Расчет сетей по потерям напряжения

Симптомы снижения напряжения у потребителя

Если эти показатели не соблюдаются, конечные потребители не смогут обеспечить номинальные параметры. При снижении напряжения возникают следующие симптомы:

  • Осветительные приборы, в которых используются лампы накаливания, начинают работать (светиться) в половину накала;
  • При включении электродвигателей уменьшается пусковое усилие на валу. В результате чего двигатель не вращается, и как следствие происходит перегрев обмоток и выход из строя;
  • Некоторые электроприборы не включаются. Не хватает напряжения, а другие приборы после включения могу выходить из строя;
  • Установки, чувствительные к входному напряжению, работают нестабильно, так же могут не включаться источники света, у которых нет нити накаливания.

Передача электроэнергии производится по воздушным или кабельным сетям. Воздушные изготовлены из алюминия, а кабельные могут быть алюминиевыми или медными.

В кабелях кроме активного сопротивления имеется емкостное сопротивление. Поэтому потеря мощности зависит от длины кабеля.

Расчетная проверка сечений жил кабелей на потерю напряжения.

Сечение кабелей и проводов, выбранное из условий нагрева и согласованное с коммутационными возможностями аппаратов защиты, нужно проверять на относительную линейную потерю напряжения. 

где U — напряжение источника электрической энергии, Uном — напряжение в месте присоединения приемника. 

Допустимое отклонение напряжения на зажимах двигателей от номинального не должно превышать ±5 %, а в отдельных случаях оно может достигать +10 %. 

В осветительных сетях снижение напряжения у наиболее удаленных ламп внутреннего рабочего освещения и прожекторных установок наружного освещения не должно превышать 2,5 % номинального напряжения ламп, у ламп наружного и аварийного освещения — 5 %, а в сетях напряжением 12.,.42 В — 10 %. Большее снижение напряжения приводит к существенному уменьшению освещенности рабочих мест, вызывает снижение производительности труда и может привести к условиям, при которых зажигание газоразрядных ламп не гарантировано. Наибольшее напряжение на лампах, как правило, не должно превышать 105 % его номинального значения. 

Повышение напряжения сетей внутреннего электроснабжения выше предусмотренного нормами не допустимо, так как оно приводит к существенному увеличению расхода электрической энергии, сокращению срока службы силового и осветительного электрооборудования, а иногда к снижению качества выпускаемой продукции.

При проектировании электроснабжения и электрооборудования жилища важна величина действительной части, т.е. потеря напряжения. Проверка выбранных проводников по потере напряжения из условия обеспечения необходимых(регламентированных стандартами) уровней напряжения у самых удаленных от источника питания потребителей осуществляется следующим образом. Выполняется расчет потери напряжения (%) по формулам:-рассотрим для трех фазной сети:

Где

н – номинальное напряжение, В (380 В – симметричной трехфазной сети);

 R – активное сопротивление проводника, Ом;

Х – индуктивное сопротивление проводника, Ом;

Сos ϕ– коэффициент мощности нагрузки;

 I р max– максимальный расчетный ток нагрузки, А;

ΔU – потеря напряжения, % от номинального.

Без учета индуктивного сопротивления линии на потерю напряжения, как правило, рассчитываются:

-сети постоянного тока;

-линии сети переменного тока, для которых коэффициент мощности Cos ϕ= 1;

-сети, выполненные проводами внутри зданий или кабелями, если их сечения не превосходят табличных значений.

Индуктивным сопротивлением проводников сечением менее 50 мм2 можно пренебречь,т.е. Х

При отсутствии какой-либо другой информации величину Х можно принимать Ом/м.

Активное сопротивление проводников (Ом) определяется по одной из известных формуле,

где ρ– удельное сопротивление проводника, Ом • мм2/ м;

γ– удельная проводимость проводника, м / Ом • мм2;

S – сечение проводника, мм2;

l – длина проводника.

Значение удельного сопротивления и удельной проводимости для:

Медных проводников ρм=0,0189 Ом • мм2/ м;γм= 53 м / Ом • мм2;

-алюминиевых проводниковρа =0,0315 Ом • мм2/ м; γа = 31,7 м / Ом • мм2.

Допустимая величина падения напряжения определяется по формуле:

Где ΔU пд– предельно допустимые потери напряжения в питающей приемник цепи, %;

105-напряжение холостого хода на вторичной стороне питающего трансформатора, %

ΔU тр– падение напряжения в трансформаторе, питающем данный объект, %;

ΔU min д– минимально допустимое напряжение на зажимах электроприемника, %.

Допустимые отклонения напряжения у приемников электроэнергии смотрят в табличных данных. .Затем проверяется выполнение условия:

Для проверки проводников по потере напряжения можно также использовать таблицы удельных потерь напряжения ,которые составлены на основании данных, приведенных в Справочнике по расчету проводов и кабелей и адаптированных к действующим в настоящее время нормам и правилам. В таблицах находят удельные потери напряжения для электропроводок,воздушных и кабельных линий в зависимости от величины коэффициента мощности. Для проводов и кабелей из цветного металла эти потери выражены в процентах на 1 кВт•км в зависимости от напряжения линии. Потеря напряжения в линии при заданном сечении проводов и кабелей из цветных металлов определяется по формуле,

где М а – сумма произведений активных нагрузок на длины участков линии, кВт•км;

ΔU  м.б. – табличное значение удельной величины потери напряжения в процентах на 1 кВт•км.

Определение сечения проводов по заданной величине потери напряжения производится следующим образом. Определяется расчетное значение

ΔU мб п о ф о р м у л е :

и по соответствующей таблице подбирается сечение провода с ближайшим меньшим значением у д е л ь н о й п о т е р и н а п р я ж е н и я

Как уменьшить падение напряжения в электрической сети

При выполнении работ по прокладке кабеля сечение провода, взятое по допустимому понижению, превосходит таковую величину, выбранную по нагреву проводника.

Это приводит к удорожанию электричества для потребителя. Как уменьшить этот показатель? Ведь от него зависит итоговая цена за 1 кВт электроэнергии.

Опишем несколько способов сделать это.

  • Установить стабилизатор около нагрузки для устойчивости сети.
  • Повысить значение потенциала у начала кабеля, подключившись к отдельному трансформатору.
  • Расположить на небольшом расстоянии от потребителя блок питания или понижающий трансформатор при подключенной нагрузке 12-36 В.

Онлайн расчет потерь напряжения в кабеле

Потери напряжения в кабеле являются большой проблемой в случае длинного пути от источника питания к потребителю, а также высокой потребляемой мощности последнего. Неверно подобранные материалы для электрической линии (проводки), например, провода с очень тонкими жилами, начинают греться из-за низкой проводимости для электрического тока. Предоставленный нами калькулятор позволяет выполнить расчет потерь напряжения в кабеле онлайн:

Также давайте разберемся, откуда берутся потери и почему. Токопроводящие жилы изготавливают из меди и алюминия они, хоть и являются отличными проводниками, но все равно обладают определенным удельным сопротивлением, которое является активным. На любом резистивном элементе падает определенное количество Вольт, согласно закону Ома:

U=I*Rпров

В постоянном токе при расчетах потерь напряжения в кабеле фигурирует только активное сопротивление R. В то же время при работе с переменным током, например, в сетях 0.4 кВ, к активной величине добавляется и реактивная часть — они составляют полное сопротивление Z (Xl и Xc). Роль реактивной мощности очень важна в расчетах, так как она составляет 20 и более процентов от потребляемой мощности.

Для чего нужен такой расчет? Всё очень просто: чем больше R проводки – тем больше потерь, и тем сильнее греются провода. Давайте разберемся как их рассчитать вручную, но проще это сделать с помощью онлайн калькулятора. Формула определения сопротивления проводника выглядит так:

R=p*L/S

где:

  • p — удельное сопротивление;
  • L — длина;
  • S — площадь поперечного сечения.

Отсюда следует, что оно зависит от длины и площади поперечного сечения. Чем длиннее и тоньше проводник — тем больше R, а для его уменьшения нужны жилы с большим поперечным сечением.

Тогда в простейшем случае потери равны падению напряжения на линии:

dU=I*Rпров

А с учетом полной мощности для переменного тока:

Но первая формула справедлива только для одной из токопроводящих жил, а электричество, как известно, нельзя передавать по одному проводу. Его передают как минимум по двум, в трехфазной сети — по четырем проводам.

Чтобы упростить себе калькуляцию и сохранить драгоценное время — пользуйтесь онлайн калькулятором для проведения расчетов потерь напряжения в кабеле. Для этого вы должны ввести параметры:

  • длину;
  • площадь поперечного сечения токопроводящих жил;
  • величину потребляемого тока или мощности;
  • количество фаз;
  • температуру проводника;
  • COS Ф.

В результате в пару кликов онлайн калькулятор предоставит вам следующие данные:

  • потери;
  • сопротивление кабеля;
  • реактивная мощность;
  • напряжение на нагрузке.

Калькулятор расчета потерь напряжения

С помощью данного калькулятора можно вычислить потери напряжения (мощности) и подобрать необходимое поперечное сечения кабеля.

Для этого необходимо знать рабочее напряжение, протекающий ток и длину кабеля. Ниже приведен пример расчета.

Мощность, Вт:
Напряжение с учетом потерь, В:
Потери напряжения, В: или
Потери мощности, Вт:
Мощность с учетом потерь, Вт:

* Общая длина кабелей плюса и минуса Удельное сопротивление меди в формулах 0,0175 Ом*мм2/м (при 20 Со)

Для примера подберем сечение кабеля от солнечных батарей до контроллера на примере солнечной электростанции для дома, состоящую из следующих компонентов:

  1. Монокристаллическая солнечная батарея Suoyang SY-200WM — 4 шт.;
  2. Контроллер заряда ITracer IT6415ND — 1 шт.;
  3. Инвертор PI 2000Вт/12В (чистый синус) — 1 шт.;
  4. Гелевый аккумулятор 200Ач — 2 шт.

Итак, напряжение в точке максимальной мощности у монокристаллической солнечной батареи Suoyang SY-200WM составляет 37,2В, а ток в максимальной мощности 5,38А, именно эти значения мы будем использовать в расчетах. Но для начала нам нужно определиться, как соединить между собой солнечные батареи.

В состав нашего комплекта входит контроллер заряда Epsolar на 60А, с функцией поиска максимальной мощности (MPPT). Максимальное входное напряжение от солнечных батарей в данный контроллер составляет 150В, а выходное напряжение на аккумулятор будет составлять 12/24/36 или 48В, автоматически в зависимости от напряжения аккумулятора, который мы подключили. В нашем случае это два 12 вольтовых гелевых аккумулятора Delta 12-200, соединенных параллельно.

Имея четыре солнечные батареи SY-200 и выше описанный контроллер мы можем подключить солнечные батареи двумя способами:

1. Параллельное соединение (все четыре штуки параллельно между собой). При этом напряжение у нас останется 37,2В, а максимальный ток от солнечных батарей составит 5,38А * 4 = 21,52А

2. Последовательно – параллельное соединение (две последовательных цепочки по две штуки). При этом напряжение будет составлять 37,2В * 2=74,4В, а ток 5,38 * 2 = 10,76А.

Нужно понимать, что мощность в двух случаях будет ОДИНАКОВАЯ. Разность только в токе и напряжении — в первом случае у нас больше ток, но меньше напряжение, а во втором – наоборот. Если мы подключим все четыре солнечные батареи последовательно, то напряжение будет выше, чем допустимое максимальное входное напряжение контроллера заряда, которое составляет 150В, более того нужно учитывать температурный коэффициент и напряжение холостого хода, но сейчас не об этом.

Сечение кабеля подбирается по току, чем больше ток – тем больше сечение!

Подставим в калькулятор расчета потерь напряжения данные первого способа подключения (параллельно все четыре штуки), расстояние от солнечных батарей до контроллера примем равным 15 метров (15 плюс и 15 минус), соответственно общая длина кабеля составит 30 метров, сечение кабеля возьмем равным 6мм²:

  • Напряжение: 37,2В
  • Сечение кабеля: 6мм²
  • Длина: 30м
  • Максимальный ток: 21,52А

Получаем потери напряжения и мощности более 5% (потери напряжения: 1,88В, потери мощности: 40,45Вт).

Подставим второй способ подключения (Две последовательных цепочки по две штуки):

  • Напряжение: 74,4В
  • Сечение кабеля: 6мм²
  • Длина: 30м
  • Максимальный ток: 10,76А

Получаем куда лучший результат, благодаря увеличенному напряжению и меньшему току: потери напряжения и мощности 1,26% (потери напряжения: 0,94В, потери мощности: 10,11Вт)

Выводы: Как видно, благодаря возможности увеличения напряжения, путем последовательно – параллельного соединения солнечных батарей, нам удалось уменьшить ток и при использовании кабеля одного и того же сечения уменьшить потери в нем в 4 раза!

Как пользоваться таблицей выбора сечения?

Пользоваться таблицей 2 очень просто. Например, нужно запитать некое устройство током 10А и постоянным напряжением 12В. Длина линии — 5 м. На выходе блока питания можем установить напряжение 12,5 В, следовательно, максимальное падение — 0,5В.

В наличии — провод сечением 1,5 квадрата. Что видим из таблицы? На 5 метрах при токе 10 А потеряем 0,1167 В х 5м = 0,58 В. Вроде бы подходит, учитывая, что большинство потребителей терпит отклонение +-10%.

Но. ПрОвода ведь у нас фактически два, плюс и минус, эти два провода образуют кабель, на котором и падает напряжение питания нагрузки. И так как общая длина — 10 метров, то падение будет на самом деле 0,58+0,58=1,16 В.

Иначе говоря, при таком раскладе на выходе БП 12,5 Вольт, а на входе устройства — 11,34. Этот пример актуален для питания светодиодной ленты.

И это — не учитывая переходное сопротивление контактов и неидеальность провода («проба» меди не та, примеси, и т.п.)

Поэтому такой кусок кабеля скорее всего не подойдет, нужен провод сечением 2,5 квадрата. Он даст падение 0,7 В на линии 10 м, что приемлемо.

А если другого провода нет? Есть два пути, чтобы снизить потерю напряжения в проводах.

1. Надо размещать источник питания 12,5 В как можно ближе к нагрузке. Если брать пример выше, 5 метров нас устроит. Так всегда и делают, чтобы сэкономить на проводе.

2. Повышать выходное напряжение источника питания. Это черевато тем, что с уменьшением тока нагрузки напряжение на нагрузке может подняться до недопустимых пределов.

Например, в частном секторе на выходе трансформатора (подстанции) устанавливают 250-260 Вольт, в домах около подстанции лампочки горят как свечи. В смысле, недолго. А жители на окраине района жалуются, что напряжение нестабильное, и опускается до 150-160 Вольт. Потеря 100 Вольт! Умножив на ток, можно вычислить мощность, которая отапливает улицу, и кто за это платит? Мы, графа в квитанции «потери».

Последовательное соединение элементов цепи

Строительный словарь Диагностика электрической цепи — » Распечатать Прежде чем разобраться в том, что такое схема электрической цепи, необходимо ввести несколько определений: Параметр электрической цепи — это число, которое устанавливает зависимость тока и напряжения на каком-то участке цепи на рисунке 1a r — это сопротивление, на рисунке 1б L — это индуктивность, на рисунке 1в C — это емкость. При анализе электрической цепи рассматривают следующие режимы работы: холостого хода, номинальный, короткого замыкания и согласованный. Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром электрической цепи.

Также нужно знать, что если напряжение ниже нуля, это значит, что резисторами активного двухполюсника расходуется энергия источника, связанного по цепи, а также резерв самого прибора.

Например, контуры зануления или заземления ими не признаются, так как в обычном режиме в них нет тока. Источник тока действует по-другому. Для данной цепи запишем соотношение по второму закону Кирхгофа 1. Она целиком описывает процесс работы устройства, показывает все элементы цепи и то, как они взаимодействуют между собой.

Не все контуры считаются электрическими цепями. Работа и мощность в цепи постоянного тока.

Распечатать Прежде чем разобраться в том, что такое схема электрической цепи, необходимо ввести несколько определений: Параметр электрической цепи — это число, которое устанавливает зависимость тока и напряжения на каком-то участке цепи на рисунке 1a r — это сопротивление, на рисунке 1б L — это индуктивность, на рисунке 1в C — это емкость. Пособие для автора Рябов Сергей Раздел 9. Урок 7. ЗАКОН ОМА простыми словами с примерами

Формула сопротивления при параллельном и последовательном соединении

Течение тока в электрической цепи осуществляется по проводникам, в направлении от источника к потребителям. В большинстве подобных схем используются медные провода и электрические приемники в заданном количестве, обладающие различным сопротивлением.

В зависимости выполняемых задач, в электрических цепях используется последовательное и параллельное соединение проводников. В некоторых случаях могут быть применены оба типа соединений, тогда этот вариант будет называться смешанным.

Каждая схема имеет свои особенности и отличия, поэтому их нужно обязательно заранее учитывать при проектировании цепей, ремонте и обслуживании электрооборудования.

Последовательное соединение проводников

В электротехнике большое значение имеет последовательное и параллельное соединение проводников в электрической цепи. Среди них часто используется схема последовательного соединения проводников предполагающая такое же соединение потребителей. В этом случае включение в цепь выполняется друг за другом в порядке очередности. То есть, начало одного потребителя соединяется с концом другого при помощи проводов, без каких-либо ответвлений.

Свойства такой электрической цепи можно рассмотреть на примере участков цепи с двумя нагрузками. Силу тока, напряжение и сопротивление на каждом из них следует обозначить соответственно, как I1, U1, R1 и I2, U2, R2. В результате, получились соотношения, выражающие зависимость между величинами следующим образом: I = I1 = I2, U = U1 + U2, R = R1 + R2. Полученные данные подтверждаются практическим путем с помощью проведения измерений амперметром и вольтметром соответствующих участков.

Таким образом, последовательное соединение проводников отличается следующими индивидуальными особенностями:

  • Сила тока на всех участках цепи будет одинаковой.
  • Общее напряжение цепи составляет сумму напряжений на каждом участке.
  • Общее сопротивление включает в себя сопротивления каждого отдельного проводника.

Данные соотношения подходят для любого количества проводников, соединенных последовательно. Значение общего сопротивления всегда выше, чем сопротивление любого отдельно взятого проводника. Это связано с увеличением их общей длины при последовательном соединении, что приводит и к росту сопротивления.

Если соединить последовательно одинаковые элементы в количестве n, то получится R = n х R1, где R – общее сопротивление, R1 – сопротивление одного элемента, а n – количество элементов. Напряжение U, наоборот, делится на равные части, каждая из которых в n раз меньше общего значения. Например, если в сеть с напряжением 220 вольт последовательно включаются 10 ламп одинаковой мощности, то напряжение в любой из них составит: U1 = U/10 = 22 вольта.

Проводники, соединенные последовательно, имеют характерную отличительную особенность. Если во время работы отказал хотя-бы один из них, то течение тока прекращается во всей цепи. Наиболее ярким примером является елочная гирлянда, когда одна перегоревшая лампочка в последовательной цепи, приводит к выходу из строя всей системы. Для установления перегоревшей лампочки понадобится проверка всей гирлянды.

Параллельное соединение проводников

В электрических сетях проводники могут соединяться различными способами: последовательно, параллельно и комбинированно. Среди них параллельное соединение это такой вариант, когда проводники в начальных и конечных точках соединяются между собой. Таким образом, начала и концы нагрузок соединяются вместе, а сами нагрузки располагаются параллельно относительно друг друга. В электрической цепи могут содержаться два, три и более проводников, соединенных параллельно.

Если рассматривать последовательное и параллельное соединение, сила тока в последнем варианте может быть исследована с помощью следующей схемы. Берутся две лампы накаливания, обладающие одинаковым сопротивлением и соединенные параллельно. Для контроля к каждой лампочке подключается собственный амперметр. Кроме того, используется еще один амперметр, контролирующий общую силу тока в цепи. Проверочная схема дополняется источником питания и ключом.

После замыкания ключа нужно контролировать показания измерительных приборов. Амперметр на лампе № 1 покажет силу тока I1, а на лампе № 2 – силу тока I2. Общий амперметр показывает значение силы тока, равное сумме токов отдельно взятых, параллельно соединенных цепей: I = I1 + I2. В отличие от последовательного соединения, при перегорании одной из лампочек, другая будет нормально функционировать. Поэтому в домашних электрических сетях используется параллельное подключение приборов.

Как рассчитать потерю напряжения?

Калькулятор в режиме онлайн позволяет правильно вычислить необходимые параметры, которые в дальнейшем сократят появление различного рода неприятностей. Для самостоятельного вычисления потери электрического напряжения используют следующую формулу:

U =(P*ro+Q*xo)*L/U ном:

  • Р – это активная мощность. Её измеряют в Вт;
  • Q – реактивная мощность. Единица измерения вар;
  • ro – выступает в качестве активного сопротивления (Ом);
  • хо – реактивное сопротивление (м);
  • U ном – это номинальное напряжение (В). Оно указывается в техническом паспорте устройства.

Согласно правилам устройства электроустановок (ПУЭ) допустимой нормой возможных отклонений напряжения принято считать:

  • в силовых цепях оно может составлять не выше +/- 6%;
  • в жилом пространстве и за его пределами до +/- 5%;
  • на производственных предприятиях от +/- 5% до -2%.

Потери электрического напряжения от трансформаторной установки до жилого помещения не должны превышать +/- 10%.

В процессе проектирования, рекомендуется сделать равномерную нагрузку на трехфазной линии. Допустимая норма составляет 0,5 кВ. В ходе монтажных работ электродвигатели необходимо подключить к линейным проводникам. Линия освещения будет заключена между фазой и нейтралью. В результате этого, нагрузка правильно распределяется между проводниками.

Когда рассчитывают потерю напряжения в кабеле, за основу берут данные значения тока или мощности. На протяженной электрической линии учитывают индуктивное сопротивление.

Результат понижения напряжения

Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.

Допускаются потери 5 % до главного ввода, а 4 % — от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.

Отклонение параметра от нормированного значения может иметь следующие последствия:

  1. Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
  2. Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
  3. Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
  4. Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
  5. Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.

В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.

К характеристикам линий электропередач предъявляются повышенные требования

Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения

Онлайн калькулятор расчета потерь напряжения в кабеле

Кабельные линии большой протяженности отличаются значительным сопротивлением, которое вносит свои коррективы в работу сети. В зависимости от марки кабеля и других параметров будет отличаться и величина сопротивления. А величина потеть напряжения на кабельной линии прямо пропорциональна  этому сопротивлению.

При помощи онлайн калькулятора расчет потерь напряжения в кабеле  сводится к таким действиям:

  • Укажите длину кабеля в метрах и материал токоведущих жил в соответствующих окошках;
  • Сечение проводника в мм²;
  • Количество потребляемой электроэнергии в амперах или ваттах (при этом поставьте указатель напротив мощности или силы тока, в зависимости от того, какой параметр вам известен, и какую величину вы будете указывать);
  • Проставьте величину напряжения в сети;
  • Внесите коэффициент мощности cosφ;
  • Укажите температуру кабеля;

После того как вы внесли вышеперечисленных данные в поля калькулятора, нажмите кнопку «вычислить» и в соответствующих графах вы получите результат расчета — величину потерь напряжения в кабеле ΔU в %, сопротивление самого провода Rпр в Ом, реактивную мощность Qпр в ВАр и напряжение на нагрузке Uн.

Для вычисления этих величин вся система, включающая кабель и нагрузку, заменяется на эквивалентную, которую можно представить таким образом:

Схема замещения линии с нагрузкой

Как видите на рисунке, в зависимости от типа питания нагрузки (однофазная или трехфазная), сопротивление кабельной линии будет иметь последовательное или параллельное соединение по отношению к нагрузке. Расчет  в калькуляторе осуществляется по таким формулам:

Где,

  • ΔU – потеря напряжения;
  • UЛ – линейное напряжение;
  • UФ – фазное напряжение;
  • I – ток, протекающий в линии;
  • ZК – полное сопротивление кабельной линии;
  • RК – активное сопротивление кабельной линии;
  • XК – реактивное сопротивление кабельной линии.

Из них UЛ, UФ, I, — задаются на этапе введения данных. Для определения полного сопротивления ZК производится арифметическое сложение его активной  RК и реактивной XК составляющей. Активное и реактивное сопротивление определяется по формулам:

  • RК = ( ρ * l ) / S
  • RК – активное сопротивление кабельной линии, где
  • ρ – удельное сопротивление для соответствующего металла (медь или алюминий), но величина удельного сопротивления материала величина не постоянная и может изменяться в зависимости от температуры, из-за чего для приведения его к реальным условиям выполняется пересчет по отношению к температуре:
  • ρt = ρ20 *
  • здесь:
  • a – это коэффициент температурного изменения удельного сопротивления материала.
  • ρ20 – удельное сопротивление материала при температуре +20ºС.
  • t – реальная температура проводника, в данный момент времени.
  • l – длина кабельной линии (если нагрузка однофазная, а кабель имеет две жилы, то обе они включены последовательно и длину необходимо умножить на 2)
  • S – площадь сечения проводника.
  1. Зная активное сопротивление можно рассчитать реактивное XК, через коэффициент мощности по такой формуле:
  2. Реактивная мощность определяется по такой формуле: Q = S*sin φ, где
  3. Где S – это полная мощность, которую можно определить, как произведение тока в цепи на входное напряжение источника или как отношение активной мощности к коэффициенту мощности.
  4. Для вычисления величины напряжения, приходящейся на нагрузку, производятся такие расчеты: UН = U — ΔU, где
  • Где UН – величина напряжения, приложенная к нагрузке;
  • U – напряжение на вводе в кабельную линию
  • ΔU – падение напряжения в кабельной линии.

Причины падения напряжения

Каждому электромеханику известно, что кабель состоит из проводников — на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку — диэлектрический корпус.

Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.

Падение напряжения происходит по следующей схеме:

  1. Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
  2. Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
  3. В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
  4. Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
  5. При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
  6. Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.

Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия — вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.

Рисунок 1. Графическое изображение падения напряжения

На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB — гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.

Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.

Зачем нужно делать расчет потерь напряжения в кабеле?

Излишне рассеивание энергии в кабеле может повлечь за собой существенные потери электроэнергии, сильному нагреву кабеля и повреждению изоляции. Это опасно для жизни людей и животных. При существенной длине линии это скажется на расходах за свет, что также неблагоприятно отразиться на материальном состоянии владельца помещения.

Помимо этого неконтролируемые потери напряжения в кабеле могут стать причиной выхода из строя многих электроприборов, а также полного их уничтожения. Очень часто жильцы используют сечения кабелей меньше чем нужно (с целью экономии), что вскоре вызывает короткое замыкание. А будущие затраты на замену или ремонт электропроводки не окупают кошельки «экономных» пользователей

Вот почему так важно правильно подобрать нужное сечение кабелей прокладываемых проводов. Любой электромонтаж в жилом доме стоит начинать только после тщательного расчета потерь в кабеле. Важно помнить, электричество – не дает второго шанса, а потому все нужно делать изначально правильно и качественно

Важно помнить, электричество – не дает второго шанса, а потому все нужно делать изначально правильно и качественно

Распределение уровня потерь

В процессе проектирования электрической системы, проектировщики должны распределить потери между отдельными участками цепи. Опытные мастера рекомендуют выделять на участок цепи от трансформатора до вводного аппарата до 4%. Такая величина потерь считается оптимальной, так как для обеспечения меньшего уровня потерь придется использовать электрический кабель большого диаметра сечения, что крайне негативно скажется на стоимости подключения объекта к электрическим сетям.

Естественно, величина потерь на данном участке должна быть максимально низкой. Если на участке от трансформатора до вводного устройства будет взята величина потерь на уровне 4%, то потери в электрической системе внутри объекта должны будут быть на уровне не более 3,5%. Внутри электрифицируемых объектов создаются электрические системы не очень большой протяженности, потому величина потерь на них, при использовании кабеля для линии освещения диаметром 1,5-2,5 мм, будет составлять около 2%. Таким образом, допустимая величина потерь напряжения в электросети не будет превышена, а стоимость монтажа электрической системы не будет слишком высокой.

Многие молодые проектировщики могут недооценивать важность грамотного распределения потерь электрического напряжения на пути транспортировки электроэнергии от объектов энергетического хозяйства сетевых компаний до конечного потребителя. Это достаточно грубая ошибка

В первую очередь, грамотное распределение позволяет значительно экономить на электрических кабелях, за счет чего общая стоимость монтажа электрики внутри объекта может быть значительно снижена. Кроме того, неправильное распределение потерь может привести к запрету на выполнение электромонтажных работ по электропроекту, если эта ошибка будет выявлена специалистами на этапе согласования проектной документации. Чтобы проект успешно прошел этап экспертизы, проектировщикам должны быть известны особенности согласования электропроектов.

Также вы можете узнать стоимость проектирования электрики, воспользовавшись калькулятором.