Падение напряжения на кабеле постоянного тока

Введение

Системы оповещения широко применяются в различных сферах человеческой деятельности, например, системы оповещения и управления эвакуацией СОУЭ, системы оповещения о чрезвычайных ситуациях (локальные ЛСО и централизованные ЦСО системы оповещения). Основное назначение системы оповещения – оповещение людей о той или иной угрозе, донесение до них информации, касающейся их личной безопасности в случае каких-либо экстренных ситуаций: пожаров, техногенных катастроф, террористических угрозах. Системы оповещения являются обязательной составляющей практически любой системы безопасности, в которой являются конечным исполнительным элементом – посредником между техническими средствами и человеком. Достоверность передачи информации в системе оповещения подтверждается электроакустическим расчетом, частью которого является расчет оптимального сечения токопроводящей жилы провода, минимизирующего потери .

Системы оповещения, в зависимости от условий применения и способа передачи, можно разделить на беспроводные и проводные. Проводные системы, транслирующие звуковую или речевую информацию называются трансляционными системами.

Трансляционные системы, в зависимости от принципа построения, можно разделить на локальные и распределенные. В распределенных системах звуковой трансляции используется принцип трансформаторного согласования, в котором к трансляционным усилителям – усилителям с трансформаторным выходным каскадом, подключаются специализированные трансформаторные громкоговорители. При построении распределенных систем громкоговорители, являющиеся нагрузкой, подключаются к соединительной линии параллельно и распределяются вдоль нее. При трансформаторном согласовании звуковая информация передается на повышенном напряжении, что позволяет снизить токи, а следовательно, и нагрузку на провода, увеличить длину соединительной линии и дальность передачи сигнала. Протяженные трансляционные линии строятся следующим образом: вначале прокладывается основная линия, к которой через распределительные коробки подключается нагрузка.

В трансляционных линиях неизбежно возникают потери вызванные наличием собственного сопротивления токопроводящей жилы

Большие потери могут привести к снижению уровня и качества передаваемого сигнала, поэтому не маловажной является задача расчета потерь на проводах и сопряженная с ней задача расчета оптимального сечения токопроводящей жилы провода соединительной линии

Применение

Использование такой схемотехники на практике демонстрируют следующие примеры. Для расчетов электрических параметров без учета сопротивления нагрузки подойдут рассмотренные выше ручные и автоматизированные методики.

ЧИТАТЬ ДАЛЕЕ: Люстры с пультом управления правила выбора монтажа и ремонта

Потенциометры

Если резистор оснастить ползунком и соответствующим приводом, сопротивления можно будет менять плавно. Это решение позволяет точнее менять напряжения на выходе, по сравнению с дискретными схемами. Главный недостаток – усложнение конструкции, что, кроме удорожания, снижает надежность. Приходится обеспечивать герметичность рабочей зоны для исключения загрязнения и предотвращения коррозийных процессов.


Принципиальная схема потенциометра

Основные причины падения напряжения

Итак, на пропускную способность кабеля оказывают влияние два его главных параметра:

  • площадь поперечного сечения;
  • длина.

Но сила тока в жилах – это как раз та физическая величина, с которой перечисленные параметры находятся в неразрывной связи по закону Ома для участка электрической цепи:

Теория

Среди указанных составляющих формулы сопротивления не хватает еще одной, связывающей силу тока и его неравномерное распределение по поперечнику жилы кабеля. Напоминаем, что это явление именуется поверхностным эффектом или скин-эффектом. Чем больше сила тока, тем заметнее скин-эффект. От него можно избавиться в кабеле, только делая жилы многопроволочными.

Скин-эффект и распределение тока по сечению токопроводящей жилы

Но рассмотренные явления в полной мере соответствуют кабелям с постоянным током, используемым в основном для электрического транспорта. В остальном – это лишь часть того, что входит в понятие падения напряжения (ΔU) по длине кабеля, работающего в промышленной электросети, в которой действует переменное напряжение. В этих условиях любой проводник характеризуется импедансом, учитывающим его индуктивность и емкость, образующих реактивную составляющую напряжения и тока. Поэтому в целом получается комплексная проблема, которая, по сути, сводится к потерям электроэнергии. А ΔU – это их объективное проявление (см. поясняющее изображение далее):

Скин-эффект и распределение тока по сечению токопроводящей жилы

Напоминаем, что в электротехнике для расчетов напряжений и токов с участием нагрузки, исчисляемой по импедансу, используются комплексные числа. Индуктивность и емкость вызывают сдвиг между током и напряжением. Поэтому комплексное число может быть представлено графически. Один вектор – это активная составляющая, другой – реактивная. Сдвиг между током и напряжением характеризуется углом между упомянутыми двумя векторами, выходящими из общей точки. На изображении выше изложенное представляют векторные диаграммы, выполненные красным цветом.

Устройство

Трансформатор представляет собой статический прибор. Он работает от электричества. В конструкции при этом отсутствуют подвижные детали. Поэтому рост затрат электроэнергии вследствие механических причин исключены.

При функционировании силовой аппаратуры затраты электроэнергии увеличиваются в нерабочее время. Это связано с ростом активных потерь холостого хода в стали. При этом наблюдается снижение нагрузки номинальной при увеличении энергии реактивного типа. Потери энергии, которые определяются в трансформаторе, относятся к активной мощности. Они появляются в магнитоприводе, на обмотках и прочих составляющих агрегата.

Калькулятор расчета потерь напряжения в электрическом кабеле

Кабельные линии большой протяженности отличаются значительным сопротивлением, которое вносит свои коррективы в работу сети. В зависимости от марки кабеля и других параметров будет отличаться и величина сопротивления. А величина потеть напряжения на кабельной линии прямо пропорциональна этому сопротивлению.

При помощи онлайн калькулятора расчет потерь напряжения в кабеле сводится к таким действиям:

  • Укажите длину кабеля в метрах и материал токоведущих жил в соответствующих окошках;
  • Сечение проводника в мм²;
  • Количество потребляемой электроэнергии в амперах или ваттах (при этом поставьте указатель напротив мощности или силы тока, в зависимости от того, какой параметр вам известен, и какую величину вы будете указывать);
  • Проставьте величину напряжения в сети;
  • Внесите коэффициент мощности cosφ;
  • Укажите температуру кабеля;

После того как вы внесли вышеперечисленных данные в поля калькулятора, нажмите кнопку «вычислить» и в соответствующих графах вы получите результат расчета — величину потерь напряжения в кабеле ΔU в %, сопротивление самого провода Rпр в Ом, реактивную мощность Qпр в ВАр и напряжение на нагрузке Uн.

Для вычисления этих величин вся система, включающая кабель и нагрузку, заменяется на эквивалентную, которую можно представить таким образом:

Как видите на рисунке, в зависимости от типа питания нагрузки (однофазная или трехфазная), сопротивление кабельной линии будет иметь последовательное или параллельное соединение по отношению к нагрузке. Расчет в калькуляторе осуществляется по таким формулам:

  • ΔU – потеря напряжения;
  • UЛ – линейное напряжение;
  • UФ – фазное напряжение;
  • I – ток, протекающий в линии;
  • ZК – полное сопротивление кабельной линии;
  • RКактивное сопротивление кабельной линии;
  • XК – реактивное сопротивление кабельной линии.

Из них UЛ, UФ, I, — задаются на этапе введения данных. Для определения полного сопротивления ZК производится арифметическое сложение его активной RК и реактивной XК составляющей. Активное и реактивное сопротивление определяется по формулам:

RК – активное сопротивление кабельной линии, где

ρ – удельное сопротивление для соответствующего металла (медь или алюминий), но величина удельного сопротивления материала величина не постоянная и может изменяться в зависимости от температуры, из-за чего для приведения его к реальным условиям выполняется пересчет по отношению к температуре:

  • a – это коэффициент температурного изменения удельного сопротивления материала.
  • ρ20 – удельное сопротивление материала при температуре +20ºС.
  • t – реальная температура проводника, в данный момент времени.
  • l – длина кабельной линии (если нагрузка однофазная, а кабель имеет две жилы, то обе они включены последовательно и длину необходимо умножить на 2)
  • S – площадь сечения проводника.

Зная активное сопротивление можно рассчитать реактивное XК, через коэффициент мощности по такой формуле:

Реактивная мощность определяется по такой формуле: Q = S*sin φ, где

Где S – это полная мощность, которую можно определить, как произведение тока в цепи на входное напряжение источника или как отношение активной мощности к коэффициенту мощности.

Для вычисления величины напряжения, приходящейся на нагрузку, производятся такие расчеты: UН = U — ΔU, где

  • Где UН – величина напряжения, приложенная к нагрузке;
  • U – напряжение на вводе в кабельную линию
  • ΔU – падение напряжения в кабельной линии.

Расчетная проверка сечений жил кабелей на потерю напряжения.

Сечение кабелей и проводов, выбранное из условий нагрева и согласованное с коммутационными возможностями аппаратов защиты, нужно проверять на относительную линейную потерю напряжения. 

где U — напряжение источника электрической энергии, Uном — напряжение в месте присоединения приемника. 

Допустимое отклонение напряжения на зажимах двигателей от номинального не должно превышать ±5 %, а в отдельных случаях оно может достигать +10 %. 

В осветительных сетях снижение напряжения у наиболее удаленных ламп внутреннего рабочего освещения и прожекторных установок наружного освещения не должно превышать 2,5 % номинального напряжения ламп, у ламп наружного и аварийного освещения — 5 %, а в сетях напряжением 12.,.42 В — 10 %. Большее снижение напряжения приводит к существенному уменьшению освещенности рабочих мест, вызывает снижение производительности труда и может привести к условиям, при которых зажигание газоразрядных ламп не гарантировано. Наибольшее напряжение на лампах, как правило, не должно превышать 105 % его номинального значения. 

Повышение напряжения сетей внутреннего электроснабжения выше предусмотренного нормами не допустимо, так как оно приводит к существенному увеличению расхода электрической энергии, сокращению срока службы силового и осветительного электрооборудования, а иногда к снижению качества выпускаемой продукции.

При проектировании электроснабжения и электрооборудования жилища важна величина действительной части, т.е. потеря напряжения. Проверка выбранных проводников по потере напряжения из условия обеспечения необходимых(регламентированных стандартами) уровней напряжения у самых удаленных от источника питания потребителей осуществляется следующим образом. Выполняется расчет потери напряжения (%) по формулам:-рассотрим для трех фазной сети:

Где

н – номинальное напряжение, В (380 В – симметричной трехфазной сети);

 R – активное сопротивление проводника, Ом;

Х – индуктивное сопротивление проводника, Ом;

Сos ϕ– коэффициент мощности нагрузки;

 I р max– максимальный расчетный ток нагрузки, А;

ΔU – потеря напряжения, % от номинального.

Без учета индуктивного сопротивления линии на потерю напряжения, как правило, рассчитываются:

-сети постоянного тока;

-линии сети переменного тока, для которых коэффициент мощности Cos ϕ= 1;

-сети, выполненные проводами внутри зданий или кабелями, если их сечения не превосходят табличных значений.

Индуктивным сопротивлением проводников сечением менее 50 мм2 можно пренебречь,т.е. Х

При отсутствии какой-либо другой информации величину Х можно принимать Ом/м.

Активное сопротивление проводников (Ом) определяется по одной из известных формуле,

где ρ– удельное сопротивление проводника, Ом • мм2/ м;

γ– удельная проводимость проводника, м / Ом • мм2;

S – сечение проводника, мм2;

l – длина проводника.

Значение удельного сопротивления и удельной проводимости для:

Медных проводников ρм=0,0189 Ом • мм2/ м;γм= 53 м / Ом • мм2;

-алюминиевых проводниковρа =0,0315 Ом • мм2/ м; γа = 31,7 м / Ом • мм2.

Допустимая величина падения напряжения определяется по формуле:

Где ΔU пд– предельно допустимые потери напряжения в питающей приемник цепи, %;

105-напряжение холостого хода на вторичной стороне питающего трансформатора, %

ΔU тр– падение напряжения в трансформаторе, питающем данный объект, %;

ΔU min д– минимально допустимое напряжение на зажимах электроприемника, %.

Допустимые отклонения напряжения у приемников электроэнергии смотрят в табличных данных. .Затем проверяется выполнение условия:

Для проверки проводников по потере напряжения можно также использовать таблицы удельных потерь напряжения ,которые составлены на основании данных, приведенных в Справочнике по расчету проводов и кабелей и адаптированных к действующим в настоящее время нормам и правилам. В таблицах находят удельные потери напряжения для электропроводок,воздушных и кабельных линий в зависимости от величины коэффициента мощности. Для проводов и кабелей из цветного металла эти потери выражены в процентах на 1 кВт•км в зависимости от напряжения линии. Потеря напряжения в линии при заданном сечении проводов и кабелей из цветных металлов определяется по формуле,

где М а – сумма произведений активных нагрузок на длины участков линии, кВт•км;

ΔU  м.б. – табличное значение удельной величины потери напряжения в процентах на 1 кВт•км.

Определение сечения проводов по заданной величине потери напряжения производится следующим образом. Определяется расчетное значение

ΔU мб п о ф о р м у л е :

и по соответствующей таблице подбирается сечение провода с ближайшим меньшим значением у д е л ь н о й п о т е р и н а п р я ж е н и я

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Вам это будет интересно Расчет эквивалентного сопротивления

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Пример калькулятора для автоматизации вычислений

Результат понижения напряжения

Распространено явление, когда входное напряжение определяется ниже установленной нормы. Проседание по длине кабеля возникает по причине прохождения высокого тока, который вызывает увеличение сопротивления. Также потери возрастают на линиях большой протяженности, что характерно для сельской местности.

Согласно нормативам, потери от трансформатора до самого удаленного участка должны составлять не более 9%. Результат отклонения параметров от нормы может быть следующим:

  • сбой работы энергозависимых установок и оборудования, осветительных приборов;
  • выход электроприборов из строя при низких показателях напряжения на входе;
  • снижение вращающего момента при пуске электродвигателя или компрессорной установки;
  • пусковой ток приводит к перегреву и отключению двигателя;
  • неравномерная токовая нагрузка в начале линии и на удаленном конце;
  • осветительные приборы работают вполнакала;
  • потери электроэнергии, недоиспользование мощности тока.

Способы уменьшения потерь в электрических сетях

Пользователь сети не может повлиять на потери в ЛЭП, но может снизить падение напряжения на участке цепи, грамотно подключив ее элементы.

Медный кабель лучше соединять с медным, а алюминиевый — с алюминиевым. Количество соединений проводов, где материал жилы изменяется, лучше свести к минимуму, так как в таких местах не только рассеивается энергия, но и увеличивается тепловыделение, что при недостаточном уровне теплозоляции может быть пожароопасным. Учитывая показатели удельной проводимости и удельного сопротивления меди и алюминия, более эффективно в плане энергозатрат использовать медь.

Если это возможно, при планировании электрической цепи любые индуктивные элементы, такие как катушки (L), трансформаторы и электродвигатели, лучше подключать параллельно, так как согласно законам физики, общая индуктивность такой схемы снижается, а при последовательном подключении, наоборот, увеличивается.

Еще для сглаживания реактивной составляющей используют конденсаторные установки (или RC-фильтры в совокупности с резисторами).

В зависимости от принципа подключения конденсаторов и потребителя имеется несколько типов компенсации: личная, групповая и общая.

  1. При личной компенсации емкости присоединяют непосредственно к месту появления реактивной мощности, то есть собственный конденсатор — к асинхронному мотору, еще один — к газоразрядной лампе, еще один — к сварочному, еще один — для трансформатора и т.д. В этой точке приходящие кабели разгружаются от реактивных токов к отдельному пользователю.
  2. Групповая компенсация включает в себя присоединение одного или нескольких конденсаторов к нескольким элементам с большими индуктивными характеристиками. В данной ситуации регулярная одновременная деятельность нескольких потребителей связана с передачей суммарной реактивной энергии между нагрузками и конденсаторами. Линия, которая подводит электрическую энергию к группе нагрузок, разгрузится.
  3. Общая компенсация предусматривает вставку конденсаторов с регулятором в основном щите, или ГРЩ. Он производит оценку по факту текущего потребления реактивной мощности и быстро подсоединяет и отсоединяет нужное число конденсаторов. В результате берущаяся от сети общая мощность приводится к минимуму в согласии с моментальной величиной необходимой реактивной мощности.
  4. Все установки компенсации реактивной мощности включают в себя пару ветвей конденсаторов, пару ступеней, которые образуются специально для электрической сети в зависимости от потенциальных нагрузок. Типичные габариты ступеней: 5; 10; 20; 30; 50; 7,5; 12,5; 25 квар.

Для приобретения больших ступеней (100 и больше квар) соединяют параллельно небольшие. Нагрузки на сети уменьшаются, токи включения и их помехи снижаются. В сетях с множеством высоких гармоник сетевого напряжения конденсаторы защищают дросселями.

Автоматические компенсаторы обеспечивают сети, снабженной ими, такие преимущества:

  • уменьшают загрузку трансформаторов;
  • делают более простыми требования к сечению кабелей;
  • дают возможность загрузить электросети больше, чем можно без компенсации;
  • ликвидируют причины уменьшения напряжения сети, даже когда нагрузка подсоединена протяженными кабелями;
  • увеличивают КПД мобильных генераторов на топливе;
  • упрощают запуск электрических двигателей;
  • увеличивают косинус фи;
  • ликвидируют реактивную мощность из контуров;
  • защищают от перенапряжений;
  • совершенствуют регулировку характеристик сетей.

Формула сопротивления при параллельном и последовательном соединении

Течение тока в электрической цепи осуществляется по проводникам, в направлении от источника к потребителям. В большинстве подобных схем используются медные провода и электрические приемники в заданном количестве, обладающие различным сопротивлением.

В зависимости выполняемых задач, в электрических цепях используется последовательное и параллельное соединение проводников. В некоторых случаях могут быть применены оба типа соединений, тогда этот вариант будет называться смешанным.

Каждая схема имеет свои особенности и отличия, поэтому их нужно обязательно заранее учитывать при проектировании цепей, ремонте и обслуживании электрооборудования.

Последовательное соединение проводников

В электротехнике большое значение имеет последовательное и параллельное соединение проводников в электрической цепи. Среди них часто используется схема последовательного соединения проводников предполагающая такое же соединение потребителей. В этом случае включение в цепь выполняется друг за другом в порядке очередности. То есть, начало одного потребителя соединяется с концом другого при помощи проводов, без каких-либо ответвлений.

Свойства такой электрической цепи можно рассмотреть на примере участков цепи с двумя нагрузками. Силу тока, напряжение и сопротивление на каждом из них следует обозначить соответственно, как I1, U1, R1 и I2, U2, R2. В результате, получились соотношения, выражающие зависимость между величинами следующим образом: I = I1 = I2, U = U1 + U2, R = R1 + R2. Полученные данные подтверждаются практическим путем с помощью проведения измерений амперметром и вольтметром соответствующих участков.

Таким образом, последовательное соединение проводников отличается следующими индивидуальными особенностями:

  • Сила тока на всех участках цепи будет одинаковой.
  • Общее напряжение цепи составляет сумму напряжений на каждом участке.
  • Общее сопротивление включает в себя сопротивления каждого отдельного проводника.

Данные соотношения подходят для любого количества проводников, соединенных последовательно. Значение общего сопротивления всегда выше, чем сопротивление любого отдельно взятого проводника. Это связано с увеличением их общей длины при последовательном соединении, что приводит и к росту сопротивления.

Если соединить последовательно одинаковые элементы в количестве n, то получится R = n х R1, где R – общее сопротивление, R1 – сопротивление одного элемента, а n – количество элементов. Напряжение U, наоборот, делится на равные части, каждая из которых в n раз меньше общего значения. Например, если в сеть с напряжением 220 вольт последовательно включаются 10 ламп одинаковой мощности, то напряжение в любой из них составит: U1 = U/10 = 22 вольта.

Проводники, соединенные последовательно, имеют характерную отличительную особенность. Если во время работы отказал хотя-бы один из них, то течение тока прекращается во всей цепи. Наиболее ярким примером является елочная гирлянда, когда одна перегоревшая лампочка в последовательной цепи, приводит к выходу из строя всей системы. Для установления перегоревшей лампочки понадобится проверка всей гирлянды.

Параллельное соединение проводников

В электрических сетях проводники могут соединяться различными способами: последовательно, параллельно и комбинированно. Среди них параллельное соединение это такой вариант, когда проводники в начальных и конечных точках соединяются между собой. Таким образом, начала и концы нагрузок соединяются вместе, а сами нагрузки располагаются параллельно относительно друг друга. В электрической цепи могут содержаться два, три и более проводников, соединенных параллельно.

Если рассматривать последовательное и параллельное соединение, сила тока в последнем варианте может быть исследована с помощью следующей схемы. Берутся две лампы накаливания, обладающие одинаковым сопротивлением и соединенные параллельно. Для контроля к каждой лампочке подключается собственный амперметр. Кроме того, используется еще один амперметр, контролирующий общую силу тока в цепи. Проверочная схема дополняется источником питания и ключом.

После замыкания ключа нужно контролировать показания измерительных приборов. Амперметр на лампе № 1 покажет силу тока I1, а на лампе № 2 – силу тока I2. Общий амперметр показывает значение силы тока, равное сумме токов отдельно взятых, параллельно соединенных цепей: I = I1 + I2. В отличие от последовательного соединения, при перегорании одной из лампочек, другая будет нормально функционировать. Поэтому в домашних электрических сетях используется параллельное подключение приборов.

Как рассчитать потерю напряжения?

Калькулятор в режиме онлайн позволяет правильно вычислить необходимые параметры, которые в дальнейшем сократят появление различного рода неприятностей. Для самостоятельного вычисления потери электрического напряжения используют следующую формулу:

U =(P*ro+Q*xo)*L/U ном:

  • Р – это активная мощность. Её измеряют в Вт;
  • Q – реактивная мощность. Единица измерения вар;
  • ro – выступает в качестве активного сопротивления (Ом);
  • хо – реактивное сопротивление (м);
  • U ном – это номинальное напряжение (В). Оно указывается в техническом паспорте устройства.

Согласно правилам устройства электроустановок (ПУЭ) допустимой нормой возможных отклонений напряжения принято считать:

  • в силовых цепях оно может составлять не выше +/- 6%;
  • в жилом пространстве и за его пределами до +/- 5%;
  • на производственных предприятиях от +/- 5% до -2%.

Потери электрического напряжения от трансформаторной установки до жилого помещения не должны превышать +/- 10%.

В процессе проектирования, рекомендуется сделать равномерную нагрузку на трехфазной линии. Допустимая норма составляет 0,5 кВ. В ходе монтажных работ электродвигатели необходимо подключить к линейным проводникам. Линия освещения будет заключена между фазой и нейтралью. В результате этого, нагрузка правильно распределяется между проводниками.

Когда рассчитывают потерю напряжения в кабеле, за основу берут данные значения тока или мощности. На протяженной электрической линии учитывают индуктивное сопротивление.