Емкостная проводимость
Одним из эксплуатационных показателей остается данный параметр, обозначающий емкость между проводниками и землей, а также аналогичный показатель между самими токопроводниками.
Для его определения в трехфазной линии воздушных передач применяется выражение:
Можно увидеть прямую зависимость рабочей емкости от уменьшения расстояния между кабелями и их сечения. Следовательно, для линий низкого напряжения данная величина всегда будет больше, чем для высокого.
Проводимость подобного вида в воздушных линиях одноцепной конструкции рассчитывается так:Токи емкостного происхождения существенно влияют на работу линий с рабочими характеристиками напряжения лот 110 кВ и более, а также в магистралях уложенными кабелями с идентичными параметрами выше 10 кВ.
Попытка применить именно подобный способ для самостоятельного выполнения будет весьма непростой задачей, ведь в нем применяются и различные конструктивные нюансы типа геометрических характеристик, и диэлектрическая проницаемость изоляционного слоя, и многие другие вводные. Следовательно, оптимальным решением будет информация из таблиц, составленных производителями для конкретной марки кабеля. В каталогах все данные приведены с учетом номинального напряжения для каждой модификации.
Для начала линии, когда мы имеем дело с холостым ходом, емкостный ток определяется так:
Данный показатель будет объективным только при полностью обесточенных приемниках электричества.
Большое значение обозначенная емкость в любой рассматриваемой конструкции имеет для точного выполнения предварительных расчетов для устройств компонентов защиты и элементов заземления.
Для воздушной линии действительна такая формула:
Для кабельных магистралей:
Закон Ома для цепи переменного тока
При подключении нагрузки к такому источнику следует учитывать наличие в цепи компонентов с реактивными составляющими электрического сопротивления, конденсаторов и катушек индукции. Закон Ома для цепей переменного тока действует исключительно для амплитудных и эффективных значений напряжения и тока.
Распределение фаз в цепи с активным сопротивлением
В представленной на рисунке схеме реактивные составляющие отсутствуют. Для этого случая векторы тока и напряжения совпадают по фазе. Расчеты с активным сопротивлением можно выполнять с применением рассмотренных выше формул.
Индуктивная и емкостная нагрузки
При подключении элементов с реактивными характеристиками угол между векторами составляет 90°. В схеме с индуктивностью (емкостью) ток будет отставать от напряжения по фазе либо опережать соответственно. Для расчета напряжения можно применять следующие формулы (w – циклическая частота):
- UL = I * w*L;
- UC = I/ (w*C);
- ХL = w*L;
- XC = 1/(w*C).
Для полной цепи надо учесть суммарное значение сопротивления – Z. В следующем перечне приведены методы вычислений при наличии в цепи типовых комбинаций пассивных компонентов:
- резистор и катушка индуктивности (последовательное соединение): I = U/ √(R2 + (w*L)2);
- конденсатор с емкостью С и резистор: I = U/√(R2 + (1/w*C)2);
- цепочка RLC: I = U/√(R2 + (w*L + 1/w*L)2).
Сдвиг фаз можно представить следующими выражениями:
- tg ϕ = (UL – UC)/ UR = (ХL – XC)/R;
- cos ϕ = UR/U = R/ Z.
Для расчета активной мощности (Pа) в нагрузке применяют действующие значения тока (Iд) и напряжения (Uд):
Pа = Iд * Uд * cos ϕ.
Последний множитель фактически определяет количество потребляемой электроэнергии. Остаток расходуется на обменные процессы, нагрев соединительных проводов.
К сведению. Производители трансформаторов, электродвигателей и других мощных нагрузок с выраженными реактивными характеристиками приводят значение cos ϕ в сопроводительной документации. По этому коэффициенту можно сделать правильный вывод об энергетической эффективности оборудования. Соответствующую поправку делают при расчете цепей питания, чтобы обеспечить достаточное поперечное сечение проводников для предотвращения чрезмерного повышения температуры и возникновения аварийных ситуаций.
Отдельно следует рассмотреть резонанс. Это явление сопровождается резким увеличением силы тока в цепи при совпадении частоты сигнала (wc) с частотой созданного колебательного контура (wк). В подобной ситуации не исключено повреждение компонентов схемы и проводников.
Обозначенные условия создает увеличение сопротивления в цепи, которое обеспечивается равенством реактивных составляющих:
ХL = w*L = XC = 1/(w*C).
Частоты совпадают в следующем случае (последовательное соединение):
wc = wк = 1/√(L*С).
Напряжения на конденсаторе и катушке становятся равными по амплитуде, но противоположными по фазе. Ток определяется с учетом базовых определений закона Ома:
I = U/Z = U/ √ R2 + (2π * w * L – 1/2π * w * C)2.
§ 2.9. Закон Ома для электрической цепи переменного тока
Рассмотрим теперь более общий случай электрической цепи, в которой последовательно соединены проводник с активным сопротивлением R и малой индуктивностью, катушка с большой индуктивностью L и малым активным сопротивлением и конденсатор емкостью С (рис. 2.20).
Рис. 2.20
Чему равна амплитуда силы тока в такой цепи (колебательном контуре), если на ее концах поддерживается напряжение u(t) = U sin ωt?
Мы видели, что при включении по отдельности в цепь проводника с активным сопротивлением R, конденсатора емкостью С или катушки с индуктивностью L амплитуда силы тока определяется соответственно формулами (2.6.2), (2.7.3) и (2.8.4). Амплитуды же напряжений на резисторе, катушке индуктивности и конденсаторе связаны с амплитудой силы тока так:
В цепях постоянного тока напряжение на концах цепи равно сумме напряжений на отдельных последовательно соединенных участках цепи. Однако, если измерить результирующее напряжение на контуре и напряжения на отдельных элементах цепи переменного тока, окажется, что напряжение на контуре (действующее значение) не равно сумме напряжений на отдельных элементах.
Почему это так? Дело в том, что гармонические колебания напряжения на различных участках цепи сдвинуты по фазе друг относительно друга.
Действительно, квазистационарный ток в любой момент времени одинаков во всех участках цепи. Это значит, что одинаковы амплитуды и фазы токов, протекающих по участкам с емкостным, индуктивным и активным сопротивлением. Однако только на участке с активным сопротивлением колебания напряжения и силы тока совпадают по фазе. На конденсаторе колебания напряжения отстают по фазе от колебаний силы тока на π/2 (см. § 2.7), а на катушке индуктивности колебания напряжения опережают колебания силы тока на π/2 (см. § 2.8).
Векторная диаграмма электрической цепи
Для вывода закона Ома в случае электрической цепи переменного тока, изображенной на рисунке 2.20, нужно уметь складывать мгновенные колебания напряжений, сдвинутых по фазе друг относительно друга. Проще всего выполнять сложение нескольких гармонических колебаний с помощью векторных диаграмм, о которых было рассказано в § 1.11. Векторная диаграмма электрических колебаний в цепи позволит нам определить амплитуду силы тока в зависимости от амплитуды напряжения и сдвиг фаз между силой тока и напряжением.
Так как сила тока одинакова во всех участках цепи, то построение векторной диаграммы удобно начать с вектора силы тока m. Этот вектор изобразим в виде вертикальной стрелки (рис. 2.21). Напряжение на резисторе совпадает по фазе с силой тока. Поэтому вектор mR должен совпадать по направлению с вектором m. Его модуль равен UmR = ImR.
Рис. 2.21
Колебания напряжения на катушке индуктивности опережают колебания силы тока на π/2 и соответствующий вектор и mL должен быть повернут относительно вектора m на π/2. Его модуль равен UmL = IωL. Если считать, что положительному сдвигу фаз соответствует поворот вектора против часовой стрелки, то вектор mL следует повернуть налево на π/2. (Можно было бы, конечно, поступить и наоборот.)
Вектор напряжения на конденсаторе mC отстает по фазе от вектора m на π/2 и поэтому повернут на этот угол относительно вектора m направо. Его модуль равен .
Для нахождения вектора суммарного напряжения m нужно сложить три вектора: mR, mL и mC. Вначале удобнее сложить два вектора mL и mC (рис. 2.22).
Рис. 2.22
Модуль этой суммы равен , если . Именно такой случай изображен на рисунке. После этого, сложив вектор mL + mC с вектором mR, получим вектор m, характеризующий колебания напряжения в сети.
По теореме Пифагора (из треугольника АОВ):
или
Из равенства (2.9.2) можно найти амплитуду силы тока в цепи:
Это и есть закон Ома для электрической цепи переменного тока, изображенной на рисунке 2.20.
Благодаря сдвигу фаз между напряжениями на различных участках цепи полное сопротивление Z цепи (см. рис. 2.20) выражается так:
От амплитуд силы тока и напряжения можно перейти к действующим значениям этих величин. Они связаны друг с другом точно так же, как и амплитуды в формуле (2.9.3):
Мгновенное значение силы тока меняется со временем гармонически:
где φc, — разность фаз между силой тока и напряжением в сети. Она зависит от частоты со и параметров цепи R, L, С.
Сдвиг фаз между током и напряжением
Сдвиг фаз φc, между колебаниями силы тока и напряжения равен по модулю углу φ между векторами m и m (см. рис. 2.22). Как следует из этого рисунка,
Согласно рисунку 2.22, сила тока отстает от напряжения по фазе при условии . Поэтому сдвиг фаз φc = -φ и
В частных случаях цепей с активным, емкостным и индуктивным сопротивлениями из этой формулы получаются правильные значения сдвига фаз.
Аналогия с электрическим сопротивлением проводника на примере резистора
Чтобы суметь рассчитать импеданс цепи, нужно представлять, как себя ведут различные входящие в нее элементы: катушки индуктивности, резисторные и емкостные детали, с точки зрения вклада в составляющие общей резистивности цепи.
Активное сопротивление
Резистор относится к числу пассивных деталей цепи, не содержащих внутренних источников электроэнергии, при этом почти все создаваемое им противодействие приходится на активную компоненту. Реактивная составляющая если и присутствует, то настолько мала, что ею зачастую принято пренебрегать. Это связано с тем, что отношение напряжения на деталь и электротока, проходящего через нее, не зависит от их частоты. Когда к резисторной детали присоединяют источник напряжения (обозначим его U), через нее будет идти электроток значением I. Если к концам радиодетали подсоединяют источник тока, равного I, между ними будет иметь место падение напряжения U.
Реактивное сопротивление
К основным компонентам электроцепей, несущим такую нагрузку, относятся дроссели (и подобные им индуктивные элементы) и конденсаторы. При достижении резонанса наблюдается наименьшее значение общего противодействия подключенных последовательно конденсатора и дросселя и наибольшее – включенных параллельно.
Индуктивная нагрузка
Если индуктивный дроссель подключить к постоянному току, на нем будут наблюдаться следующие эффекты: резистивность будет приближаться к нулевому значению, а при пропускании электротока через катушечный элемент падение напряжения будет отсутствовать, независимо от токовой величины:
R=U/I=0/I=0.
Такие цифры справедливы для идеального дросселя, на практике они все же несколько отклоняются от нуля. Если к детали будет приложен переменный ток, напряжение между катушечными выводами будет отличным от нуля.
Катушка индуктивности
Емкостная нагрузка
При включении идеального конденсаторного элемента в сеть с постоянным напряжением его резистивность будет иметь очень большую величину, стремящуюся к бесконечной. Когда к радиодетали прикладывают такое напряжение, проходящий через нее ток будет равен нулю. Если к выводам конденсатора подсоединить источник переменного напряжения, ток будет ненулевым.
Советуем изучить — Должностные обязанности, права и ответственность специалистов электротехнической службы
Детали, обладающие емкостью
Данные эффекты, наблюдаемые на емкостных радиодеталях и катушках, нельзя описывать в категориях активного противодействия в условиях константного электротока, так как последнее подразумевает стабильное, независимое от условий и не изменяющееся во времени отношение электротока и напряжения и исключает явление сдвига фаз между этими величинами. Таким образом, становится целесообразным введение для реактивных деталей характеристики, связывающей электроток и напряжение так, как это делает активное противодействие в омовском законе для константного тока.
Важно! При рассмотрении поведения катушек и конденсаторов под действием гармонических сигналов обнаруживается, что токовая сила и напряжение могут быть связаны константной величиной, которую также называют импедансом. При ее изучении применяется понятие о гармонических сигналах, учитывающее как их амплитудные характеристики, так и особенности, связанные с фазами. Такое значение импеданса можно определить как частное комплексной амплитуды, которой обладает напряжение приложенного к двухполюсному элементу сигнала, и комплексной амплитуды идущего через элемент электротока
В отношении пассивных электроцепей со стабильными показателями в устоявшемся режиме стоит сказать, что импедансный показатель у них не будет привязанным к течению времени. Если временной параметр при формульной записи не сокращается, то категория импеданса для рассматриваемого двухполюсника окажется неприменимой
Такое значение импеданса можно определить как частное комплексной амплитуды, которой обладает напряжение приложенного к двухполюсному элементу сигнала, и комплексной амплитуды идущего через элемент электротока. В отношении пассивных электроцепей со стабильными показателями в устоявшемся режиме стоит сказать, что импедансный показатель у них не будет привязанным к течению времени. Если временной параметр при формульной записи не сокращается, то категория импеданса для рассматриваемого двухполюсника окажется неприменимой.
Устройство и характеристики конденсатора
Конструкция конденсатора представляет собой две токопроводящие пластины, разделённые диэлектриком. Если приложить к пластинам напряжение от источника постоянного тока, то ток короткое время будет протекать через конденсатор, и он зарядится. На его пластинах (обкладках) накопится напряжение, равное напряжению источника. Длительность протекания тока и ёмкость его заряда зависят от площади обкладок и расстояния между ними. Ёмкость обозначается буквой С и измеряется в фарадах. Единица измерения в системе СИ – 1Ф (F). Обозначение принято в честь физика из Англии М. Фарадея.
Внимание! Ёмкость 1Ф – очень большая величина. Если рассматривать Землю как уединённый проводник в форме шара, то ёмкость составила бы около 700 мкФ
Поэтому электротехнические элементы измеряют в малых величинах: пикофарадах (пФ), нанофарадах (нФ), микрофарадах (мкФ).
Единицы измерения ёмкости
В цепях постоянного и переменного тока ёмкостной элемент ведёт себя по-разному. Если постоянный ток конденсатор через себя не пропускает, то переменному току, проходящему через него, оказывает определённое сопротивление. Это ещё одна важная характеристика конденсатора – ёмкостное сопротивление RC.
Сопротивление из разряда реактивных сопротивлений, рассчитывается по формуле:
Rс =1/6,28*f*C,
где:
- Rc – емкостное сопротивление, Ом;
- 6,28 – 2 π;
- f – частота тока, Гц;
- C – емкость данного конденсатора, Ф.
Важно! Как видно из формулы, для токов разной частоты сопротивление одного и того же элемента меняется. Чем выше частота тока, тем ниже ёмкостное сопротивление конденсатора
Различают конденсаторы постоянной и переменной ёмкости. Вторые имеют конструкцию, в результате которой изменяется расстояние между пластинами.
По типу исполнения конденсаторы постоянной ёмкости бывают:
- полярные электролитические;
- однослойные и многослойные керамические;
- высоковольтные керамические;
- полиэстеровые;
- танталовые;
- полипропиленовые конденсаторы.
Конструкция зависит от порядкового разряда ёмкости элемента, применяемого материала для пластин и диэлектрика.
Напряжение на конденсаторе в цепи синусоидального тока
Если приложенное к конденсатору напряжение не меняется во времени, то заряд q=CU на одной его обкладке и заряд –q=-Cu на другой (С-ёмкость конденсатора) неизменны и ток через конденсатор не проходит ( ). Если же напряжение на конденсаторе меняется во времени, например по синусоидальному закону
(2-34)
то по синусоидальному закону будет меняться заряд q конденсатора:
(2-35)
и конденсатор будет периодически перезаряжаться. Периодическая перезарядка конденсатора сопровождается протеканием через него синусоидального тока
(2-36)
Из сопоставления (2-34) и (2-36) видно, что ток через конденсатор опережает по фазе напряжение на конденсаторе на 90º. На векторной диаграмме вектор тока направлен по вещественной оси комплексной плоскости, а вектор напряжения на конденсаторе направлен в отрицательном направлении мнимой оси.
На рис. 2-16 изображен конденсатор емкостью С, по которому протекает синусоидальный ток .
Рис. 2-16. Конденсатор в цепи синусоидального тока
На рис. 2-17 изображена векторная диаграмма при протекании через конденсатор синусоидального тока.
Рис. 2-17. Векторная диаграмма
Таким образом, при протекании синусоидального тока через конденсатор вектор тока опережает вектор напряжения на конденсаторе на 90º.
Из выражения (2-36) запишем амплитуду тока :
(2-37)
Ясно, что выражение в знаменателе есть некоторое сопротивлению согласно закону Ома:
, (2-38)
которое называют емкостным сопротивлением конденсатора.
Проверим размерность Xc:
(2-39)
Таким образом, конденсатор оказывает переменному току сопротивление . Оно обратно пропорционально угловой частоте ω.
(2-40)
Графики мгновенных значений U,I,p приведены на рис. 2-18.
Рис. 2-18. Графики мгновенных значений тока , напряжения и
Во вторую и все чётные четверти периода мгновенная мощность р положительная, и в этой четверти периода энергия от источника передаётся конденсатору и идёт на создание электрического поля конденсатора.
В первую и все нечётные четверти периода мгновенная мощность р отрицательная, и энергия, занесённая в электрическое поле конденсатора, возвращается источнику.
Мгновенная мощность положительная, когда напряжение и ток имеют одинаковые знаки, и отрицательная – когда напряжение и ток имеют противоположные знаки.
Мгновенная мощность р равна нулю, когда либо ток , либо напряжение проходят через нуль. Это происходит каждую четверть, поэтому мгновенная мощность изменяется с двойной частотой питающей сети.
Таким образом, в конденсаторе не происходит потребление энергии от источника, а происходит накапливание энергии в электрическом поле конденсатора в чётные четверти периода и возврат накопленной энергии источнику в нечётные четверти периода.
Напомним, что элемент, не потребляющий энергию от источника, называется реактивным и обладает реактивным сопротивлением. То есть конденсатор – это тоже реактивный элемент, обладающий реактивным сопротивлением .
Диэлектрик, находящийся между обкладками конденсатора, всегда неидеален, то есть в нем всегда есть некоторые потери энергии, которые относительно малы и ими часто можно пренебречь. Если требуется учесть их в расчёте , то конденсатор заменяют схемой замещения (рис. 2-19), в которой параллельно ёмкости присоединено активное сопротивление R, потери энергии в котором имитируют потери энергии в реальном диэлектрике.
Рис. 2-19. Схема замещения реального конденсатора
На рис. 2-20 приведена векторная диаграмма для реального конденсатора.
Области проявления
Реактанс электросопротивления проявляется в емкости и индукции. Первое обуславливается наличием емкости проводниках и обмотках или включением в электрическую цепь переменного тока различных конденсаторов. Чем выше емкость потребителя и угловой частоты сигнала электротока, тем меньше емкостная характеристика.
Сопротивляемость, которую оказывает проводник переменному току и электродвижущей силе самоиндукции, называется индуктивным. Оно зависит от индуктивности потребителя. Чем выше его индуктивность и выше частота переменного электротока, тем выше индуктивное электросопротивление. Выражается оно формулой: xl = ωL, где xl — это электросопротивление индукции, L — индуктивность, а ω — угловая частота тока.
Емкостный реактанс электросопротивление проявляется, например, в конденсаторе, который накапливает электроэнергию в виде электромагнитного поля между своими обкладками. Индуктивное электросопротивление можно наблюдать в дросселе, который накапливает энергию в виде магнитного поля внутри своей обмотки.
Активностным же электросопротивлением может обладать любой резистор, линии электропередач, обмотки трансформатора или электрического двигателя.
Индукция ЭДС может наблюдаться в дросселе
Таким образом, активный резист и реактанс во многом отличаются друг от друга не только разницей по названию, но и по физическим свойствам. Первый вид превращает электроэнергию в другой вид и отдает ее в окружающую среду. Второй же — возвращает ее обратно в электросеть.
Цилиндрический КОНДЕНСАТОР
Ёмкость цилиндрического конденсатора |
Относительная диэлектрическая проницаемость |
Радиус внутренней обкладки |
Радиус внешней обкладки |
Длина цилиндрического конденсатора |
Полученные характеристики цилиндрического конденсатора |
Цилиндрический конденсатор представляет в простейшем случае две трубки разного диаметра вложенных друг в друга. разделенных диэлетриком
Иногда может получится так, что ёмкость цилиндрического конденсатора станет отрицательной величиной. Ничего страшного, это лишь говорит о том что Вы перепутали радиусы внешней и внутренней оболочки местами.
Расчет понижающего конденсатора >>
Практические измерения
Значение ёмкости конденсатора обозначается на корпусе в дробных фарадах или с помощью цветового кода. Но со временем компоненты способны потерять свои качества, поэтому для некоторых критических случаев последствия могут быть неприемлемыми. Существуют и другие обстоятельства, требующие измерений. Например, необходимость знать общую ёмкость цепи или части электрооборудования. Приборов, осуществляющих непосредственное считывание ёмкости, не существует, но значение может быть вычислено вручную или интегрированными в измерительные устройства процессорами.
Для обнаружения фактической ёмкости нередко используют осциллограф как средство измерения постоянной времени (т). Эта величина обозначает время в секундах, за которое конденсатор заряжается на 63%, и равна произведению сопротивления цепи в омах на ёмкость цепи в фарадах: т=RC. Осциллограф позволяет легко определить постоянную времени и даёт возможность с помощью расчётов найти искомую ёмкость.
Существует также немало моделей любительского и профессионального электронного измерительного оборудования, оснащённого функциями для тестирования конденсаторов. Многие цифровые мультиметры обладают возможностью определять ёмкость. Эти устройства способны контролируемо заряжать и разряжать конденсатор известным током и, анализируя нарастание результирующего напряжения, выдавать довольно точный результат. Единственный недостаток большинства таких приборов — сравнительно узкий диапазон измеряемых величин.
Вам это будет интересно Устройство и принцип действия амперметра для измерения тока
Импеданс элемента
Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе.
Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние. Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.
Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где
- Xl — индуктивность;
- Xс — ёмкость;
- R — активная составляющая.
Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.
Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:
- X > 0, в элементе проявляются индуктивные свойства;
- X = 0, в ёмкости присутствует только активная величина;
- X < 0, в элементе проявляется ёмкостное сопротивление.
Будет интересно Чем отличается пусковой конденсатор от рабочего?
Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное – с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.
Импеданс элемента.
Особенность активного и реактивного сопротивления
Если в качестве примера рассматривать микроволновую печь, электрическая энергия в ней необратимо конвертируется в тепловую, в результате чего микроволновая печь получает активное противодействие, равно как элементы, трансформирующие электрическую энергию в световую, механическую и т. д.
Активное сопротивление находится в прямой зависимости от количества полных циклов изменения электродвижущей силы (ЭДС), произошедших за одну секунду. Чем больше это количество, тем выше активное сопротивление.
https://youtube.com/watch?v=TMKBh18LKcw
Однако немало потребителей имеют индуктивные и емкостные свойства в момент прохождения сквозь них переменного тока. К ним можно отнести:
- конденсаторы;
- дроссели;
- электромагниты;
- трансформаторы.
Следует учитывать как активное, так и реактивное сопротивление, которое обусловлено присутствием в электропотребителе емкостного и индуктивного признака. Прерывая и замыкая цепь постоянного тока, проходящего по любой из обмоток, параллельно с преобразованием тока произойдет и изменение магнитного потока внутри самой обмотки, в итоге в ней появляется электродвижущая сила самоиндукции.
Аналогичная ситуация будет проявляться и в обмотке, подключенной к цепи с переменным током, с тем лишь отличием, что в этом случае ток беспрерывно меняется как по параметру, так и в направлении. Отсюда следует, что беспрерывно будет меняться параметр магнитного потока, проникающего в обмотку, в которой индуктируется электродвижущая сила самоиндукции.
Получается, что ЭДС, появляющаяся внутри проводника (обмотки), задействованного в цепи переменного тока, постоянно будет противодействовать току, препятствуя его изменению. Другими словами, ЭДС можно расценивать как вспомогательное сопротивление, которое совместно с активным сопротивлением катушки создает синергический эффект противодействия идущему через катушку переменному току.
От чего зависит активное сопротивление
Активное электросопротивление зависит от сечения проводника. Это значит, что полезным сечением при электротоке с высокой частотой будет только тонкий наружный слой проводника. Из этого исходит также то, что активностное электросопротивление только возрастает с увеличением частоты электротока переменного типа.
Для того чтобы уменьшить поверхностный эффект проводника, по которому течет электроток высокой частоты, его изготавливают трубчатым и покрывают напылением металла, хорошо проводящего электрический ток, например, серебром.
Схема косвенного метода амперметра, вольтметра и ваттметра