1-10Б-400 У1, РЛНД-1-10-630 У1 Разъединитель РЛНДМ-1-10-200 У1, РЛНДМ-1-10-400 У1, РЛНДМ-1-10-630 У1

РЛНД — разъединитель линейный наружной установки, двухколонковыйМ — медные ножи1, 2 — количество заземляющих ножей 10 — номинальное напряжение, кВБ — усиленное исполнение изоляции200, 400, 630 — номинальный ток, АУ1 — климатическое исполнение и категория размещения по ГОСТ 15150-69

Условия эксплуатации разъединителей РЛНД-1-10-200 У1, РЛНД-1-10-400 У1, РЛНД-1-10-630 У1

  • Высота над уровнем моря не более 1000 м.
  • Температура окружающего воздуха от минус 60 до 40°С.
  • Скорость ветра при гололеде не более 15 м/с.
  • Скорость ветра при отсутствии гололеда не более 40 м/с.
  • Толщина корки льда до 10 мм.
  • Требования техники безопасности по ГОСТ 12.2.007.3-75.
  • Разъединители соответствуют ТУ 659 РК-000100-33-11-2000. ТУ 659 РК-000100-33-11-2000

Технические характеристики разъединителей

Основные технические данные разъединителей РЛНД-1-10-200 У1, РЛНД-1-10-400 У1, РЛНД-1-10-630 У1 приведены в таблице:

Наименование параметра Значение параметра для типов разъединителей
РЛНД-1-10-200 У1 РЛНД-1-10-400 У1 РЛНД-1-10-630 У1
Номинальное напряжение, кВ 10
Наибольшее рабочее напряжение, кВ 12
Номинальный ток, А 200 400 630
Ток электродинамической стойкости, кА 25 25 25
Ток термической стойкости, кА 10 10 10
Время протекания тока термической стойкости, с: — для главных ножей — для ножей заземления 4 1
Установленный ресурс по механической прочности, циклов ВО 10 000
Длина пути утечки внешней изоляции, см, не менее 30
Допустимое тяжение проводов, прикладываемое к неподвижным изоляторам, Н, не более 200
Масса трехполюсного разъединителя, кг: — без заземлителей — с одним заземлителем — с двумя заземлителями 30 39 – 31 40 – – 39 43

Разъединитель представляет собой двухполюсный или трёхполюсный аппарат, каждый полюс которого имеет одну неподвижную и одну подвижную колонки, с разворотом главных ножей в горизонтальной плоскости. Привод разъединителя выполнен так, что исключает возможность оперирования заземлителем, пока не отключены ножи главного контура. В корпусе привода предусмотрены отверстия для установки блок — замка. Изоляция разъединителя состоит из четырех или шести изоляторов, два или три из которых устанавливаются на рычагах, а остальные на швеллерах. На верхних фланцах изоляторов разъединителя установлена токоведущая система, выполненная в виде двух контактных ножей. Общий вид, габаритные, установочные и присоединительные размеры разъединителей приведены на рис. 1.

Обозначения: 1 — продольная тяга; 2 — рама; 3 — вал заземления; 4 — рычаг с валом; 5 — регулируемая тяга;